
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

All Graduate Theses and Dissertations Graduate Studies 

5-1991 

Effects of Heat Treatment of Ultrafiltered Milk on its Rennet Effects of Heat Treatment of Ultrafiltered Milk on its Rennet 

Coagulation Time and on Whey Protein Denaturation Coagulation Time and on Whey Protein Denaturation 

Bashir H. Yousif 
Utah State University 

Follow this and additional works at: https://digitalcommons.usu.edu/etd 

 Part of the Food Science Commons, and the Nutrition Commons 

Recommended Citation Recommended Citation 
Yousif, Bashir H., "Effects of Heat Treatment of Ultrafiltered Milk on its Rennet Coagulation Time and on 
Whey Protein Denaturation" (1991). All Graduate Theses and Dissertations. 5379. 
https://digitalcommons.usu.edu/etd/5379 

This Thesis is brought to you for free and open access by 
the Graduate Studies at DigitalCommons@USU. It has 
been accepted for inclusion in All Graduate Theses and 
Dissertations by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F5379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/84?utm_source=digitalcommons.usu.edu%2Fetd%2F5379&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/95?utm_source=digitalcommons.usu.edu%2Fetd%2F5379&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/5379?utm_source=digitalcommons.usu.edu%2Fetd%2F5379&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/




ACKNOWLEDGEMENTS 

Praise to Allah Almighty for everything He offered me. 

I am most grateful to Dr. J. D. McMahon, whose patience, encouragement, 

unlimited support, and advice have helped me throughout my master's program. 

11 

I extend my sincere appreciation and thanks to Drs . R. J. Brown, P.A. Savello 

and D. Sisson for their guidance and support and for serving on my committee. I thank 

Dr. M. Kalab for his assistance in making the micrographs. 

My deep gratitude goes to my parents and to my whole family , who motivated me 

throughout my life. 

Thanks are extended to Dr. Mohamed Salih and his family for their invaluable 

support and for encouraging me to join this institution . 

My everlasting thanks and appreciation belong to my wife, Nazik, whose 

sacrifices and dedication were unbelievable, and to my son, Salman, who has made it all 

worthwhile. 

This work is dedicated to my father, Hassan Yousif . 

Bashir Hassan Yousif 



111 

TABLE OF CONTENTS 

Page 

ACKNOWLEDGEMENTS .................. .... ............ .. ... .......... ........ .......... ...... ii 

LIST OF TABLES ................. .......... . ....... .............. ..... .. .... ........ . ..... ......... v 

LIST OF FIGURES ......... . ....... .... .............................................. . ............ vi 

ABSTRACT .......... .. .............. . ........... ............ .. ........... .... .. .... .. . .... ... ...... ix 

INTRODUCTION ................................................ ...... . ..... ....... .. ... ..... ...... 1 

LITERATURE REVIEW .... ..... . ....... . ......................................................... 3 

Heat Treatments of Milk ....... .. ...... . ..................................... . .......... . ... 3 

Effects of heating milk o_n subsequent processing ................ . .. .. . 4 

Ultra-High Temperature Processing ................ ... .. ........ ....... . ...... . ... . ...... 5 
Homogenization ............ .... ................................. .... .......... . ... .. . . ... ... 6 
Concentration by Ultrafiltration .. .. .......... .. .. .. .......... . . ... ...... ........ .. ...... . 8 

Properties of UF milk .. ..................... . .............................. 9 
Cheese from UF milk ............................... . ........ .. ....... ... . 10 

Denaturation of Whey Proteins ............ ...... ... . ................................ .. .. . 11 
Microstructure .. .. . .......... . ........................ .. ................... . .......... . ..... 13 

MATERIALS AND METHODS . ... . ............................................ .. ............... 15 

Milk ...... .. .... .. ......... ......... .... ....... ... ..... ..... ... ............. ..... . ........ . 15 
UF Concentration ....................................... ..... .. .... . ........ ... . . ... . .... . . 15 
Heat Treatment and Homogenization . ................. ... ........... . ................... 15 
Milk Coagulation ............................................................ . .............. 18 
Microstructure .......... .... ............................................. .. ................. 18 
Protein Denatur ation .......... ........ .. .... . ............. ............ .. .... .. . ....... . .... 19 
Statistical Analyses ......................................................................... 19 

RESULTS AND DISCUSSIONS ................................................................ 20 

Whey Protein Denaturation .......... ...................... ................. . .. ... .... ... 20 
Clotting Time .. .. ....... .... .. .... .. ........................................................ 23 
Gel Firmness . . ............... ......... . ........... .. ........ . ...... .. .. . ... .... ............ 29 
Micro structure ........ .. ... . ........ ................... . ................ ............ ..... ... 3 3 

Effects of heating on milk ................................................ 33 
Effects of heating on milk gels ............................. ... .......... .41 
Effects of homogenization ............................................... .46 
Effects of concentration ................ ..... ...... .. .. . .. . . ........... .... 46 



IV 

CONCLUSIONS ... ... ... .. ........................................................................ . 63 

REFERENCES ...................................................................................... 64 



v 

LIST OF TABLES 

Table Page 

Table 1. ANOV A of whey protein denaturation of milk samples ................. 22 

Table 2. ANOV A of pH of milk samples . ................................... . . .. . ... 25 

Table 3. ANOV A of clotting time of milk samples ............. . ........... . ....... 27 



Vl 

LIST OF FIGURES 

Figure Page 

1 . Schematic representation of milk sample preparation ......................... .. ... ... 16 

2. Schematic representation of the proce ssing and analysis of the milk samples ...... 17 

3. Percent whey protein denaturation in whole milk (1 W), skim milk (lS) and their 
respective 3X, UF concentrates (3W and 3S) as a function of heating treatments 
. ............. .. ........ ·············· .................. . .......... . .................... . ...... 21 

4. Effects of heating treatments in sterilab UHT system on pH. lS, skim milk; 
lW, whole milk; 3S, UF concentrated skim milk; 3W, UF concentrated whole 
milk ............ . ... ........ ..... ... .... .... ....................... . ........... . ........ .... .. 24 

5. Effects of heating treatments on rennet clotting time. 1 W, whole milk; lS, skim 
milk; 3W, UF concentrated milk; 3S, UF concentrated skim milk. Error bar= 
standard deviation .. ............. .. .. .... .......... . ....... .. .... . ..... . ... ..... .... .... ... 26 

6. Change in gel firmness of skim milk upon addition of calf rennet (.36 RU/ml 
milk, 30°C) as measured using the Formagraph. Heat treatments of 72, 89, 
106, or 123°C are compared to unheated, unhomogenized milk (Control) sample 
and milk heated to 60°C and homogenized (Homog) .. . ... ..... . ... ...... ............ 30 

7 . Change in gel firmness of whole milk upon addition of calf rennet (.36 RU/ml 
milk, 30°C) as measured using the Formagraph . Heat treatments of 72, 89, 
106, or 123°C are compared to unheated, unhomogenized milk (Control) sample 
and milk heated to 60°C and homogenized (Homog) ................................. 31 

8. Change in gel firmness of skim milk (S) and whole milk (W) upon addition of 
calf rennet (.36 RU/ml milk, 30°C) as measured using the Formagraph. Heat 
treatments of 89°C or 123°C are compared to unheated, unhomogenized 
(Control) samples ................................................... . .... .. ..... ........... 32 

9. Change in gel firmness of 3X UF concentrated whole milk upon addition of calf 
rennet (.19 RU/ml milk, 30°C) as measured using the Formagraph. Heat 
treatments of 72, 89, 106, 123 or 140°C are compared to unheated, 
unhomogenized milk (Control) sample and milk heated to 60°C and 
homogenized (Homog) ...... .. . .. ...... ... ... ........................ .. ... . ............. . 34 

10. Changes in gel firmness of 3X UF concentrated skim milk upon addition of calf 
rennet (.19 RU/ml milk, 30°C) as measured using the Formagraph. Heat 
treatments of 72, 89, 106, or 140°C are compared to an unheated, 
unhomogenized (Control) sample and milk heated to 60°C and homogenized 
(Homog) .................. .. ........... . .................................... . ........ . ...... 35 

11. Changes in gel firmness of 3X UF concentrated skim milk (S) and whole milk · 
(W) upon addition of calf rennet (.19 RU/ml milk, 30°C) as measured using the 
Formagraph. Heat treatments of 123 °C and 140°C are compared to unheated 
unhomogenized (Control) samples ......................................... . ...... . ..... 36 



12. Comparison of effect of concentrating whole milk (lX) using ultrafiltration to 
3X on curds firming after adding calf rennet (.36 RU/ml milk, for lX; .19 
RU/ml milk, 30°C, for 3X). The milk samples were either unheated, 

Vil 

unhomogenized (Control) or heated to 123°C ............. .............. ............... 37 

13. Comparison of effect of concentrating skim milk (IX) using ultrafiltration to 3X 
on curds firming after adding calf rennet (.36 RU/ml milk for lX; .19 RU/ml 
milk, for 3X, 30°C). The milk samples were either unheated, unhomogenized 
(Control) or heated to 123°C ..................... .. ...................................... 38 

