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ABSTRACT 

EFFECTS OF STABILIZERS AND pH ADJUSTMENTS ON MILK PROTEINS IN 

UHT-TREATED CITRUS JUICE/SKIM MILK BLEND DRINK 

by 

Sandra M. Newman, Master of Science 

Utah State University, 1992 

Major Professor: Dr. Paul A. Savello 
Department: Nutrition and Food Sciences 

A UHT -processed skim milk (85%)/orange juice (15%) drink was 

developed. Product integrity and stability were maintained by two methods. 

Proper homogenization of the blend before UHT processing stabilized a drink 

formulation containing .25% carboxymethyl cellulose and .025% carrageenan. 

Adjusting the pH of the blend (pH 6.3 and 6.5) resulted in a different 

stabilization. After 28 days at room temperature, settling of milk solids was 5.2% 

of volume height in the prehomogenized sample and 86.9% of volume height in 

the same blend that had not been homogenized prior to UHT processing. After 

storage, the two treatments were analyzed to verify that there was no perceived 

textural difference between the pH adjusted and unadjusted blends. A 

consumer product acceptability evaluation resulted in a split population, and 

more panelists liked the product than disliked it. 

(72 pages) 



INTRODUCTION 

In 1989 the U.S. consumed 25.3 gallons of fluid milk per capita compared to 

51.1 gallons of soft drinks (40). The major dairy products available in the 

market today (cheese, butter, yogurt, and ice cream) were all invented before 

modern dairying (24), each one providing a specific market potential for fluid 

milk. In the last decade, the development of stable cream liquers has opened 

new doors for marketing milk. Increased consumption of fluid milk in the U.S. 

may be possible with the development of other milk drink products. 

Milk drink beverages can be made shelf stable by ultra high temperature 

(UHT) processing (16). In developing a UHT -processed skim milk/citrus juice 

drink, processing conditions and blend pH must be considered to avoid protein 

precipitation. Changes due to salt, pH, or heat treatment may lead to 

irreversible changes in the milk colloid system (48). 

The objectives of this study were to: 

a. stabilize milk proteins against heat coagulation when 15% (w/w) 

orange juice is added to skim milk at different pH levels and UHT 

processed; 

b. process the skim milk/orange juice drink under aseptic (UHT) 

conditions; 

c. maintain a stable UHT -processed skim milk/orange juice drink blend 

over twenty-eight day storage at room temperature and 35°C storage 

with the use of stabilizers; 

d. evaluate the effect of different processing conditions on product 

homogeneity through sensory testing; and 

e. use taste panels to evaluate the consumer acceptance of the product. 



LITERATURE REVIEW 

Citrus Juice Milk Drinks 

A complete mechanism for heat-induced destabilization of milk proteins is 

unknown. At most, only parts of the reactions are known and understood. 

Further understanding of the mechanisms involved would make possible the 

development of a variety of heated milk products. Currently there are several 

patents available for the manufacture of different citrus fruit-milk beverages (1, 

7, 17, 25, 49); however, these patents do not work in the development of an 

UHT skim milk/orange juice drink. Futhermore, some of the patents do not use 

fluid milk but milk solids with milk being a minor ingredient. 

Polysaccharides are used in the formulation of citrus juice milk drinks. 

Because polysaccharides interact with milk proteins and prevent acid heat 

coagulation (27), they can be used in citrus fruit milk drinks to stabilize the milk 

proteins. Milk proteins may be kept in solution at low pH with carboxymethyl 

cellulose (27). Under the appropriate conditions, polysaccharides will inhibit 

the precipitation of some water soluble proteins following thermal denaturation 

(27). K-Casein and K-carrageenan (and to a lesser extent t- and/..-

2 

carrageenan) form a complex via electrostatic interaction between the 

negatively charged sulfate groups of carrageenan and a region of positively 

charged residues on K-casein. K- and t- Carrageenan are capable of 

protecting as-casein from calcium precipitation at neutral pH (the mechanism is 

unknown) (27). Some polysaccharides increase skim milk viscosity (14), thus 

giving to a skim milk drink the mouthfeel of a thicker product. A network of 

polysaccharides could also help maintain thermally denatured water soluble 

proteins in solution. When manufacturer makes pasteurized fruit juice milk/ 

drinks, tha stability of the sample is both pH and stabilizei type dependent (28). 
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The Milk Colloid 

