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Abstract 

Gap junctional intercellular communication has been 
demonstrated in bone cells and may contribute to the 
mechanism by which osteoblasts integrate and amplify 
extracellular signals, both chemical (hormonal) and 
biophysical (electrical and mechanical). Connexin 43 
(Cx43) is the predominant gap junction protein expressed 
by bone cells. Experiments with osteoblastic cells in 
which Cx43 expression was diminished by antisense 
transfection demonstrate that cell-to-cell coupling in 
osteoblastic ROS 17/2.8 cells is via gap junctions com­
posed of Cx43. Cellular networks of these coupling 
deficient clones are dramatically less responsive to 
parathyroid hormone (PTH) suggesting that coupling 
contributes to hormonal responsiveness. Furthermore, 
PTH per se can upregulate cell-to-cell communication in 
these networks. Membrane deformation-induced Ca2+ 

signals propagate from the deformed cell to neighboring 
undeformed cells. This phenomenon is blocked by octa­
nol, a gap junction uncoupler. Physiologically relevant 
electric fields, i.e., induced by mechanical load, stimu­
late alkaline phosphatase activity in ROS 17/2.8 cells, 
but this response is greatly reduced in coupling deficient 
Cx43 antisense transfectants. Furthermore, electric 
fields per se regulate Cx43 expression in osteoblastic 
cells. Gap junctional intercellular communication 
appears critical for the regulation of osteoblastic behav­
ior and thus bone metabolism by extracellular signals. 
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Introduction 

Gap junctions are membrane spanning channels 
which facilitate intercellular communication by allowing 
passage of small molecules ( < 1 kD), such as calcium 
ion (Ca2+), inositol phosphates and cyclic nucleotides, 
from one cell to another. Each gap junction is com­
prised of two hexameres termed connexons each of 
which in tum are comprised of 6 subunits termed 
connexins (Cx). At least twelve mammalian connexins 
have been identified and classified according to their 
derived molecular weight. The most widely expressed 
of these include Cx26 and Cx32, both originally isolated 
from rat liver [39, 60], and Cx43 from rat heart [5, 6]. 
Morphological and ultrastructural studies reveal that gap 
junctions directly connect (exist between) adjoining 
osteoblasts and osteocytes [20, 29] but their role in bone 
function is unclear. It has been suggested that gap 
junctional intercellular communication facilitates the 
integration and amplification of extracellular signals 
critical to the regulation of bone modeling and remodel­
ing [21, 31]. Unfortunately, little experimental evidence 
exists which directly supports this concept. However, 
recent advances in the cell and molecular biology of gap 
junctions provide support for the idea that cell-to-cell 
communication contributes to signal transduction in 
bone. 

There are several possible functions for gap junc­
tional intercellular communication in bone. First, cell 
coupling could contribute to cell differentiation, tissue 
development and morphogenesis as is the case in other 
tissue systems [33, 42, 55, 59]. A second possibility is 
that gap junctions facilitate the transmission of extracel­
lular signals, such as hormones, from the periphery 
where bone cells are in close proximity to blood vessels, 
to deeper cortical areas not exposed to blood flow. 
Likewise, cell coupling may facilitate transmission of 
osteogenic biophysical signals from one area of bone to 
another. Another possibility is that gap junctional 
coupling contributes to the coordinated responses of 
cellular networks to extracellular signals. 

The purpose of this brief review is to survey recent 
data which support a role for gap junction intercellular 
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communication in signal integration and amplification 
within bone. Specifically, the contribution of cell-to-cell 
coupling to hormonal responsiveness and biophysical 
signal transduction will be discussed. 