14. Transmission electron micrographs of skim milk heated to 72, 89, 106 and 
140°C, compared to unheated unhomogenized (NON-HOMOG) skim milk and 
skim milk heated to 60°C and homogenized (HOMOG). Casein micelles (C) 
were distributed throughout the serum. The irregular lines (small arrows) were 
artefacts produced while dispersing the milk in agar prior to fixing the samples in 
glutaraldehyde .... . ........... ... .... . ................... . ...... . ........................... 39 

15. Transmission electron micrographs of whole milk heated to 72, 89, 106 and 
140°C and homogenized, compared to unheated unhomogenized (NON­
HOMOG) whole milk and whole milk heated to 60°C and homogenized 
(HOMOG). In homogenized samples the fat droplets (F) have become 
complexed with casein micelles (C). After heating milk to 140°C it appears that 
additional protein material has been deposited on the surface of the casein 
micelles (bold arrows). The same irregular lines (small arrows) as occurred in 
Figure 14 were present. The small electron-dense particles (arrow heads) are 
also artefacts caused by glutaraldehyde-osmium tetroxide complexing ........ .... .42 

16. Transmission electron micrograph of gels made from skim milk heated to 72, 
106, 123, and 140°C compared to gels made from unheated nonhomogenized 
(NON-HOMOG) skim milk heated to 60°C and homogenized (HOMOG). As 
the milk was heated at higher temperature, it was more difficult to identify 
individual casein micelles (C) in the gel network. In gels made from UHT milk 
(140°C), large separate casein micelles were observed ............... . .. .. .... ... ... .44 

17. Transmission electron micrograph of gels made from whole milk heated to 72, 
106, 123, and 140°C compared to gels made from unheated nonhomogenized 
(NON-HOMOG) whole milk, and whole milk heated to 60°C and homogenized 
(HOMOG). In the gels made from the homogenized milks the fat droplets (F) 
had complexed with the proteins with many casein micelles (C) adsorbed on 
their surfaces. The same electron-dense artefacts (arrow heads) as described in 
Figure 15 are present. ......................................... . ..... . .... . ..... . . . ........ 47 

18. Transmission electron micrographs of 3X UF concentrated whole milk heated to 
72, 106, 123 and 140°C and homogenized, compared to unheated 
unhomogenized (NON-HOMOG) 3X UF concentrated whole milk and 3X UF 
concentrated whole milk heated to 60°C and homogenized (HOMOG). In 
homogenized samples the fat droplets (F) have become complexed with casein 
micelles (C). After heating milk to 140°C it appears that additional protein 
material has been deposited on the surface of the casein micelles (bold arrows).' 
The same irregular lines (small arrows) as occurred in Figure 14 were present. 
The small electron-dense particles (arrow heads) as described in Figure 15 were 
also present ....................... . .............................................. . ...... . ... 49 



19. Transmission electron micrograph of gels made from 3X UF concentrated whole 
milk heated to 72, 89, 123, and 140°C compared to gels made from unheated 
nonhomogenized (NON-HOMOG) 3X UF concentrated whole milk, and 3X UF 
concentrated whole milk heated to 60°C and homogenized (HOMOG). In the 
gels made from the homogenized milks the fat droplets (F) had complexed with 

Vlll 

the proteins with many casein micelles (C) adsorbed on their surfaces. The same 
electron-dense artefacts (arrow heads) as described in Figure 15 are present. . .. . . 51 

20. Transmission electron micro graphs of 3X UF concentrated skim milk heated to 
72, 106, 123 and 140°C, compared to unheated unhomogenized (NON­
HOMOG) 3X UF concentrated skim milk and 3X UF concentrated skim milk 
heated to 60°C and homogenized (HOMOG). Casein micelles (C) were 
distributed throughout the serum. The same irregular lines (small arrows) as 
described in Figure 14 were present.. ....... .. ... ... ......... .. ..... ...... ...... ..... .. . 53 

21. Compari son of transmission electron micro graphs of four milk samples showing 
effects of presence of fat and UF concentration on the protein complexes that are 
formed during UHT processing (140°C). lXW, whole milk; lXS, skim milk; 
3XW, 3X UF whole milk; 3XS, 3X UF skim milk. Fat droplet s (F) have 
adsorbed casein micelles on their surfaces. Casein micelles (C) are larger in UF 
samples. Additional protein material deposited on the casein micelles (bold 
arrows). The same irregul ar lines (small arrows) as described in Figure 14 were 
present. The same electron-dense artefacts (arrow heads) as described in Figure 
15 are present. . . .. ... . ..... ..... .. . ... . . .. .. ... . . . .... . ...... . .... . .. ... .. . ............. . .. 56 

22 . Compari son of transmission electron micrographs of gels made from four milk 
samples showing effects of presence of fat and UF concentration on the protein 
complexes that are formed during UHT processing (140°C). lXW, gel made 
from whole milk; lXS, gel made from skim milk; 3XW, gel made from 3X UF 
whole milk ; 3XS, gel made from 3X UF skim milk. Fat droplet s (F) have 
adsorbed casein micelles on their surf aces. Casein micelles (C) are larger in UF 
samples. Addition al protein material deposited on the casein micelles (bold 
arrow s). The same electron -dense artefacts (arrow heads) as described in Figure 
15 are present . .. .... . . . . .... .. . ..... .. .. . ....... . ... .. . ....... . ....... . ....... . ... . .... .. .. 58 

23. Transmi ssion electron micrograph of gels made from 3X UF concentrated skim 
milk heated to 72, 106, 123, and 140°C compared to gels made from 3X UF 
concentrated unheated nonhomogenized (NON-HOMOG) and 3X UF 
concentrated skim milk heated to 60°C and homogenized (HOMOG). As the 
milk was heated at higher temperature, it was more difficult to identify individual 
casein micelles (C) in the gel network. In gels made from UHT milk (140°C), 
large separate casein micelles were observed . After heating milk to 140°C it 
appears that additional protein material has been deposited on the surface of the 
casein micelles (bold arrows) .. .. .. . ... . . . .... . ... . ...................... . ....... .... . ... 60 



ABSTRACT 

Effects of Heat Treatment of Ultrafiltered Milk on its Rennet Coagulation Time 

and on Whey Protein Denaturation 

by 

Bashir H. Yousif, Master of Science 

Utah State University, 1991 

Major Professor: Dr. Donald J. McMahon 
Department: Nutrition and Food Sciences 

The purpose of this research was to determine the effects of heating (including 

heating to ultra-high temperatures) homogenized ultrafiltered whole and skim milks on 

lX 

whey protein denaturation and milk's subsequent rennet coagulation properties: coagulation 

time, curd firmness, and microstructure. 

Whole and skim milk samples were ultrafiltered using a spiral wound ultrafiln·ation 

membrane system. Samples were preheated to 72°C for 58 s, held for 8 s then heated to 

72, 89, 106, 123, or 140°C for more than 97 sand held for 4 s. The milk was then cooled 

to 60°C and homogenized, further cooled to 30°C, packaged into 120 ml sterile containers, 

and refrigerated overnight. Rennet coagulation time and curd firmness were monitored 

using a Formagraph . Milk and gel samples were fixed in 2.5% glutaraldehyde solution 

and examined by electron microscopy. Whey protein denaturation was determined by 

precipitating casein at pH 4.6 with .lN HCl and measuring protein content in the filtrate by 

the Kjeldahl procedure. 

Rennet coagulation time of milk increased as processing temperature was increased. 

Gel strength decreased with an increase in processing temperature. Ultrafiltration 

shortened rennet coagulation time and increased gel firmness. Ultra-high- temperature-
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heated whole and skim milks did not coagulate upon addition of rennet, but their 

concentrated counterparts did. Rennet coagulation of the concentrated milks was delayed 

by heating. Samples treated with ultra-high-temperature formed only a weak gel. The 

casein micelles in milk increased in size as a function of increasing processing temperature 

and concentration by ultra.filtration. Additional protein material adhered to the casein 

micelles after high-temperature processing and was especially noticeable in the samples 

treated with ultra-high-temperature. Whey protein denaturation increased as a function of 

increased heating temperature. The heated concentrated milks had higher levels of protein ,, 

denaturation than the heated unconcentrated ones. (81 pages) 



INTRODUCTION 

Heating is a critical operation in the processing of milk and other dairy products. 

Milk is heated at various time-temperature combinations. Depending on the kind of dairy 

product intended, such heating conditions range from pasteurization, which kills harmful 

microorganisms and inactivates some enzymes, to sterilization sufficient to kill all 

microorganisms (12, 21). 

There are many changes that occur in milk when it is heated. These depend on the 

temperature and the time it is held at that temperature. Heating milk at high temperatures 

for long times can cause heat-induced coagulation (21). Whey proteins, especially 

~-lactoglobulin, are denatured when milk is heated at high temperatures and are deposited 

on the surf aces of casein micelles. This increases rennet coagulation time because 

K-casein becomes less accessible to enzyme action (88), and the denatured whey proteins 

hinder the interactions between micelles that cause them to aggregate. Excessive heating 

also leads to Maillard browning and subsequent losses in milk's nutritive and organoleptic 

value . Ultra-high-temperature (UHT) heating was designed to produce sterilized milk of 

better quality than retort sterilized milk . With UHT heating, bacteria can be destroyed 

without adversely affecting the organoleptic or nutritive properties of milk (56). 