The stabilizing factors in milk are sufficient to maintain the casein-calcium 

phosphate phase in suspension after certain heat treatments. On prolonged 

heating, coagulation is observed. Heat stability is defined "as the time taken for 

coagulation to occur under standard conditions, usually 140°C for milks of 

normal concentration or 120oC for concentrated milks" (24, p. 3619). To 

measure heat stability objectively, nitrogen depletion curves are used. A 

nitrogen depletion curve is the ''the amount of protein remaining in the 

supernateant on gentle centrifugation decreasing sharply at the coagulation 

time" (24, p. 3620). When heat coagulation times are plotted against pH, two 

types of curves are obtained: type A and type B (41 ). When heat coagulation 

time at 140°C is plotted against initial pH between pH 6.3 and 7.1, a type A 

curve shows the following: 

a. heat coagulation time increases between approximately pH 6.3 and 

pH 6.6, 

b. heat coagulation time decreases between approximately pH 6.6 and 

6.9, and 

c. heat coagulation time increases between approximately pH 6.9 and 

pH 7.1, (20). 

A primary maximun heat coagulation time is observed at about pH 6.6, and a 

secondary maximum continues at pH greater than 7.1. A decreasing heat 

coagulation time is observed at pH 6.4 and below. A local heat coagulation 

mininum is observed at about pH 6.9. This pH will be referred to as the 

mininum in type A milk. A type B curve shows the following trends when heat 

coagulation at 140°C is plotted against initial pH: 

a. heat coagulatior. time slowly increases from pH 6.4 to 6.9 
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b. heat coagulation time rapidly increases from pH 6.9 to 7.1 (20). 

The type of curve obtained from a given cow's milk is positively correlated with 

its urea content, and it appears that dietary manipulation may play an important 

role by altering the levels of milk urea (24). Heat coagulation time/pH curves 

are interconvertible, and it is believed that serum components play a major role 

i.l determining the type of curve a sample will have (30). However, the heat 

stability profile is influenced by the following components: 

a. whey proteins, 

b. lactose, 

c. caseins, 

d. colloidal calcium phosphate, 

e. soluble calcium phosphate, 

f. detergents, 

g. assay conditions such as temperature and agitation, 

h. urea, 

i. preheat temperature, and 

j. concentration or dilution (20). 

Because of the way these components affect heat coagulation, it has been 

possible to theorize how heat coagulation may proceed in type A milk at its 

minimum, or in type 8 milk at all pH levels, and type A outside its minimum (24). 

Horne and Muir (24) listed ways by which type A and type 8 milks may be 

interconverted. Type A milks may be converted to type 8 milks by: 

a. decreasing the assay temperatures from 150°C to 120°C, 

b. adding K-casein, 

c. removing colloidal calcium phosphate, 

d. replacing phosphate by another anion, and 

e. dialyzing type A milk against excess type 8 milk (24). 
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Type B milks may be converted to type A milks by: 

a. raising the assay temperature from 130°C to 150°C, 

b. forewarming milk to 80°C for 30 minutes, 

c. adding ~-lactoglobulin, 

d. adding Ca2+ and/or Mg2+ ions, and 

e. dialyzing type B milk against excess type A milk (24). 

Milk is a colloidal suspension of casein micelles in a milk serum phase. 

Colloids are stable because a sufficiently large repulsive energy barrier exists 

between particles to prevent them from coagulating (34). Colloidal stability in 

milk is thought to be due to two constituents: 1) K- casein and 2) colloidal 

calcium phosphate (24). K- Casein with its macropeptide is the basis of the 

hairy micelle theory. According to this, steric interactions keep the micelles 

apart (29). Electrostatic components are also important in the stability of the 

casein micelle. Electrostatic repulsion is due mainly to the dissociated carboxyl 

and ester phosphate groups, which are negatively charged, on the casein 

molecules (50). When the macropeptide is enzymatically removed or 

destabilized with ethanol, coagulation does not proceed immediately if the 

temperature is below 20°C, implicating interactions other than electrostatic 

components in the stability of the micelle (24). 