Characterization of Gap Junctions in Bone 

The earliest evidence suggesting functional gap 
junctions in bone was provided by Jeansonne et al. [28]. 
These investigators reported that when rat calvarial 
subperiosteal osteoblasts were injected with a 0.5 kD 
fluorescent dye the dye spread to neighboring osteoblas­
tic cells. Furthermore, passage of current from one cell 
to another resulted in a membrane potential change in 
the second cell. While this was the first study to suggest 
cell-to-cell coupling between osteoblastic cells, it is 
unclear whether this coupling was gap junction mediat­
ed. Indeed, the spread of ionic current may have been 
independent of gap junctions. Furthermore, these 
investigators also demonstrated that parathyroid hormone 
conjugated fluorescein, a molecule much larger than the 
1 kD limit for gap junction channels, passed from cell­
to-cell. These results suggest that the cell-to-cell 
communication demonstrated by these investigators may 
have been by means other than gap junctional channels. 
Subsequently, electron microscopy demonstrated gap 
junctions between adjacent osteoblasts and between 
osteoblasts and osteocytes [20] . No evidence was found 
for gap junctions between osteoclasts and either 
osteocytes or osteoblasts. These early 
electromicrographic studies have been confirmed by 
several investigators [1, 29, 38, 48] and, while they did 
not characterize the structure or function of gap junc­
tions in bone, strongly suggested a role for gap junctions 
in bone metabolism. 

Recent advances in the molecular biology of gap 
junctions have allowed the identification of specific gap 
junction proteins expressed in bone and analysis of their 
functional characteristics. Schirrmacher et al. [47] 
presented the first evidence that a specific connexin, 
connexin 43 (Cx43), is expressed in osteoblastic cells. 
Cx43 was first identified in rat heart [6] and is perhaps 
the most widely distributed connexin being found in 
several tissue types including myometrium, testis, lens 
epithelium, endothelium [ 4], and cartilage [ 17]. 
Schirrmacher et a!. [ 46] also demonstrated that bovine 
osteoblasts were both metabolically and electrically. 
coupled, i.e., communicate with one another via gap 
junctions. These findings were subsequently confirmed 
by several independent groups and taken together 
suggest that Cx43 may be the predominant functional 
gap junction protein expressed in human and other 
mammalian bone cells in vitro [9, 11, 19, 45, 58] . 
However, it is not clear that Cx43 is the predominant 
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gap junction expressed in vivo since gap junction 
expression in vitro does not necessarily parallel 
expression in vivo. 

The predominance of Cx43 in osteoblastic cells and 
the observation that osteoblasts are metabolically and 
electrically coupled is strong indirect evidence that they 
are coupled via gap junctions composed of Cx43. More 
direct evidence that at least one osteoblastic cell line, 
ROS 17/2.8, is coupled via gap junctions composed of 
Cx43 comes from studies characterizing functional 
coupling in ROS 17/2.8 cells expressing an antisense 
eDNA construct of Cx43 [53]. In these studies, ROS 
17/2.8 cells were transfected with either a plasmid 
encoding an antisense construct of Cx43 and neomycin 
resistance or a control plasmid encoding neomycin 
resistance only. Two clones were isolated which 
expressed dramatically reduced expression of Cx43 
mRN A and protein and reduced functional coupling 
(Fig . 1). However, these cells maintained other 
phenotypic characteristics of osteoblastic cells. These 
results not only provide strong direct evidence that an 
osteoblastic cell line is coupled via gap junctions 
composed of Cx43, but also provide a useful model to 
examine the role of cell coupling in osteoblastic 
behavior. 

While Cx43 may be the predominant gap junction 
protein found in bone cells in vitro, Cx45, originally 
identified in heart and found in endometrium and a few 
other tissues, has been detected in a rat osteoblastic 
osteosarcoma cell line, UMR-106 [50], and an SV -40 
transfected human fetal osteoblastic cell line, hFOB 
(Donahue et al., unpublished data). Interestingly, the 
Cx45 containing gap junction channels in UMR-106 cells 
are less permeable to Lucifer yellow, a dye which passes 
from cell-to-cell via gap junctions, than Cx43 containing 
channels in other osteoblastic cell lines such as ROS 
17/2.8 [50]. Furthermore, when ROS 17/2.8 cells are 
transfected with a gene encoding Cx45 their permeability 
to Lucifer yellow decreases. Thus, osteoblastic cells 
may have the potential to regulate cell coupling by 
turning different connexins on or off. 