However, age gelation can occur during prolonged storage of UHT milk at ambient 

temperatures. Much research has been conducted to determine the causes and methods of 

age gelation (80). 

Concentrating milk by ultrafiltration (UF) has become of interest as a unit 

operation for modern dairy processing . Milk produced by UF is more stable than that 

produced by conventional evaporation methods (81). Many attempts have been made to 

produce cheese from ultrafiltered milks. Some cheese types can be successfully made 

from ultrafiltered milk, but making Cheddar or other hard cheeses is more difficult (10). 

Use of UF to concentrate milk before UHT processing opens an array of 

possibilities for developing new dairy foods. Heating milk affects its microstructure 
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because of the physical changes that occur in milk during heating. An increase in casein 

micelle size is evident, as would be expected because of denatured whey proteins adhering 

to the casein micelles by complexing with surface K-casein (12). 

The objectives of this research were to determine the effects of heating (including 

heating to ultra-high temperatures) of homogenized ultrafiltered whole and skim milks on 

whey protein denaturation, and the milk's subsequent rennet coagulation properties: 

coagulation time, curd firmness, and microstructure. 



3 
LITERATURE REVIEW 

Heat Treatments of Milk 

In modern dairy technology, milk is heated to mild temperatures, as in cheese 

making, or to severe temperatures as in the making of UHT milk (21). Heating 

temperatures and times vary from pasteurization (73°C for 15 s) to UHT sterilization 

(120°C-140°C for several seconds) to retort sterilization (l 10-120°C for 20-40 min) (12). 

Because many enzymes present in milk are inactivated by pasteurization, their inactivation 

can be used to measure pasteurization efficiency. While pasteurization is effective against 

pathogenic and most spoilage microorganisms in milk, sterilization destroys all 

microorganisms (9). 

Many reversible and irreversible changes occur when milk is heated. Examples of 

some reversible changes are mutarotation of lactose, changes in ionic equilibria, pH shifts, 

conformation changes of proteins, cold agglutination of fat, association of caseins, and 

association of fat. It is the irreversible changes that occur during heating of milk that are 

most important (85). 

When milk is heated during sterilization, evaporation, or drying the following 

events occur: whey proteins are denatured and aggregate, ionic and soluble calcium and 

magnesium phosphates and citrates are converted to colloidal phosphates and citrates, and 

these colloidal phosphates are depo sited onto casein micelles. Also Maillard browning 

reactions occur between proteins and lactose or other added reducing sugars (56). These 

changes are irreversible. Heating milk can also lead to nutritive losses, changes in milk 

color, and development of off-flavors (87). 

Heat-induced coagulation can also occur when milk is heated at high temperatures 

for a long time. It is primarily caused by a lowering of pH during heating as well as a 

decrease in (-potential, casein hydration, and hydrolysis of K-casein. Acidity is increased 

because of production of organic acids (especially formic acid) from lactose and ofrelease 

of hydrogen ions from calcium p~osphate or casein-bound phosphate (21) . 
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When P-lactoglobulin is heated, it is denatured, probably through exposure of its 

SH groups so that they interact with other protein molecules that are at lower temperatures 

(89). Denatured P-lac toglobulin can then complex with K-casein. Heating of K-casein 

alone does not lead to complex formation when it is mixed with P-Iactoglobulin. Adding 

P-lactoglobulin to a solution of K-casein retards coagulation of K-casein by chymosin. 

This may be because of competition between the proteins for binding to chymosin, which 

tends to associate with all proteins before hydrolyzing a peptide. Heating a mixture of 

P-lactoglobulin and K-casein brings about a further increase in clotting time because spatial 

interference by complexed P-lactoglobulin prevents binding of the enzyme to the Phe 
105

-

Met I06 region of K-casein. 

Effects of heating milk on subsequent processing 

During the manufacture of evaporated milk, a forewarrrring treatment is applied 

before retort sterilization . If a high forewarming temperature (140°C, 25 s) is used, the 

initial heat stability of the evaporated milk is increased. Forewarrrring at or below 65°C has 

little effect on heat stability (59). Also, milk heated above pasteurization conditions has 

increased stability against coagulation by rennet. This increases (cheese make time) and a 

curd is formed that retains excessive moisture and results in a soft-bodied cheese (88). 

The yield of Cheddar cheese from milk can be increased by heating milk at 97°C for 

15 s. This denatures 30% of whey proteins but does not inhibit rennet action. It is 

necessary to add extra calcium and acidify the milk to pH 6.4 to obtain normal coagulation 

and curd firming ( 48). Cheese made from such overheated milk does not fuse well; so 

further adjustments to the make procedure (such as increasing cook temperature and 

cheddaring time) must be made. 

Cheese made from milk heated at 85°C for 20-30 s contains an increased amount of 

soluble nitrogenous compounds compared to cheese made from milk heated to 74°C for the 

same time. There are, however, no qualitative differences in electrophoretic patterns of 
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cheese proteins. When Cheddar cheese is made from milk heated above pasteurization 

temperatures, its flavor development is abnormal; a sulfide cooked flavor develops (55). 

The reduction of S-S bonds of ~-lactoglobulin to SH groups during heating gives rise to 

the observed changes in flavor of such cheeses and causes alterations in the properties of 

K-casein (45). The heat-induced association of ~-lactoglobulin and K-casein of casein 

micelles occurs mainly between 85-90°C. This association is caused by formation of 

intermolecular S-S bonds and hydrophobic interactions (79). 

Ultra-High Temperature Processing 

UHT treatment of milk produces a sterile milk of better organoleptic quality than 

retort sterilized milk. It takes advantage of the higher thermal coefficient of biological 
-

reactions leading to faster destruction of bacteria compared to detrimental chemical 

reactions, that lead to undesirable browning, flavor changes, and nutrient degradation 

(87) . However, UHT processing still causes a severe to mild "cooked-flavor" defect in 

milk. Although this cooked flavor is much less intense in UHT milk than in retort­

sterilized milk products, such as evaporated milk, it is replaced by the characteristic UHT 

stale flavor (56). There are also some denaturation and aggregation of whey proteins that 

occur during UHT sterilization of milk . The denatured whey proteins bond with K-casein 

causing the casein micelles to increa se in size. Some Maillard browning reactions between 

lactose and proteins take place and some vitamins are also destroyed (22). 

An undesirable consequence of UHT sterilization of milk products is that an 

irreversible gelation can occur during prolonged storage. The chemical and physical nature 

of this age gelation phenomenon has not been explained well. Enzymic hydro I ysis of 

proteins by heat stable proteinases that survive UHT treatment (or proteinase precursors, 

such as plasminogen, that are activated during storage) have been implicated as a cause of 

age gelation (11). However, it has yet to be shown whether age gelation is solely initiated 

by enzymic processes or whether it can occur by physico-chemical effects (80). 
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Various time and temperature combinations have been used in the manufacture of 

UHT milk products, and these vary between countries. In the United Kingdom, heating 

conditions of 132°C for more than 1 s are required for UHT processing of milk and of 

132°C for more than 2 s for creams (5). In the United States, temperatures in the range of 

135-150°C for various times are being used to produce commercially sterile milk products 

that are then aseptically packaged to retain sterility. UHT systems are approved for use, 

taking into account the equipment being used and the products being processed. UHT 

products can be heated either directly by steam injection or infusion or indirectly in a plate-, 

tubular-, or scraped-surface heat exchanger. Raw milk is commonly preheated to 80--85°C 

in an indirect heat exchanger then heated to the final UHT temperature (58). 

Direct heating provides almost instanta-neous distribution of heat throughout the 

product with the UHT temperature being achieved in a fraction of a second. The product is 

then held at that temperature for a set time before being cooled in a vacuum evaporator. 

Direct heating at 142°C for 4 sis insufficient to inactivate native milk proteinases (such as 

plasminogen) or proteinases produced by pyschotrophic bacteria during cold storage of 

raw milk. Directly heated UHT milk is therefore more susceptible to age gelation than the 

indirectly heated UHT milk (80). When milk is heated by addition of steam, it is diluted. 

This is corrected by the removal of condensate during evaporative cooling of the sterile 

product (58). 

Indirect heating of milk requires a longer time to reach the UHT temperature and 

therefore causes more product deterioration than direct UHT processing. It can also cause 

product "bum on" on the heat exchanger, and that reduces the heat exchange rate (22). 

Homogenization 

Homogenization is the process of subjecting milk to a large pressure drop across a 

pressure valve. It is typically carried out at a temperature of 60°C or more in a one- or two­

stage process at a pressure of 14--18 MPa. As milk passes across the homogenizer's first 
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stage valve, its pressure rapidly drops causing intense cavitation. The turbulence of this 

cavitation shears the milk fat globules and subdivides them into smaller droplets (6, 27). 

Homogenization of UHT milk is necessary to prevent creaming during storage. 

This occurs because the fat globules are reduced from their natural size of 2-10 µm in 

diameter to less than 1 µm. Fat globules less than 7 µm will not rise and form a cream 

layer (or ring) because of the overriding influence of Brownian movement (59). In 

conjunction with this size reduction, the formation of a new protein layer on the surface of 

the fat droplets prevents their aggregation . 