Combining the calculations for the van der Waals forces of attraction (dipole­

dipole interactions) and forces of repulsion due to the electrical double layer 

between two charged particles leads to three distinct curves. These curves 

were independently calculated by Verwey and Overbeck, and Deryaguin and 

Landau, and are referred to as the DLVO theory (57). According to emulsion 

stability, the DLVO theory states that two colloidal particles have a potential 

energy, V (V+ is repulsive and V-is attractive), as a function of distance, h. The 

forces involved in casein micelle stability have not been quantitated 
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(electrostatic repulsion, van der Waals attraction, steric repulsion, and viscous 

resistance), but the presence of the free energy barrierVm (in a DLVO curve, by 

overcoming the free energy barrier there ensues an attractive potential between 

two charged particles which could result in coalesence), a primary mininum, (in 

a DLVO curve, the attractive force at an interparticle distance less than Vm), 

and secondary mininum (in a DLVO curve, when the distance between two sol 

particles is greater than Vm, there is an attractive force) are questionable. As 

casein micelles approach each other, steric repulsion probably dominates over 

van der Waals attraction. Furthermore, viscous resistance may be high 

because of the hairy micelle (protruding 1e-casein) (51). 

To understand casein micelle stability one must understand this repulsive 

energy barrier and, upon destabilization, what changes occur to reduce the 

repulsive energy barrier allowing the colloids to coagulate. These changes can 

either be environmental such as pH, ionic strenth, and Ca 2+ activity; or 

particular such as colloidal calcium phosphate, dissociation and association of 

protein micelles, and dephosphorylation (50). According to Fox (21 ), the heat 

induced changes preceding coagulation include: 

a. acid development, 

b. precipitation of calcium phosphate, 

c. Maillard reactions, 

d. casein modifications, and 

e. interactions of sulfhydryl groups (as whey protein denaturation). 

All these reactions proceed concurrently, some being more important than 

others in their contribution to heat coagulation. Furthermore, products from one 

reaction may participate in, or influence, other reactions. Maillard browning 

reactions are pH dependent. Acid development due to heating in milk will slow 

or inhibit browning reactions (24). Whey protein denaturation on casein micelle 



affects the stability of the casein micelle, but this stabilizing effect is dependent 

on the concentration of calcium phosphate (21 ). 
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According to Fox (21 ), the most important single factor in heat-induced 

coagulation is acidity because heat coagulation is delayed indefinitely if the pH 

of the heated sample is periodically adjusted to 6.7, regardless of all other 

heat-induced reactions taking place. However, because whey protein 

denaturation and calcium phosphate precipitation are complete within five 

minutes of heating at 140°C (heat coagulation at this temperature would occur 

in twenty minutes), their role, along with pH, in affecting heat stability should not 

be ignored (20). 

pH Changes upon Milk Heating 

As milk is heated, the pH decreases with increasing temperature and time; 

thus, electrostatic repulsion between micelles decreases (50). The rate of pH 

change appears to increase with increasing protein concentration (52). The 

longer a heated milk sample is held at 140°C, the lower the pH, at different 

temperatures, as the sample is cooled. The pH at each cooling temperature 

was determined by allowing the sample to equilibrate at that temperature for ten 

minutes before recording the pH. This process was repeated at 1 OOC intervals 

down to 20°C (21 ). 

In another set of experiments, van Boekel et al. (50) state that pH does not 

change linearly with extended heating time. Initially, there is a rapid decrease 

in pH during the first two minutes of heating; then the pH decreases more slowly 

and linearly with time (50). Dalgleish et al. (11) report that eventually the pH 

decreases to the same value irrespective of the initial pH, implicating a faster 

rate of pH decrease in milks with high initial pH. van Boeker et al. (50) did not 

find that the pH tends to drop to the same low value irrespective of initial pH. 
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The drop in pH is thought to be due to three reactions taking place as a milk 

sample is heated. Fifty percent of the drop in pH is attributed to the production 

of organic acids, mainly formic acid, from lactose upon heating in the presence 

of oxygen (39). It is estimated that there is a decrease of .03 pH units per 

minute wah a 01 o of approximately 1.8 (50). Lactose-free milks are more stable 

than normal milks in the pH range of 6.4-7.4 for both type A and type B rr.ilks. 

Lactose-free milk coagulates at prolonged heat coagulation times (HCT). At 

coagulation, milk pH decreases to 5.5-6.0 in normal milk. However, in lactose­

free milk coagulation occurs at approximately pH 6.15 (corresponding to a 

higher HCT) (21 ). Hydrolytic dephosphorylation of casein with subsequent 

precipitation as tricalcium-diphosphate with release of H+ is responsible for 

30% of the drop in pH (39). Its importance is not well understood. The latter 

reaction is first order with respect to time, increasing with casein concentration. 