Considerable data are accumulating which 
characterize gap junctions in osteoblastic networks, 
however much less information is available regarding 
gap junction expression in other bone cells. While Cx43 
immunoreactivity has been demonstrated between 
adjacent osteocytes in situ [29], and in bone formed in 
vitro [24] and Cx43 mRNA within osteocytes has been 
identified in vivo by use of reverse transcriptase linked 
to polymerase chain reaction (RT-PCR) [34] there is no 
evidence that osteocytes are functionally coupled in vivo 
or in vitro. This is an extremely important issue since 
cell-to-cell communication within osteocytic networks 
has been postulated as a critical component of 
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extracellular signal transduction, integration and 
amplification in bone [15, 21, 31]. There is also little 
information regarding expression of gap junction 
proteins by osteoclasts. Cx 43 immunoreactivity has 
been identified between some osteoclasts in two week 
old rats [29] but whether these constitute functional gap 
junctions was not examined. 

To summarize, osteoblastic cells communicate with 
one another via membrane channels composed of gap 
junctions. Additionally, the predominant gap junction 
protein expressed by bone cells in vitro appears to be 
Cx43. 

Gap Junctions and Honnonal Responsiveness 

Evidence that coupling coordinates the response of 
cell networks to hormones comes from studies 
demonstrating that pharmacological inhibitors of 
intercellular coupling inhibit adrenocorticotropic hor­
mone-induced steroidogenesis in adrenal cells [37], 
bombesin-stimulated cytosolic calcium oscillations in 
pancreatic acini [ 49], the secretory effect of thyrotrophic 
releasing hormone on pituitary cells [22], and alpha, 
adrenergic receptor agonist-stimulated contractions in 
smooth muscle cells [10]. These studies suggest that 
cell-to-cell communication is critical for hormonal 
responsiveness in many tissue systems. However, these 
studies are difficult to interpret since the agents used to 
inhibit gap junctional coupling, in most cases lipophilic 
long chain alcohols, may have many non-specific effects 
on cells [2]. Therefore, we have used a more direct and 
specific approach to assess the role of intercellular 
communication in the ability of cell ensembles to 
respond to extracellular signals. Utilizing ex 43 defic­
ient clones we have examined the role of cell-to-cell 
communication in hormonal responsiveness in bone cell 
networks [53]. 

To obtain Cx43 deficient clones osteoblastic ROS 
17/2.8 cells were transfected with a plasmid containing 
an antisense eDNA construct to rat Cx43. Control 
transfection did not alter cell-to-cell coupling nor Cx43 
mRNA or protein expression relative to nontransfected 
ROS 17/2.8 cells. In contrast, stable transfection with 
an antisense Cx43 eDNA resulted in two clones, RCx4 
and RCx16, which displayed significant decreases in 
Cx43 mRNA (almost 100% reduction) and protein 
(greater than 83% reduction) expression and were 
dramatically deficient in cell-to-cell coupling. 
Phenotypical! y, all transfectants retained osteoblastic 
characteristics. 

As shown in Figure 2, the cyclic AMP (cAMP) 
response to parathyroid hormone (PTH), a potent 
regulator of bone cell metabolism, was dramatically 
reduced in two Cx43 deficient, and therefore coupling 
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Figure 1. Cell coupling in Cx43 antisense transfected 
clones. ROS 17/2.8 cells were transfected with a 
plasmid encoding Cx43 eDNA in an antisense orien­
tation. Functional coupling in one of the clones, 
RCx16, was then quantified, relative to ROS 17/2.8, by 
dye transfer. Individual cells were loaded with Lucifer 
yellow (molecular weight = 457 D), a fluorescent dye 
which passes through gap junctions, and the number of 
neighboring cells taking up dye within three minutes 
recorded. Each bar represents the mean (± standard 
error of mean, SE) number of adjacent cells which take 
up dye within three minutes. This number was sig­
nificantly lower (p < 0.05) in RCx16 as compared to 
ROS 17/2.8 reflecting a reduction in coupling capacity 
(n = 10-15 cells/group). These data confirm previous 
results [53] and suggest that Cx43 antisense transfection 
is quite stable. 

deficient, clones relative to normal ROS 17/2.8 cells and 
control transfectants. Furthermore, the attenuation of 
PTH-stimulated cAMP accumulation in antisense 
transfected clones was not due to an effect of 
transfection on adenyl ate cyclase activity, or PTH 
receptor expression, availability or binding kinetics [53]. 
These data strongly suggest that cell coupling contributes 
to PTH responsiveness in osteoblastic cell networks. 