Parry (68) found that homogenization causes a six-fold increase in the fat globule 

surface area and increases the viscosity and foaming properties of milk. He also reported 

that susceptibility to light-activated flavor chan-ge and to oxidized flavor are decreased in 

homogenized milk while susceptibility to lipolysis is increased. Curd firmness of milk gels 

is reduced when milk is homogenized , and heat stability of high fat milk is lowered. 

Homogenization also alters the physical condition of the proteins in milk and makes them 

more easily coagulated by acids. The increased number of fat globules, greater surface 

area, and the break up of the milk fat globule membrane make homogenized milk 

susceptible to enzymic lipolysis and consequent development of rancidity . Therefore , 

homogenized milk must be made from pasteurized milk, or milk must be pasteurized 

promptly after homogenization (42). 

Homogenization affects milk fat emulsion, whey protein, and casein disper sion in 

milk (26, ,63). The interfacial membrane between fat droplets and serum is composed of 

casein micelles, micellar subunits, and nonmicellar proteins (64, 76). There is a 

preferential adsorption of large casein micelles by small fat globules. Quantity of protein 

adsorbed on the fat droplets depends upon milk temperature during homogenization. It 

does not vary with protein/fat ratio unless less protein is present to coat the fat droplets. 

Homogenization conditions are important in determining the initial heat stability of 

concentrated milk. Across a wide pH range, heat coagulation time is shortened as pressure 
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of homogenization is increased (81 ). Homogenizing milk before preheating reduces the 

heat stability of evaporated milk . This is because of the adsorption of casein micelles onto 

the newly formed milk fat globule surfaces (61, 68) . Homogenizing milk after sterilization 

minimizes the effect on heat stability (59). 

The efficiency of homogenization can be improved by increasing homogenization 

pressure and temperature . Within the range 22-65°C, temperature has no effect on heat 

stability, but it is recommended that homogenization be at the highest temperature 

compatible with individual plant operation and with other changes in the product ( 42). 

Concentration by Ultrafiltration 

Concentration is an import ant principle_ in milk processing. It is accomplished by 

removing water from milk by evaporation, or by membrane processes such as 

ultrafiltration (UF) or reverse osmosis (RO). UF is differentiated from RO by the relative 

porosity of the membranes . In UF, large molecules are retained and most of the small 

solute molecules such as salts, sugars, and most flavor compounds can pass through the 

membrane and are lost with the water. Osmotic pressure decreases because it depends 

upon the total number of particles in solution (41). 

Longerman (43) observed that UF does not affect serum casein, Ca, or P content 

of casein micelles, or the size distribution of casein micelles . However, UF combined 

with diafiltration (addition of water while ultrafiltering) can remove up to 99% of the 

lactose, 36% of the Ca, and 42% of the P from skim milk. There is a limited permeation of 

Ca and P because of their association with casein micelles (86). Depending upon the pore 

size of the UF membrane, there is a 90% or higher retention of protein (8). Fat is 100% 

retained . Even though homogenization may increase the number of fat globules by more 

than three times, their comparatively large size still prevents their permeation through the 

membrane. Lactose passes freely through UF membranes due to its relatively low 

molecular weight and high solubility in water. Fat soluble vitamins are retained in 
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concentrated milk along with the fat. Vitamin B 12 and folic acid, in spite of being water 

soluble, are also completely retained because of their association with proteins (86). 

Properties of UF milk 

Skim milk concentrate prepared by UF is more heat stable than that prepared by 

evaporation and is not appreciably affected by forewarming or addition of permitted 

stabilizers (81). UF concentrated milk has been suggested as a means of supplying milk 

proteins in a form acceptable to some members of every race who are lactose intolerant. 

Because of the reduced lactose content, Maillard reactions occur to a lesser extent in UF 

milks than in evaporated milks. Newstead et al. (61) observed that concentrating milk 

before preheating and homogenizing has a stabilizing effect on evaporated milk; while 

homogenizing before preheating causes the preheating to have a destabilizing effect. 

Although heat-induced-coagulation depends on pH within the range of 6.2-6.8, 

concentrated milk remains very stable as pH is increased above 6.8. ~-lactoglobulin 

induces more pH sensitivity on concentrated caseinates than on their unconcentrated 

counterparts (60). Dalgleish (13) showed that although rennet clotting time (RCT) is little 

affected by UF concentration of milk, the proportion of casein which is soluble at RCT 

depends upon the concentration of both milk and rennet. 

At RCT of milk concentrated to over 20% total solids, the total nitrogen depletion 

curve changes from a single stage to two-stage process (60). Furthermore, addition of 

~-lactoglobulin to UF concentrated skim milk destabilizes the heated milk while the 

opposite effect is observed in presence of sulfhydryl group blocking agents. This suggests 

that the mechanism of coagulation in UF concentrated milk is similar to that which occurs 

within the RCT-pH profile of skim milk at normal levels of total solids. 

Whey protein denaturation in skim milk is not significantly influenced by solids 

content up to 30% when heated at 65 and 82°C for 30 min (28). At 71 and 76°C, 

however, there is a decrease in whey protein denaturation with increase in milk 
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concentration. Whey protein denaturation is affected more by milk concentration than by 

temperature (49, 23). Although denaturation susceptibility of whey proteins in skim milk 

is reduced by milk concentration, actual rate of reaction is nom1al first order for heating 

times in excess of five minutes. 

When the content of casein in milk is decreased, there is an increase in the amount 

of a-lactalburnin and ~-lactoglobulin recovered after heating (18). Conversely, an increase 

in whey protein concentration decreases whey protein recovery after heating. Increasing 

the concentration of ~-lactoglobulin in milk increases the proportion of a-lactalbumin in the 

complex. a-lactalbumin and ~-lactoglobulin interact first and then complex with K-casein. 

Cheese from UF milk 

Cheese processing from UF milk started in the early 1970's when the UF 

membranes were used to concentrate whey proteins. That was the standard application of 

UF in the dairy industry through most of the 1970's and early 1980's. Now, UF is used 

on milk streams and is becoming an essential technology in cheese making. In Europe, UF 

has been used in cheese making for almost twenty-five years (3). 

Many soft cheeses are successfully made from UF milk. However, Cheddar 

cheese made from UF milk has coarse-textured-curd leading to excessive losses during 

cutting. Ripening is also delayed (10). Those problems may be caused, at least partially, 

by the smaller amount of rennet used to coagulate concentrated milks (13). However, there 

are some recent reports on making Cheddar cheese of good quality from UF milk. In 

collaborative studies by researchers in Australia, Cheddar cheese of good quality from UF 

milk has been produced (2). However, the method used in the production was not 

revealed. The technology has been transferred to the United States through agreements 

with some private dairy processors (35). 

Primary benefits of UF to the processor are improved cheese yield, product 

consistency, continuous production, reduced labor and energy requirement, and great~r 
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efficiency from reduced processing time (3). Higher yields result from the efficiency of the 

UF process. Also UF membranes allow concentration of the whey proteins that are lost in 

traditional cheese making. These whey proteins total about 20% of all the proteins in the 

milk, so capturing them increases yield. 

Denaturation of Whey Proteins 

As milk is heated, whey proteins are denatured to various levels depending upon 

the heating procedures used. These include batch, high temperature short time (HTST), 

and UHT sterilization heat treatments. In the native state, whey proteins have a definite 

conformation. When they are exposed to heat above a certain temperature, this 

conformation is disrupted and the proteins' ch~acteristics are altered (38). Apparent casein 

content of UHT milk increases as a consequence of the denaturation of whey proteins (80). 

The amount of heat-denatured ~-lactoglobulin increases with temperature and is 

twice as high at pH 6.6 than at pH 5.5 (16). Rate of enzyme reaction on whey proteins is 

influenced by heat-induced ~-lactoglobulin complex. Rate of proteolysis increas es with 

increasing temperature. Extent of reduction rate depends on the amount of complex 

formed. ~-lactoglobulin A and B variants are partially denatured by HTST and UHT and 

totally denatured by vat heating (9). Increasing residence time increases denaturation of 

both ~-lactoglobulin variants in UHT and HTST and a-lactalbumin in vat heating systems. 

Surface hydrophobicity, which is related to heating, and sulfhydryl content are negatively 

correlated with whey protein denaturation. 

Heating skim milk at 70°C for 30 min denatures 29% of total whey proteins . At 

83°C, immunoglobulin is lost while a-lactalbumin is not affected because it is the most 

heat resistant fraction of whey proteins . Heating at 80°C for 10 min denatures up to 90% 

of whey proteins (1). 

In UHT and HTST heating systems, the ratio of ~-lactoglobulin to K-casein 

increases linearly with increasing residence time (9). Denaturation of whey proteins in 
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milk normally precedes their interaction with casein. In presence of Ca and at temperatures 

above 65-75°C, ~-lactoglobulin begins to unfold and reacts with K-casein (75). 

Denaturation of whey proteins is affected by solids more than by temperature 

variation. Whey protein denaturation at 80°C for 28 min decreases from 80 to 59% as total 

solids are increased from 28 to 44% (49). Increased total solids concentration slows 

denaturation of ~-lactoglobulin A and B but hastens denaturation of a-laccalbumin in 

cheese whey (34). Removal of a large proportion of whey proteins (80%-90%) does not 

significantly alter the relative destabilizing effect of homogenization before preheating. 