Dephosphorylation also increases with pH. The 01 o for this reaction is 

approximately 2. These two reactions (organic acid formation and hydrolysis of 

casein phosphate) are responsible for the gradual decline in pH observed after 

the first two minutes of heating at 140°C (50). Approximately twenty percent of 

the pH drop is due to precipitation of primary and secondary calcium phosphate 

as tertiary phosphate with the release of H+ (39). These changes are reversible 

upon cooling depending on the severity of the heat treatment (36). The shift in 

calcium phosphate equilibrium is responsible for the fast initial drop in pH (50), 

and takes place in less than five minutes (42). Serum proteins do not 

significantly influence the change in pH (50). 

The 01 o for acid development is approximately 2 whereas the 01 o for heat 

coagulation is 3 (20). With a 1 ooc increase in temperature, heat coagulation 

will proceed three times faster and acid development two times faster. 

However, it is thought that there are some heat-induced stabilizing changes 



because milk preadjusted to pH 5.5 coagulates on heating at approximately 

66°C (21 ). A sample preheated to 140°C for twenty minutes will coagulate at 

approximately 78°C at pH 5.5 (21 ). If milk is preheated for twenty minutes or 

more at 120°C, the milk will be stabilized in the pH range of 6.3-7.1. 

Furthermore, the preheated milk will have a type B HCT/pH profile (24). 

Calcium Phosphate Precipitation 

9 

The solubility of milk serum calcium phosphate decreases with increasing 

temperature and decreasing pH. When milk is heated to 120°C, there is a 

sharp decrease in the solubility of calcium phosphate at approximately pH 6.8 

which corresponds to the minimum in type A milk (1 0). In milk, micellar calcium 

is found as insoluble calcium phosphate. Casein has a number of ester 

phosphate and carboxylic groups available to bind calcium (36). It appears that 

the phosphate groups of the phosphoseryl residues in casein form part of the 

micellar calcium phosphate. Hence, in the micelles, the ratio of organic calcium 

to inorganic calcium is greater than 1, even though colloidal calcium phosphate 

has a structure resembling brushite (23). Despite the pH drop during heating, 

micellar calcium phosphate does not readily dissociate from milk casein, though 

it becomes more inorganic during heating as phosphoseryl residues are 

de phosphorylated (1 0). 

The ionic calcium activity of milk depends on the initial pH of milk prior to 

heating. The pH decline during heating does not result in an increase in 

soluble calcium or ionic calcium activity. However, at constant temperature (i.e., 

20°C) a decrease in pH is accompanied by an increase in ionic calcium activity. 

Only after heated milk is cooled is the ionic calcium concentration restored (50). 

While in the serum, most of the calcium is complexed to citrate ions. The 

calcium phosphate salt is a calcium-phosphate-citrate complex: 3Ca3(P04h~ · 
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CaHCitr or 2.5 Ca3(P04)2 · CaHP04 · .5Ca3Citr (21 ). It is thought that calcium 

phosphate precipitates upon heating as a hydroxy-apatite [Ca10(P04)6(0H)2] 

(21 ). Citrate does not precipitate upon heating (18). The serum precipitated 

calcium phosphate may associate with the casein micelle ( 41) via carboxylic 

groups with the exchange of H+. This could explain why precipitated calcium 

phosphate does no·~ become a sediment. If the s-potential and hydration of the 

micelle were reduced, a surface layer of precipitated calcium phosphate on the 

micelle could easily destabilize the colloid (43). The precipitated calcium 

phosphate could also act as a sticking agent for micelles to aggregate if they 

stay together long enough (50). 

Furthermore, ionic calcium influences the dissociation of K--casein- 13-

lactoglobulin complex near the mininum pH in type A milk. As milk is heated, 

ionic calcium activity decreases because of calcium phosphate precipitation on 

micelles. Thus, the amount of calcium acting as a counterion to casein 

decreases, and the dissociation of K-casein increases (50). If calcium 

phosphate does precipitate on the wall of the heating equipment (38), ionic 

calcium activity can be lowered in this way. However, a decrease in ionic 

calcium activity could lead to a stabilization factor with respect to K-casein 

depleted micelles. 

Salt bridges could lead to lasting contact between approaching micelles. 

Salt bridges can be formed between negatively and positively charged groups 

on peptide chains. Ionic calcium and colloidal calcium phosphate could 

mediate these linkages among peptides. The tendency to form salt bridges 

increases with decreasing pH (increase in ionic calcium activity). Salt bridge 

formation is independent of temperature in the range of 120°C and 140°C or of 

the pH drop occurring during heating. The latter may be attributed to the 

insignificant change in ionic calcium activity as a result of the pH decrease 
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during heating (55). When a coagulum of milk protein is formed via salt bridges, 

the aggregated micelles are dispersible by colloidal calcium phosphate 

dissolving agents (55). 