This finding has important implications in bone 
tissue where the responsiveness of individual cells to a 
given hormonal signal can be quite heterogenous. For 
instance, Civitelli et al. [12] have shown that among 
individual osteoblasts the response to PTH is 
heterogeneous such that only 30% of osteoblastic cells 
respond to maximal doses of PTH (10·7 M) on an 
individual basis. Thus, in a population of cells 
exhibiting a heterogeneous response to a hormone on an 
individual basis gap junctions may act to amplify the 
effects of receptor activation of a single cell by 
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Figure 2. PTH-stimulated cAMP response in 
osteoblastic cells. Intracellular cAMP responses were 
measured by RIA after 15 minute exposures, at 37°C, 
to 10·7 - 10"11 M rPTH(1-34). Cells were plated at 
50,000 cells/cm2 and grown for 60 hours. PTH 
stimulated cAMP accumulation in a concentration­
dependent manner in both ROS (thick line) and control 
transfectants (bG; thick dash). However, PTH­
stimulated cAMP accumulation in RCx 16 (thin dash) and 
RCx4 (thick dash), two Cx43 antisense transfected 
clones was dramatically attenuated. The peak cAMP 
response to 10·7 M rPTH(l-34) in RCx4 and RCxl6 was 
only 26.2% and 21.9% that of ROS, respectively. All 
data represent mean ± SE of 3-6 experiments performed 
in duplicate. *: significantly different from either ROS 
or bG, p < 0.05. Adapted from Vander Molen et al. 
[53]. 

permitting the spread of second messengers to adjacent 
cells that are not directly activated by the agonist [10], 
in this case PTH. In this manner, the net cell ensemble 
response would be greater than the sum of individual 
responding cells. 

Not only is cell-to-cell communication critical for 
hormonal responsiveness in osteoblastic networks but 
hormones, in turn, can regulate cell-to-cell 
communication. Schiller et al. [ 45] demonstrated that 
PTH can increase Cx43 gene expression and cell 
coupling in UMR-106 and rat calvarial cells. 
Furthermore, these effects were mimicked by forskolin 
and dbcAMP suggesting that PTH regulates cell-to-cell 
communication partly by a cAMP-dependent mechanism. 
PTH also stimulates, in a concentration-dependent 
manner, cell-to-cell communication in osteoblastic cells 
isolated from rat long bone [19] (Fig. 3). This effect is 
blocked by PTH (3-34), an amino truncated analog of 
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Figure 3 . Concentration-dependent effect of PTH on 
intercellular communication in ROB cells. Cells were 
exposed to 10"10 M to 10"6 M rPTH-(1-34) or 10"6 M 
rPTH-(1-34) and 10·6 M PTH-(3-34) for one hour prior 
to being loaded with carboxyfluorescein and the 
percentage of cells coupled calculated. Values are the 
ratios of proportion of cells coupled in the presence of 
PTH to the proportion coupled in the presence of vehicle 
control ( ± SE of proportion). Control = vehicle 
control , values = log [PTH] ; analog = PTH-(1-34) 
plus PTH-(3-34) . -l<; Significantly greater than vehicle 
control, p < 0.05 . The total number of cells loaded for 
each group was: control = 53; -10M = 28; -8 M = 

15; -6 M = 22; analog = 39. From Donahue et al. 
[19] (reproduced with permission). 

PTH which blocks PTH-simulated cAMP accumulation 
[16], supporting the concept that PTH stimulates cell 
coupling in osteoblasts via a cAMP-dependent 
mechanism. The implication from these fmdings is that 
any cell process dependent on cell-to-cell 
communication, i.e., differentiation, morphogenesis and 
signal transduction, may in turn be modulated by PTH. 