Skim milks with reduced whey protein content are more heat stable than milks with normal 

whey protein contents (61). 

Denaturation of a-lactalburnin appears-to be first order, but is probably a second 

order reaction displaying pseudo-first order kinetics (34). Denaturation of both 

~-lactoglobulin A and B follows second order kinetics while that of serum albumin is more 

complex and can equally be described as first or second order. The relative heat stability of 

~-lactoglobulin A and B varies. Below 95°C, ~-lactoglobulin A appears more 

thermostable than ~-lactoglobulin Bin skim milk. The same is observed in cheese whey 

below l00°C. Above this temperature ~-lactoglobulin B appears more stable. 

Morr and Josephson (57) showed that protein aggregation in heated whey systems 

is a multireaction process involving : 

1) Aggregation to form intermediate sized protein particles. 

2) Denaturation of whey protein through thiol-disulfide groups, hydrogen and 

hydrophobic bond reactions. 

3) Gross aggregation of the above protein particles in the presence of Ca ions to 

larger sized particles. 

Many studies suggest that when milk is heated, ~-lactoglobulin complexes with 

K-casein through disulfide bond (71, 44, 82) . Presence of thiol and disulfide groups 

change the tertiary structure of proteins. This influences the adjacent molecules so a 



complex will form without involvement of a covalent linkage between these proteins . 

Euber and Brunner (20) proved that thermally denatured ~-lactoglobulin and K-casein 
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solution could only be released by disulfide reduction . However, their experiment was 

held in a model system which does not prove that such complex occurs in milk. Hae and 

Swaisgood (24) provided some evidence that these proteins complex through disulfide 

linkages . Despite extensive work by these researchers, unequivocal evidence of such 

disulfide bonds is still lacking. 

The Kjeldahl method is the most widely used procedure for determining nitrogen in 

food systems . Rowlands (74) used it to measure the nitrogen content of different fraction s 

of whey proteins, but his method is tedious and time consuming. Manji and Kakuda ( 46) 

compared the determin ation of whey proteins by different methods: fast peri·om1ance 

liquid chromatography (FPLC), differential scanning calorimetry, whey protein nitrogen 

index, and Kjeldal11 nitrogen . They found that these methods, except for differential 

scanning method, gave reproducible results. They found no difference between FPLC and 

Kjeldahl, but they found a significant difference between FPLC and whey protein nitrogen 

index. 

Microstructure 

The microstructure of many food products has been successfully investigat ed using 

microscopy (77) . Although interesting results have been obtained with light microscopy, 

only the application of electron microscopy (EM), with its much higher resolution, has 

given a good picture into microstructure of foods. Each electron microscopic technique 

provides different information ( 47). Scanning electron microscopy (SEM) is appropriate 

to study the structure of surface morphology as well as internal structures of milk particles. 

However, transmission electron microscopy (TEM) techniques, such as thin-sectionin g or 

freeze-fracturing, are used to identify individual constituents such as casein micelles and fat 

particles . SEM has been used more frequently than TEM in studying milk structure . ; 
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Casein micelles are nearly spherical conglomerates that are very polyclisperse with 

respect to size, and their number decreases with increasing diameter. Different treatments 

on milk have different effects on casein micelle structure. An increase in casein micelle size 

is observed in heated milk and micelles coalesce preceding gelation ( 40). Evaporation 

increases casein micelle diameter from 1000 to 3900 A. Casein micelles in UHT 

concentrated milks are two times larger than fresh milk micelles (7). 

In milk gels containing 40 and 50% total solids (14 and 17% protein, respectively), 

casein micelles appear as individual entities linked by some bridging materials ( 40). At 

60% total solids (20% protein), micelles are fused. Heating milk at high temperature 

denatures the whey proteins which are then precipitated on the micelles or as fine filaments 

in the serum at lower pH and higher pH respectively (12). 

Microstructure determines some properties of dairy products such as viscosity, 

synersis, firmness, or mouthfeel. SEM is useful particularly in conjunction with other 

electromicroscopic techniques in studying microstructure of dairy products as it relates to 

the effects of manufacturing processes and properties of the products (39). 

Microstructure of skim milk gels are markedly affected by type of acidulent used 

(29). A type of structure they described as "core and lining" was observed in milk 

acidified with glucono-o-lactone (GDL) or oxalic acid and then heated at pH 5.5. The 

heated GDL milk has a fibrous microstructure and a gel network with most of the casein 

micelles associated in chains. Higher incidence of chains is observed in GDL milk gels 

than in HCl milk gels. Casein micelles in GDL milk gels are slightly larger than those from 

HCl or oxalic acid milk gels. Acid-induced milk gels also have a more open structure than 

rennet-induced milk gels which explains their greater susceptibility to syneresis (73). 

Size measurements based on EM are subject to inaccuracies by possible artefacts 

resulting from fixture, staining, and dehydration processes (78). Care must be taken in 

preparing samples for EM . If such artefacts are observed, careful interpretation must be 
i 

made to obtain meaningful results. 
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MATERIALS AND METHODS 

Milk 

Milk was obtained from the Utah State University Dairy Farm and was skimmed at 

the Utah State University Dairy Processing Plant. 

UF Concentration 

Whole milk was concentrated to three times (3X) by volume reduction to 

approximately 10% protein. For skim milk, the amount of permeate removed was 

calculated to give a concentrate of 3X with an equivalent protein concentration in serum as 

the 3X whole milk. A three-module UF system (Ladish Co., Tri-clo ver Division , 

Kensona, WI) with spiral wound membranes (20,000 daltons nominal MW cutoff, 15 m2) 

in series was used to concentrate the milk. A scheme explaining milk sample preparation is 

shown in Figure 1. 

Heat Treatment and Homogenization 

Heat treatment of milk samples was conducted using pilot plant UHT equipment 

(Alfa-Laval, Lund, Sweden) operating with indirect heat exchange at a flow rate of 100 1/h. 

Milk was preheated to 72°C over 58 s then heated to 72, 89, 106, 123, or 140°C over 97 s 

with holding time of 4 s. The milk was cooled to 60°C and homogenized . Two-stage 

homogenization was used with 500 psi second stage pressure and 2000 psi first stage 

pressure. It was then cooled to 30°C packaged into disposable plastic containers, and 

refrigerated overnight. A scheme describing heat treatment is shown in Figure 2. Two 

control samples were used: 

1) Raw milk heated to 60°C and homogenized (Homog). 

2) Raw milk receiving no heat treatment and not homogenized (Control). 
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Figure 2. Schematic representation of the processing and analysis of the ~ilk 
samples. 
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Milk Coagulation 

Coagulation time was determined using a Forrnagraph as outlined by McMahon and 

Brown (50). A 10.5 g sample of milk was weighed into each sample well of the 

Formagraph. The Formagraph temperature was set at 30°C, and milk samples were 

warmed to 30°C for 30 min before adding rennet. Two hundred microliters of diluted calf 

rennet (New Zealand Cooperative Rennet Co., Eltham, NZ) were pipetted into each 

Formagraph well and mixed. Rennet was standardized in rennet units per ml (RU/ml) rn 

which 90 RU/ml was equiv_alent to American single strength rennet (19). For 3X 

concentrated milk, 1, 4, and 10 RU/ml enzyme concentration were used . For the 1 X milk, 

enzyme additions were 200 µI of 10 RU/ml enzyme and 50 or 200 µl of 188 RU/ml 

enzyme. RCT and curd firmness were determined from the Fom1agraph data . In the 

Formagraph, curd firmness of the coagulating milk is determined by deflection of a wire 

loop suspended in the milk. This deflection is recorded on photographic paper. Graph s of 

curd firmness versus time after rennet addition were prepared by measuring the deflection 

distance at specified intervals on the Formagraph paper and reproduced using Cricket 1.3 

on a Macintosh computer. 

Microstructure 

Liquid milk samples were prepared for EM as follows: 5 ml of milk were added to 

5 ml of 3% agar solution at 40-45°C. After the mixture solidified, the gel was cut into 

strips of lxlxlO mm in size. These strips were then soaked in 2.5% glutaraldehyd e 

solution for 3-4 h. They were then put into small vials filled with fresh 2.5% 

glutaraldehyde solution and sent to Dr. Miloslav Kalab at the Food Research Centre, 

Agriculture Canada, Ottawa. Transmission electron micrographs were prepared from each 

sample. 

Milk gels were prepared as follows : 10.5 g of milk was weighed into a Formagraph 

sample well. For lX milk, 200 µl of 188 RU/ml rennet were added, and for 3X milk, 200 
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µl of 10 RU/ml rennet were added. After twice the RCT, gels were taken out of the 

Formagraph well and cut into strips of the same approximate dimensions as those in the 

milk samples. These cubes were then soaked in 2.5% glutaraldehyde solution for 3-4 h 

and transferred to small vials containing fresh 2.5% glutaraldehyde solution. Samples 

were sent to Dr. Miloslav Kalab in Canada to conduct TEM. 

The fixed samples were prefixed in a 2% osmium tetraoxide solution in a 0.05 M 

veronal-acetate buffer, pH 6.75. The postfixed samples were embedded in a Spurr's low 

viscosity medium (J.B. EM Service, Pointe Claire, Dorval, Quebec, Canada). Thin 

sections were stained with uranyl acetate and lead citrate solutions (73) and examined in a 

Philips EM-300 electron microscope operated at 60kV. 