Other hormones and extracellular factors have been 
shown to increase Cx43 function and expression in 
osteoblastic networks. For instance, retinoic acid and 
transforming growth factor 13, have been shown to 
increase expression of Cx43 protein and mRNA and 
increase coupling in SV -40 transformed human fetal 
osteoblastic cells, whereas 1,25 (OH)2 vitamin D was 
without effect on these parameters. While the 
mechanism by which these factors affect coupling was 
not investigated, it is unlikely that it was through 
activation of adenylate cyclase activity since both 
retinoic acid [3] and transforming growth factor 13 [30] 
inhibit PTH -stimulated cAMP accumulation. Studies are 
needed to determine the mechanism by which these 
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factors affect cell-to-cell coupling. 
In summary, not only is cell-to-cell communication 

critical to hormonal responsiveness, at least as regards 
PTH, but it is also clear that PTH regulates cell-to-cell 
communication. Thus a feedback loop exists wherein 
PTH may act to amplify the effectiveness of its own 
signal. While such positive feedback loops are rare in 
physiological systems, they are not without precedent. 
Indeed, in the nervous system, where signal integration 
and amplification is the goal, action potentials are 
propagated via positive feedback. It is tempting to 
speculate that the osteoblastic/osteocytic network, 
defmed by gap junctional intercellular communication 
and regulated by PTH, provides a positive feedback loop 
to function in signal integration and amplification as is 
the case in the nervous system. Interestingly, a role for 
positive feedback in bone remodeling has already been 
promulgated [51]. 

Gap Junctions and Biophysical Signal Transduction 

One way cell coupling may contribute to biophysical 
signal transduction is by transmitting signals from 
individual cells which perceive a biophysical signal to 
those that do not. This is demonstrated in Figure 4. In 
this experiment the membrane of a single cell, in this 
case an immortalized human fetal osteoblastic cell 
(hFOB) [26], is deformed by a micropipette attached to 
a micromanipulator. This results in a transient increase 
in the concentration of cytosolic Ca2+ , a ubiquitous 
second messenger molecule, in the deformed cell which 
propagates to non-deformed cells with which it is in 
direct physical contact but which are not themselves 
deformed. When this experiment is repeated in the 
presence of octanol, a blocker of gap junctional 
coupling, cytosolic Ca2+ concentration increases in the 
deformed cell but not in the undeformed neighbors. 
This phenomenon has also been demonstrated in primary 
cultures of rat osteoblastic cells and in osteosarcoma 
cells [56]. While these findings suggest that gap 
junctional intercellular communication can facilitate the 
propagation of a mechanically-induced signal, they must 
be interpreted with caution since the mechanical signal 
used is rather non-physiological. 

The molecule which is responsible for mechanically 
induced Ca2+ signal propagation is unknown. In a series 
of elegant experiences Sanderson et al. [44] 
demonstrated that mechanically-induced Ca2+ signal 
propagation occurred in the presence or absence of 
extracellular Ca2+ . However, in the absence of 
extracellular Ca2+ the cell which was mechanically 
perturbed did not demonstrate an increase in [Ca2+]. 
Furthermore, injection of inositol trisphosphate (IP3) 

evoked Ca2+ signal propagation and heparin, which 
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Figure 4. Mechano-chemical signal propagation in 
osteoblastic networks. Osteoblastic hFOB cells were 
loaded with the fluorescent Ca2+ indicator fura-2AM. 
The ratio of fluorescent intensity at excitation 
wavelengths of 340 and 380 nm reflects the intracellular 
Ca2+ ion concentration ([Ca2+];). In this experiment a 
single cell membrane is deformed at 60 seconds resulting 
in an increase in [Ca2+];. This Ca2+ signal then 
propagates to neighboring cells. A similar response was 
seen in 12 of 15 individual cells subjected to membrane 
deformation. However, when these experiments were 
repeated in the presence of octanol, an inhibitor of gap 
junctional coupling, Ca2+ signal propagation from 
deformed cells to undeformed cells occurred in only 2 of 
19 individual cells. This demonstrates that a 
mechanically induced intracellular signal can propagate 
from cell-to-cell via gap junctions. 

blocks IP3-stimulated release of Ca2+ from intracellular 
stores, blocked mechanically-induced Ca2+ signal 
propagation [7]. Additionally, the phospholipase C 
inhibitor aminosteroid U73122, which blocks synthesis 
ofiP3, blocks Ca2+ signal propagation without affecting 
[Ca2+]i in the mechanically perturbed cell [25]. Taken 
together these data strongly suggest that the mechanical­
ly-induced Ca2+ signal is propagated via IP3 passage 
through gap junctions (for review see, Sanderson et al. 
[43]). Whether this is also the case in bone cells is 
unclear since Xia and Ferrier [56] did not see 
propagation of mechanically-induced Ca2+ signals in the 
absence of extracellular Ca2+ in primary rat calvaria 
osteoblasts and ROS 17/2.8 cells. Thus, mechanically­
induced Ca2+ signal propagation in bone cells may be 
fundamentally different than in epithelial cells. 

Another way in which cell coupling could facilitate 
biophysical signal transduction is by sensitizing, by 
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means of amplification, osteoblastic or osteocytic 
networks to threshold level biophysical signals such as 
endogenously produced electric fields. Low amplitude 
electric fields, on the order of 1-101-' V /em [35], can be 
induced by functional loading of bone via piezoelectric 
effects, streaming potentials, muscle cell activity or a 
combination of these [23, 27, 32]. While current 
evidence suggests that such weak electric fields can alter 
bone cell activity both in vivo [41] and in vitro [36] the 
mechanism by which this occurs is not known. Indeed, 
controversy regarding the validity of weak field 
responses has risen largely because of the theoretical 
objection that the very small field magnitudes reported 
to have effects appear to be too low to overcome noise 
inherent to the cell [54]. However, Cooper [13] and 
Pilla et al. [ 40] have presented theoretical arguments 
based on electrotonic cable theory which suggest that 
cellular networks coupled metabolically or electronically 
via gap junction channels are more sensitive to electric 
fields. Electrotonic cable theory predicts that the change 
in membrane potential induced by an electric field is 
proportional to the product of field intensity and cell 
radius. Therefore, very large cells or large networks of 
smaller cells, coupled via gap junctions into a 
metabolically contiguous network, will serve as an 
endogenous amplifier and thus be more sensitive to 
electric fields. We have utilized our Cx43 deficient 
clones to examine the role of cell coupling in bone cell 
responsiveness to electric fields. 

Low level electromagnetic fields (6J.t V /em) were 
previously shown to inhibit proliferation and stimulate 
alkaline phosphatase activity in R OS 17/2. 8 cells [36]. 
Interestingly, this effect was demonstrated to be cell 
density-dependent suggesting a role for cell-to-cell 
communication. These experiments were repeated using 
coupling deficient Cx43 antisense transfected clones. 
Preliminary results [52] suggest that while a weak 
electric field increases alkaline phosphatase activity in 
well coupled ROS 17/2.8 cells, the same field fails to do 
so in coupling deficient cells. These findings support 
the concept that cell-to-cell communication contributes 
to the mechanism by which mechanical load-induced 
electric fields are detected by bone cell networks. 

We have also examined the effect of electric fields 
per se on gap junctions in osteoblastic cell networks. 
Previous studies [ 14] suggest that electric fields increase 
gap junctional intercellular communication in lateral 
giant neurons of crayfish. However, in preliminary 
results [18], we found that electric fields decreased Cx43 
mRNA and protein expression in ROS 17/2.8 cells. 
This would appear inconsistent with an upregulation of 
cell coupling by electric fields. However, these results 
are preliminary and the effect of electric fields on 
functional coupling in bone cells has not been 
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investigated. 
In summary, gap junctional coupling may contribute 

to biophysical signal transduction by facilitating 
propagation of mechanically-induced signals from cells 
that sense the signal to those which do not. 
Furthermore, both theoretical arguments and 
experimental results strongly suggest a role for cell 
coupling in sensitizing osteoblastic networks to weak 
electric fields such as may be induced by mechanical 
loading of bone. Whether osteocytes, the cells best 
situated to detect biophysical signals in bone, utilize cell 
coupling in this manner is yet to be determined. 