Protein Denaturation 

Samples for whey protein denaturation were prepared by the procedure of Vakaleris 

and Price (83) with some modification . Ten milliliters of each milk sample were diluted 

with 40 ml distilled water. Twenty five milliliters of these diluted milk samples were 

brought to pH 4.6 by dropwise addition of O. lN HCI and then filtered through Whatm an 

filter paper# 5. Ten milliliters of the filtrate were used to determine whey protein nitrogen 

(WPN) content by a semi-micro Kjeldahl procedure using a Kjeltec Auto 1030 Analyz er, 

(Fischer Scientific Co .) (33). Percent protein denaturation was calculated by the following 

formula (46): 

Denaturation (%) = ([WPN (raw milk) - WPN (heated milk)]lOO I WPN (raw milk) 

Statistical Analyses 

The experimental design used was a split plot design with repeated measures. Each 

experiment was replicated twice . Data were analyzed using this design, and the appropriate 

ANOV A tables are provided in the results and discussion section. 
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RESULTS AND DISCUSSIONS 

Whey Protein Denaturation 

As temperature at which the milk samples were heated was increased, more whey 

proteins were denatured (Figure 3, Table 1). This agrees with the results of other reported 

experiments (72, 15, 62). Dargan and Savello (17) obtained similar results in yogurt 

samples heated at different temperatures held for different times. The most change in 

denaturation levels was observed as the temperature was increased from 72°C to 89°C. In 

this study, the heat treatment of 72°C produced more 'Nhey protein denaturation than that 

observed under milk pasteurization conditions. This was because this milk was held at 

72°C for a total of 100 s compared to 16 sin milk pasteurization. Paluch et al. (66) 

reported that heat treatments of 73, 75, and 77:_c for 16 s resulted in 4, 6, and 10% 

denaturation of ~lactoglobulin and 1, 6, and 10% denaturation of cx-lactalbumin from 

Cheddar cheese . 

More whey protein denaturation was measured in whole milk than in skim milk. 

This may be due to adherence of some of the whey proteins to the fat globules making less 

protein available in the sernm for nitrogen measurement when casein was precipitated. 

McPherson et al. (53) observed that casein and whey proteins, mainly ~lactoglobulin , 

were the major protein components of fat globule membrane in homogenized milk s. 

However, the UHT heated samples had the same level of whey protein denaturation 

irrespective of their fat content. 

In the concentrated milks, there was more denaturation of the whey proteins than in 

the unconcentrated milks . This agrees with that observed by Dargan and Savel lo (17) who 

showed that yogurt had undergone higher whey protein denaturation as the total solids 

were increased from 11 to 15% and the yogurt heated to 100-140°C at different holding 

times. This effect of concentration may be due to the reduced volume of the concentrated 

milks forcing the proteins closer and therefore increasing the probability 
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Figure 3. Percent whey protein denaturation in whole milk (1 W), skim milk (lS ) 

and their respective 3X, UF concentrates (3W and 3S) as a function of heating treatment s. 
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Table 1. ANOV A of Whey Protein Denaturation of Mille Samples ( a. = 0.05) 

sv df MS F Significance 

Rep 1 50.12 0.68 not sig. 

Mille type (M) 1 633.8 8.71 SIG. 

Cone (C) 1 1031 14.1 SIG. 

MxC 1 41.01 0.564 not sig. 

Error (a) 3 72.69 

Temp (T) 5 4494 584 SIG. 

Error (b) 5 7.692 

MxT 5 22 .96 - 8.93 SIG. 

CxT 5 34.75 13.5 SIG . 

MxCxT 5 12.03 4.68 SIG . 

Error (c) 15 2.569 

Total 47 
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might also be a factor as a slight decrease in pH occurred with concentration (Figure 4, 

Table 2). That agrees with Walstra (85) and Damicz and Dziuba (16) who reported that the 

amount of denatured ~-lactoglobulin increased as pH decreased from 6.6 to 5.5. 

However, there are some contradictory results in that whey protein denaturation decreased 

as milk concentration increased in this experiment. That may be because of the different 

experimental conditions used . 

Clotting Time 

When milk is heated above pasteurization temperature, whey proteins, particularly 

~-lactoglobulin, are denatured and complex with K-casein through hydrophobic and 

covalent interactions (25). Because most of the K-casein is located on the surface of casein 

micelles, presence of this complex severely retards rennet coagulation of milk. 

As the temperature at which milk was heated was increased, there was a resultant 

increase in that milk's RCT (Figure 5, Table 3). This was because more whey proteins 

were denatured at the higher temperatures causing more hindrance to renneting and 

aggregation of milk. Skim (lS) and whole (1 W) milk samples, which were UHT treated, 

did not coagulate even though 200 µl of .36 RU/ml rennet was added to 10.5 g of milk 

samples. This again demon strates that the amount of the complexed whey protein with the 

K-casein is so great that it rendered the K-casein either unaccessible to the enzyme action or 

incapable of aggregating. These results agree with what was observed by Reddy and 

Kinsella (72) who reported that heating milk to 60-90°C for 30 min reduced the initial 

chymosin hydrolysis and the release of glycomacropeptide. This increases RCT. An 

increase in S-S groups is also observed with increasing temperature. Since both 

hydrophobic and S-S interaction are involved in heat-induced association between 

~-lactoglobulin and K-casein, it is more likely that this association is caused by increasing 

heating temperature. Da lgleish (15) also reporte d that the ~-lactoglobulin and K-casein 
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Figure 4. Effects of heating treatments in sterilab UHT system on pH. 1 S, skim 

milk; lW, whole milk; 3S, UF concentrated skim milk; 3W, UF concentrated whole milk. 
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Table 2. ANOVA of pH of Mille Samples (a= .05) 

sv df MS F Significance 

Rep 1 0.00820 2.53 not sig. 

Mille type (M) 1 0.09450 28.01 SIG. 

Cone (C) 1 0.37276 110.4 SIG. 

MxC 1 0.09630 28.53 SIG. 

Error (a) 3 0.00337 

Heat (T) 5 0.00882 22.99 SIG. 

Error (b) 5 0.00038 

MxT 5 0.00229 _ 12.77 SIG . 

CxT 5 0.00043 4.880 not sig. 

MxCxT s 0.00011 1.210 not sig. 

Error (c) 15 0.00008 

Total 47 
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Figure 5. Effects of heating treatments on rennet clotting time. 1 W, whole milk; 

lS, skim milk; 3W, UF concentrated milk; 3S, UF concentrated skim milk. Error bar= 

standard deviation. 
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Table 3. ANOVA of Clotting Time of Milk Samples (ex= .05) 

sv df MS F Significance 

Rep 1 1078.87 0.6809 not sig. 

Milk type (M) 1 11.16 0.0070 not sig. 

Cone (C) 1 4594 x 103 2.9 x 105 SIG. 

MxC 1 66.44 0.0422 not sig. 

Error (a) ·3 1574.16 

Heat (T) 6 1320 x 103 1.4 x 104 SIG. 

Error (b) 6 92.45 

MxT 6 409 .99 _ 1.57 not sig. 

CxT 6 8426 x 102 3.2 x 104 SIG. 

MxCxT 6 887 .61 3.413 SIG . 

Error (c) 18 260.07 

Total 47 
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association, caused by heating to 75-90°C for 30 min, was caused by disulfide bonding. 

When milk gels, the casein micelles start to aggregate well before clotting is 

observed (52). The rate at which milk coagulates depends upon the rate of enzymic action 

and the rate of aggregation of the hydrolyzed products as characterized by their aggregation 

constant ks (51). This suggests that when the micelles are drawn closer, the volume of the 

aqueous phase decreases leading to an increased number of effective collisions. It is the 

number of these effective collis ions upon which aggregation velocity depends. Gel 

formation will occur with a lower degree of proteolysis of the K-casein when the protein 

concentration is increased or when calcium chloride is added to milk although a minimum 

protein concentration is required for gelation to take place (31). In other words 

concentrating milk by UF reduces the water phase in milk so that casein micelles have 

shorter distances to travel before colliding with another micelle. Consequently, a shorter 

time is required for coagulation to occur. Total calcium concentration will also increase 

upon ultrafiltration of milk, and this also results in increasing coagulation rate (4). 

Concentrated milk samples (3S and 3W) coagulated faster than the skim and whole 

milks (Figure 5). This confirms results reported by Orme and McMahon (65) that RCT of 

whole milk decreased with increasing protein concentration and leveled to a plateau at 8-

11 % protein . They also showed that increasing protein concentration above 11 % then 

further decreased coagulation time. However, there are other controversial repons on the 

effect of milk concentration on RCT. Mehaia and Cheryan (54) showed that RCT 

decreases linearly as protein concentration of milk is increased up to about 12%. Dalglei sh 

(14) reported that UF concentration of milk to 3X has little effect on RCT. Pa yens (69) 

and Inra (36) obtained similar results. There are no clear-cut explanations for these 

differences in experimental observations. 