Conclusions 

Considerable evidence suggests that Cx43 may be 
the predominant gap junction protein expressed in bone 
cells [11, 19, 29, 45, 47, 58]. However, Cx45 may be 
expressed by some osteoblastic cell lines [50]. Cell 
coupling in bone cells can be regulated by forskolin, 
cAMP [45] PTH [19, 45] retinoic acid, transforming 
growth factor B [8] and pH [ 46, 57]. The regulation of 
cell coupling in bone by PTH is of particular interest 
since cell coupling also sensitizes osteoblastic cells to 
PTH [53]. Recent data also suggests the cell coupling 
contributes to the mechanism by which bone cells 
integrate and amplify biophysical signals. Considering 
the effect of PTH on coupling, gap junctional 
intercellular communication may be a cellular 
mechanism whereby hormonal signals act in synergy 
with biophysical factors to affect bone cell metabolism. 
Thus, PTH, by increasing coupling, could increase the 
sensitivity of osteoblastic networks to biophysical signals 
such as load-induced electric fields. This hypothesis, 
while attractive, awaits experimental verification. 
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Discussion with Reviewers 

R.L. Duncan: The authors state that they and other 
laboratories have demonstrated that Lucifer yellow can 
permeate gap junctions and that gap junctions are 
necessary for the propagation of calcium waves in 
osteoblast monolayers. However, it is not clear what 
molecule is communicated to the surrounding cells. 
Boitano et al. [7] have demonstrated that calcium waves 
in lung epithelia are induced by the movement of IP3 

through gap junctions to initiate intracellular calcium 
release. Has any work been done to determine the 
permeant molecule of Cx43 and could a similar 
mechanism to the one observed in lung epithelia be at 
work in osteoblasts? 
Authors: While Sanderson, Boitano and colleagues [7, 
43, 44] have demonstrated that IP3 propagates the 
mechanically-induced Ca2+ signal in epithelial cells, it is 
not clear that this is the case in bone cells. Whereas in 
epithelial cells the Ca2+ signal propagates in the absence 
of extracellular Ca2+, in osteoblasts the Ca2+ signal does 
not propagate in the absence of extracellular Ca2+, 

suggesting a different mechanism than that which 
operates in epithelial cells. 

R.L. Duncan: Have you examined any possible gating 
mechanisms of gap junctions in osteoblasts, in 
particular, the role of the cytoskeleton or membrane 
potential? 
Authors: We have as yet not examined the role of the 
cytoskeleton or membrane potential in gap junction 
gating in osteoblasts. 

R.L. Duncan: The authors demonstrate that ROS 17/2.8 
cells transfected with antisense deoxynucleotides have a 
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reduced cyclic AMP response to PTH when compared 
to normal control ROS cells. With the knowledge that 
long chain alcohols may produce deleterious effects on 
cell function, do these agents produce a similar reduction 
in PTH-induced cAMP accumulation in the normal 
osteoblast as in the antisense transfected osteoblast? 
Authors: The purpose of developing Cx43 antisense 
transfected clones was to avoid the deleterious effects of 
long chain alcohols. Therefore, we have not examined 
the effect of these agents on PTH-stimulated cAMP 
accumulation. However, we have demonstrated that. 
subconfluent ROS 17/2.8 cells display reduced coupling 
and reduced responsiveness to PTH, consistent with a 
role of cell-to-cell communication in hormonal 
responst veness. 

R.L. Duncan: Osteoblasts proceed through a defmed 
differentiation pattern resulting in mineralization of the 
bone matrix and culminating in a relatively quiescent 
phenotype termed lining cells. Has anyone examined the 
role of gap junctional communication on differentiation 
of the osteoblast, i.e., the effects of gap junctional 
blockade on differentiation markers such as type-I 
collagen? 
Authors: This is a very interesting question which we 
are currently pursuing. Civitelli et al. [62] have 
demonstrated that both non-differentiated and well 
differentiated osteoblasts express abundant Cx43 and are 
well coupled. Furthermore, dexamethasone which 
stimulates differentiation does not stimulate dye coupling 
or Cx43 expression. Thus, it was suggested that the 
presence of functionally active gap junctions is not 
dependent on any particular phase of osteoblast 
differentiation. On the other hand, we have unpublished 
data which suggest that in hFOB cells Cx43 expression 
parallels the expression of alkaline phosphatase, 
osteocalcin and mineralization as a function of time in 
culture. Additionally, growing these cells at 39.5°C 
which stimulates differentiation also stimulates Cx43 
expression. Clearly more research is needed to elucidate 
the role of gap junctions in osteoblastic differentiation. 