Concentrated skim and whole milks that were UHT treated still coagulated even 

though their unconcentrated counterparts did not coagulate within 200 minutes after adding 

the enzyme (Figure 5). This suggests that the effect of concentration in bringing the casein 
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micelles to closer proximity overcame the interference caused by whey proteins complexing 

with the K-casein. The concentrated milks also had a lower pH than skim and whole milks 

(Figure 4) but this may have had a lesser impact on clotting time reduction. As the 

decrease in pH was not dramatic, the greater effect on CT was assumed to be from the 

smaller distance the renneted casein micelles had to travel before colliding with each other 

and the large number of aggregating casein micelles that can participate in gel formation . 

Gel Firmness 

Attachment of whey proteins onto the ~urface of the casein micelles, which is 

brought about by heating milk at high temperatures, causes steric hindrance between casein 

micelles . This, combined with their negative charge, reduces the ability of casein micelles 

to aggregate . Consequently, a soft gel is formed from milk that has received a high heat 

treatment (48). This occurred for all the milk samples studied. For IX whole milk, the 

decrease in firmness as a function of increased heating was gradual and smooth (Figure 6). 

With lX skim milk, a sharp decre ase in firmness was observed in milk heated to 89°C 

(Figure 7). After UHT heating, the IX whole and skim milk samples djd nor gel, so no 

data are shown for them in Figure 6 and 7. 

A comparison of skim and whole milk (Figure 8) showed that unhomogenized 1 X skim 

milk and lX skim milk heated to 72, 89, or l06°C produced firmer gels than their 

counterpart lX whole milk. This agrees with what was reported earlier in the literature 

(32, 70, 84). Dargan and Savello (17) reported that yogurt gels made from skim milk were 

firmer than those made from 1 % fat milk. This might be due to homogenization, which 

was performed in all of these experiments, creating many small fat globules and, 

therefore,increasing the surface area of the fat/water interface. There was then a greater 

chance that casein micelles would adhere to these fat globules creating many weak points in 

the gel. This soft gel from whole milk might also occur because of fewer casein micelles in 

the serum phase and less chance of forming a strong gel network. On the other hand, 1 X 
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whole milk heated to 123°C produced firmer gel than its skim counterpart which suggests 

that the impact of fat presence has an effect only to a certain limit of temperature. 

For concentrated milk samples, gel firmness decreased gradually as a factor of 

increased process temperature (Figures 9 and 10). After UHT heating, the concentrated 

milk samples formed very weak gels as compared to the other heated milk samples. Except 

for UHT samples, gel firmness for all other samples was nearly the same after 75 min. 

Figure 11 shows that 3X whole milk samples formed firmer gels than their skim 

counterparts which was opposite to what was found in the IX milk samples (Figure 8). 

The concentrated milks formed fim1er gels than their unconcentrated counterparts. 

A higher enzyme activity was needed to coagulate the heated, unconcentrated whole and 

skim milks (Figures 12 and 13). Rennet concentration nom1ally has little effect on the 

secondary phase of milk coagulation . However, enzyme concentration affects the 

production ofreactive micelles which does affect the aggregation rate (13). So, this 

increase in gel firmness could be primarily because of increase in milk concentration . This 

might be due to the effect of serum phase reduction which would result in more casein 

micelles per unit volume of milk and greater chances of gelation. Inra (36) also reported 

that the aggregation rate increa sed as the milk protein content increased by UF of milk. 

Microstructure 

Effects of heating on milk 

As processing temperature was increased, the casein micelles in skim milk 

increased in size, and the number of small micelles decreased (Figure 14). The casein 

micelles were also coated with additional protein material. After UHT treatment, micelles 

were dramatically increased in size and had much adhered protein material. The origin of 

this adhered protein material was probably the denatured whey protein, small micelles, or 

fragments from micelles that had dissociated upon heating. This supports results found by 

many authors who have reported that whey protein, when denatured, precipitates onto the 
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Figure 9. Change in gel firmness of 3X UF concentrated whole milk upon 

addition of calf rennet (.19 RU/ml milk, 30°C) as measured using the Formagraph . Heat 

treatments of 72, 89, 106, 123, or 140"C are compared to unheated, unhomogenized 

milk (Control) sample and milk heated to 60°C and homogenized (Homog). 
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unhornogenized (Control) or heated to 123°C. 
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Figure 14. Transmission electron micrographs of skim milk heated to 72, 

89, 106 and 140°C, compared to unheated unhomogenized (NON-HOMOG) skim 

milk and skim milk heated to 60°C and homogenized (HOMOG). Casein micelles 

(C) were distributed throughout the serum. The irregular lines (small an-ows) were 

artefacts produced while dispersing the milk in agar prior to fixing the samples in 

gl u taraldeh yde. 
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casein micelles. They also reported that protein particles appear to be larger and more 

diffuse when higher temperatures are used (30, 12). 

When milk is heated, some casein micelles aggregate, and the incidence of 

submicellar casein is somewhat increased. The shape of casein micelles is also altered. 

Severity of these changes depends upon the intensity of heat treatment applied. According 

to Harwalker et al.(30), there is also a formation of so-called "spikes" or "hair". These 

were evident in micro graphs of UHT milks as can be seen in Figures 14 and 15. Changes 

also occurred in casein micelles ultrastructure; submicelles became more clearly visible than 
·' 

in casein micelles in unheated milk. This was probably the result of some loosening of the 

bonds between the submicelles that took place because of the effect of heat treatment. This 

loosening might be responsible for the enlargeQ1ent of the casein micelles. 

It was expected from what was observed in Figures 14 and 15 that the coagulation 

time would decrease because of the build-up of the protein material on the casein micelles . 

As shown in Figure 3, RCT increased as the processing temperature was increased. This 

inferred that the interactive sires on the casein micelles were related to K-casein and these 

were being obscured by the coating of denatured protein on the micelles' surfac es. 

Comparing unhomogenized sample with all other samples, it was observed that as 

expected , homogenization had decreased the fat droplet size (Figure 15). The fat globules 

had many casein micelles adhered to their surfaces. This supported what was found by 

Henstra and Schmidt (32) who attributed this to the homogenization process causing casein 

micelles to be broken into subunits which would ultimately adhere to the smface of the fat 

globules . In contrast, the fat globules in the unhomogenized sample, exist independently 

of the casein micelles (Figure 15). 

Effects of heating on milk gels 

When unheated milk was coagulated by rennet, a protein gel was fom1ed that was 

made of chains of casein micelles (Figure 16). When the milk was heated, ~-lactoglo~ulin 



Figure 15. Transmission electron micrographs of whole milk heated to 72, 

89, 106 and 140°C and homogenized, compared to unheated unhomogenized 

(NON-HOMOG) whole milk and whole milk heated to 60°C and homogenized 

(HOMOG). In homogenized samples the fat droplets (F) have become complexed 

with casein micelles (C) . After heating milk to 140°C it appears that additional 

protein material has been deposited on the surface of the casein micelles (bold 

arrows). The same irregular lines (small arrows) as occurred in Figure 14 were 

present. The small electron-dense particles (arrow heads) are also artefacts caused 

by glutaraldehyde-osmium tetroxide complexing. 

42 



43 



Figure 16. Transmission electron micrograph of gels made from skim milk 

heated to 72, 106, 123, and 140°C compared ta-gels made from unheated 

nonhomogenized (NON-HOMG) skim milk heated to 60°C and homogenized 

(HOMOG). As the milk was heated at higher temperature, it was more difficult to 

identify individual casein micelles (C) in the gel network. In gels made from UHT 

milk (140 °C), large separate casein micelles were observed. 
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denatured and complexed with K-casein on the micelle surface, so the number of individual 

casein micelles in the gel was reduced (Figure 17). This was because many of the small 

micelles and the submicellar casein material were incorporated into the (}-lactoglobulin­

K-casein complex. So, when such milk was renneted, the resultant gel had fewer 

crosslinks and was not as firm . 

Having fat in the milk tended to produce a gel network that had more crosslinks 

(Figure 17, l06°C). In the homogenized milk, the fat was separated from the protein 

network (Figure 17). As the milk was processed at higher temperatures the casein micelles 

lost their integrity in the gel network (Figures 16 and 17). In whole milks it can also be 

seen how homogenization caused the fat droplets to become incorporated into the gel 

network. For unheated milks this led to weaker gel structure (Figure 8) perhaps by adding 

weak points into the gel. However, for high heated milks (e.g 123°C) the whole milk gels 

were firmer than the skim milk gels (Figure 8). In this case, the presence of fat in the gel 

network strengthened the gel by increasing the volume of the gel network. 

The small electron-dense particles observed in Figure 17 were characterized as 

difficult-to-avoid artefacts caused by formation of a glutaraldehyde-osmium tetroxide 

complex during TEM sample preparation (67). 

Effects of homogeni zation 

Fat globules decreased in size when milk was homogenized (Figures 15, 17, 18 

and 19). This agrees with what was well established in the literature (32, 37) . When milk 

was homogenized, the boundary of the fat droplets can be seen easily because of the 

protein adsorbed at the newly created fat/water interfaces. In all the homogenized samples, 

the fat globules and the casein micelles had complexed together. 