R.L. Duncan: The authors have observed that electro­
magnetic fields decrease the mRNA of Cx43 as well as 
protein expression in ROS 17/2.8 cells. How long must 
the field be in place before a reduction in expression and 
production of Cx43 is observed? What is the duration 
of the inhibition of the expression of Cx43 following 
exposure to electromagnetic fields? 
Authors: Our preliminary data suggest that a 72 hour 
exposure to pulsed electromagnetic fields decreases 
Cx43 expression and dye transfer. We have not yet 
examined the duration of this inhibition. 
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J. Bidwell: The authors demonstrate that the cAMP 
response to PTH was reduced in Cx43-deficient clones 
relative to normal ROS 17/2.8 cells and control 
transfectants (Fig. 2). The authors go on to speculate 
that coupling of osteoblasts by gap junctions may act to 
amplify the effect of receptor activation of a single cell 
by permitting the spread of second messenger to adjacent 
cells that are not directly activated by PTH. However, 
the "spread of second messengers" through a bone cell 
network would dilute cAMP levels in the primary and 
secondary target cells and would not result in a net 
increase in this second messenger in the network 
(introducing cAMP into a cell through a gap junction 
should not induce the production of more cAMP in this 
same cell). In fact one would predict that such a scheme 
would attenuate the cellular response to cAMP at the 
level of gene expression. (A) How would the authors 
respond to this criticism? (B) Would paracrine 
interactions serve to amplify a primary signal more 
effectively than diffusion of second messengers? (C) Do 
the authors have any evidence that the response to PTH 
at the level of transcription (e.g., nuclear run-off 
experiments) is modulated in Cx43-deficient cells? 
Authors: (A) The concept that cAMP spread from cell­
to-cell would dilute the cAMP levels makes sense if 
cAMP is the signal passing from cell-to-cell. However, 
the observation that PTH-stimulated cAMP accumulation 
is potentiated in highly coupled cells suggests that cAMP 
is not passing from cell-to-cell. The more likely 
candidates are IP 3 or cytosolic Ca2+. 

(B). While it is very likely that cell-to-cell paracrine 
signaling occurs it is unlikely that it would be more 
efficient. First, under most conditions any paracrine 
signal used for intercellular signaling would be subject 
to dilution within the extracellular matrix. Secondly, the 
directionality of paracrine signals would presumably be 
more difficult to control than signaling through gap 
junctions. Finally, gap junctions are conducting 
electrical signals which would of course travel much 
faster than any paracrine signal diffusing throughout the 
extracellular matrix. 

(C). We do not have any data on PTH response at 
the level of gene transcription in coupling-deficient cells. 
We are very interested in examining this important 
ISSUe. 

J. Bidwell: It has been suggested [61] that the coupling 
of osteocytes, lining cells and osteoblasts by gap 
junctions may form a "bone membrane" and that 
osteocytes may act as mechanosensory cells and through 
gap junctions, transmit mechanically-induced signals 
(cAMP, ions, or prostaglandins) to osteoblasts ultimately 
for the regulation of osteoclast activity. This proposed 
directed signal transmission from one osteocyte to one 
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osteoblast seems less problematic than the diffusion of a 
second messenger signal throughout a bone cell network 
as proposed by the authors. Please comment. 
Authors: It is unclear how transmission of a signal from 
osteocytes to osteoblasts would be less problematic than 
between osteoblasts and osteoblasts. Indeed, it is 
possible that both routes employ similar transmission 
mechanism. In either case, gap junctional 
communication could function to integrate and amplify 
mechanical signals. 

J. Bidwell: Could gap junctions serve the purpose of 
maintaining tissue integrity, i.e., ensuring that the 
mature osteoblasts maintain the row of cells organization 
observed along the matrix surface as opposed to a 
signalling function? 
Authors: This is certainly a possibility and the two 
functions are not mutually exclusive. 

Additional References 
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Function of osteocytes in bone. J Cell Biochem 55, 287-
299. 

62. Civitelli R (1993) Cell-cell communication 
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