Effects of concentration 

All of the UF concentrated milks had larger casein micelles than their 

unconcentrated counterparts (Figures 18 and 20 compared to 14 and 15). This confirms 



Figure 17. Transmission electron micrograph of gels made from whole 

milk heated to 72, 106, 123, and 140°C compared to gels made from unheated 

nonhomogenized (NON-HOMG) whole milk, and whole milk heated to 60°C and 

homogenized (HOMOG). In the gels made from the homogenized milks the fat 

droplets (F) had complexed with the proteins with many casein micelles (C) 

adsorbed on their surfaces. The same electron-dense artefacts (arrow heads) as 

described in Figure 15 are present. 
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Figure 18. Transmission electron micro graphs of 3X UF concentra ted 

whole milk heated to 72, 106, 123 and 140°C and homogenized, compared to 

unheated unhomogenized (NON-HOMOG) 3X UF concentrated whole milk and 

3X UF concentrated whole milk heated to 60°C and homogenized (HOMOG). In 

homogenized samples the fat droplets (F) have become complexed with casein 

micelles (C). After heating milk to 140°C it appears that additional protein material 

has been deposited on the surface of the casein micelles (bold arrows). The same 

irregular lines (small arrows) as occurred in Figure 14 were present. The small 

electron-dense particles (arrow heads) as described in Figure 15 were also present. 
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Figure 19. Transmission electron micrograph of gels made from 3X UF 

concentrated whole milk heated to 72, 89, 123-, and 140°C compared to gels made 

from unheated nonhomogenized (NON-HOMG) 3X UF concentrated whole milk, 

and 3X UF concentrated whole milk heated to 60°C and homogenized (HOMOG). 

In the gels made from the homogenized milks the fat droplets (F) had complexed 

with the proteins with many casein micelles (C) adsorbed on their surfaces. The 

same electron-dense artefacts (arrow heads) as desc1ibed in Figure l S are present. 
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Figure 20. Transmission electron micrographs of 3X UF concentrated skim 

milk heated to 72, 106, 123, and 140°C, compared to unheated unhomogenized 

(NON-HOMOG) 3X UF concentrated skim milk and 3X UF concentrated skim 

milk heated to 60°C and homogenized (HOMOG). Casein micelles(C) were 

distributed throughout the serum. The same irregular lines (small arrows) as 

described in Figure 14 were present. 



54 



SS 

result0btained by Kalab and Harwalker (40) who reported that as milk total solids 

increa::, casein micelles are fused together, and their size increases. A high solid content 

implictly implies a low water content. This means that in concentrated milks there was less 

watervailable as a medium for the dispersion of the casein micelles. More protein material 

adherd to the casein micelles in concentrated milks than in their corresponding 

unconentrated counterparts, especially in UHT samples (Figures 21 and 22) . 

Adsorbed protein material was less fused with the casein micelles in skim milk than 

with Viole milk. This may be because of the presence of fat in whole milk. Mo,:e 

adsorld protein material suggests that RCT was increased because of the steric 

interf ence which rendered the K-casein unaccessible to the action of the enzymes. That 

was tre when comparing milks of the same concentration (Figure 3). But when 

compang unconcentrated milks with concentrated milks, RCT decrea sed dramatically in 

the co centrated samples indicating that the effect of concentration was more drastic than 

that ofhe adhering protein material on the casein micelles. Comparing Figures 16 and 17 

(gels c IX whole and skim milks) with Figures 19 and 23 (gels of 3X whole and skim 

milks) hows that gels of concentrated samples were more dense than those of 

unconcntrated ones. Also the casein micelles were larger in the concentrated samples 

which gain confim1s the results obtained by Kalab and Harwalker (40) . As temperatur e 

was inceased, the gels lost integrity, and the casein micelles increased in size. This was 

similaro the results obtained with unconcentrated milks. 

When 3X skim milk was UHT processed, there was more accumulation of protein 

onto th casein rnicelle surfaces than in IX skim milk (Figure 21, 3XS). It appeared to be 

a two-~~p process. First, a compact mass of material (presumably ~-lactoglobulin) 

compleed with the casein micelles. This caused the sizes of the micelles to be increased in 

compason to those in unheated milk (Figure 20). Following this complexing of 

~-lactolobulin with K-casein, additional material was adsorbed onto the micelles to form a 

porous oaring encircling the micelles. This was not the case when fat was present because 



Figure 21. Comparison of transmission electron micrographs of four milk 
-

samples showing effects of presence of fat and UF concentration on the protein 

complexes that are formed during UHT processing (140°C). lXW, whole milk; 

lXS, skim milk; 3XW, 3X UF whole milk; 3XS, 3X, UF skim milk . Fat droplets 

(F) have adsorbed casein micelles on their surfaces . Casein micelles (C) are larger 

in UF samples. Additional protein material deposited on the casein micelles (bold 

arrows) . The same irregul ar lines (small arrows) as described in Figure 14 are 

present. The same electron-dense artefacts (arrow heads) as described in Figure 15 

are pre sent. 
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Figure 22. Comparison of transmission electron micrographs of gels made 

from four milk samples showing effects of pr~sence of fat and UF concentration on 

the protein complexes that are formed during UHT processing (140°C). lXW, gel 

made from whole milk; lXS, gel made from skim milk; 3XW, gel made from 3X 

UF whole milk; 3XS, gel made from 3X UF skim milk. Fat droplets (F) have 

adsorbed casein micelles on their surfaces. Casein micelles (C) are larger in UF 

samples. Additional protein material deposited on the casein micelles (bold 

arrows). The same electron-dense artefacts (arrow heads) as described in Figure 15 

are present. 
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Figure 23. Transmission electron micrograph of gels made from 3X UF 

concentrated skim milk heated to 72 , 106, 12), and 140°C compared to gels made 

from 3X UF concentrated unheated nonhomogenized (NON-HOMG) and 3X UF 

concentrated skim milk heated to 60°C and homogenized (HOMOG). As the milk 

was heated at higher temperature, it was more difficult to identify individual casein 

micelles (C) in the gel network. In gels made from UHT milk (140°C), large 

separate casein micelles were observed. After heating milk to 140°C it appears that 

additional protein material has been deposited on the surface of the casein micelles 

(bold arrows) . 
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the extraneous protein material was adsorbed onto the fat droplet surfaces (Figure 21, 

3XW) . Because of the configuration of the UHT processing system, homogenization 

occurs after UHT heating; so it can be deduced that this secondary layer of mi cellar material 

was either: 

1) Loosely bound to the micelles by ionic or hydrophobic interactions and was 

subsequently stripped from the micelles as a result of the interfacial forces 

generated by creation of the new fat-water interfaces upon homogeniz ation of 

the fat globules. 

2) Accumulated onto the micelle surfaces during storage of the milk after 

homogenization rather than during UHT heating . 

The first hypothesis perhaps better explains these observations the best. Disulfide 

bonding was thought to occur between denatured ~lactoglobulin and K-casein, and any 

~lactoglobulin that complexed with the casein micelles would be able to withstand the 

forces imposed on them during homogenization. In contrast, the casein micelles were 

relatively flexible, open structured molecules with both lipophilic and hydrophilic domains. 

They, therefore, bound strongly to fat-water interfaces when new fat surfaces were 

exposed during homogenization. Without any covalent bonds to hold them to the micelles, 

they dissociated from the ~lactoglobulin-casein micelle complexes and acted to stabilize 

the fat droplets. From the levels of whey protein denaturation after the various heat 

treatments it was observed that concentrated milks gave more whey protein denaturation 

than their corresponding unconcentrated milks. This is further confirmed by havin g more 

protein material in concentrated samples as shown in Figures 22 and 23. Furthe1more, the 

fat globule surfaces were more visible in concentrated milks and their corresponding gels 

than their unconcentrated counterparts, suggesting that more protein was adsorbed at the 

surface. 
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CONCLUSIONS 

Whey protein denaturation in milk increased with increasing temperature. Milk 

heated to 140°C (UHT conditions) had the most whey protein denaturation. Concentrating 

milk by ultrafiltration increased the whey protein denaturation, although the reason for this 

has not been determined. 

Rennet coagulation time of whole and skim milks and their ultrafiltered 3X 

counterparts, increased with increasing process temperature. Coagulation time was shorter 

for the concentrated milks. Unconcentrated milk which was UHT treated, did not 

coagulate within 200 minutes even when .36 RU/ml of milk was added. In contrast, the 

concentrated milks that were UHT heated did coagulate. Their coagulation was retarded 

and had only weak gel strength. Gel strength decreased with increased processing 

temperature, and increased with increased concentration. 

Homogenization decreased the fat globule size, and many casein micelles were 

deposited on the fat globule surfaces of homogenized milk. Casein micelle size was 

observed to increase upon heating as well as a result of UF concentration. In milk samples 

that had been heated at high temperature (especially UHT milks), an accumulation of 

protein material adhered to the casein micelles. This adhered material was more fused with 

the micelles of whole milk than with that of skim milk. 

Denatured ~-lactoglobulin had complexed with K-casein on the casein micelle 

surfaces and was covalently bound to the micelles through disulfide bonds. Further 

protein material can then complex noncovalently to this denatured ~-lactoglobulin but can 

be removed by homogenization . 

The gels formed by renneting unheated milk consisted of chains of casein micelles 

with many crosslinks between the chains. When milk was heated, there was less evidence 

of chain formation and fewer crosslinks. UHT treatment retarded coagulation, and only 

weak gels were formed from the concentrated milks. This was evident when the 

microstructure of UHT milk gels were compared to gels from unheated milk . 
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