Maillard Browning 

Some investigators do not consider Maillard browning to be a significant 

factor in heat coagulation because little browning occurs during the period 

necessary to induce coagulation (20). However, Maillard browning may play a 

minor role (6). £-Amino groups of lysine appear to be involved in a number of 

coagulation reactions (21, 43). About 15% of the lysine is rendered unavailable 

in milk heated for 20 minutes at 140°C at pH 6.7 (21 ). Products of Maillard 

browning reactions are extremely reactive, leading to polymerization reactions 

(32). Polymerization reactions are important in heat-induced coagulation (11, 

50). Furthermore, the heat stabilizing influence of urea in artificial casein 

micelle systems is dependent on the presence of lactose or glucose (20). Ionic 

calcium activity increases when lactose is added to milk at its natural pH (31 ). 

Yet, if 5% lactose or 5% sucrose is added to lactose free milk and then heated, 

the calcium sensitivity of the casein isolates are not significantly different (21 ). 

Lactose addition to "normal" milk has a destabilizing effect (50), probably due to 

an increase in the rate of pH decline. 
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Effects of Heat on Whey Proteins 

Whey proteins are heat labile and are completely denatured at: 

a. 77.5°C when heated for 60 minutes, 

b. 80°C when heated for 30 minutes, or 

c. 90°C when heated for 5 minutes (21 ). 

The thermal stability of the individual whey proteins in order of increasing 

stability are immunoglobulins < serum albumins < ~-lactoglobulin < a­

lactalbumin. Denatured whey proteins in milk will co-precipitate with casein 

when they are acidified, salted out, or ultracentrifuged. By sequestering calcium 

ions, casein fractions are thought to protect denatured whey proteins from 

precipitation (20). When K-casein and ~-lactoglobulin are heated together, 

they interact by sulfhydryl-disulfide interchange (37). Addition of K-casein to a 

preheated sample of ~-lactoglobulin will bind in the same way (50). The 

formation of the 1)-lactoglobulin-K-casein complex in milk is thought to affect 

the heat stability of milk (44). Furthermore, the ratio of !)-lactoglobulin to K­

casein may be more important in heat stability than the actual concentration of 

these proteins. This suggests that the surface characteristics of the micelle are 

critical in heat stability (52). a-Lactalbumin and ~-lactoglobulin interact and 

form a complex which appears to associate with K-casein (24). When heated, 

a-lactalbumin by itself has a similar effect on the casein micelle proteins as ~­

lactoglobulin. a-Lactalbumin contains no sulphydryl groups, but it does have 

four disulfide bonds per mole which are thought to act as active sites for 

complex formation with the casein micelle or ~-lactoglobulin (22). 

After heating milk for 1 minute at 140°C, 99% of the !)-lactoglobulin and 

about 90% of the a-lactalbumin will have reacted. This denaturation and 

complexing reaction proceeds fast and is not a rate determining step in heat 

coagulation (50). The denatured whey protein-case!n micelle complex 
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dissociates at pH greater than 6.8, and it is thought to be related to the minimum 

in the HCT/pH curve of Type A milk (24). When the pH of the milk is below 6.6 

before heating, serum proteins will complex with casein micelle proteins. If the 

pH of the milk is greater than 6.9 before heating, serum proteins will complex 

with caseins in the serum phase. At pH's between 6.G and 6.9 before heating , 

serum proteins will complex with both serum phase caseins and casein 

micelles (50). High calcium concentrations increase the association of serum 

proteins with casein. If calcium is sequestered, the serum proteins remain in the 

serum (47). Bovine serum albumin destabilizes the casein micelle (21 ). 

Heat-Induced Changes in Casein 

In the temperature range of 80°C-150°C, the following changes are noted: 

a. dephosphorylation, 

b. proteolysis, 

c. covalent bond formation, 

d. hydration, 

e. zeta potential, and 

f. structural changes in the casein micelle. 

With increasing temperature inorganic phosphate is released (36). 

Dephosphorylation proceeds faster than the formation of TCA-soluble nitrogen 

(20). It is estimated that 12% dephosphorylation of milk casein takes place at 

120°C in 90 minutes (21 ). Dephosphorylation in skim milk casein conforms to 

first order kinetics in the temperature range of 11 0-140°C, and it is independent 

of pH at 6.0-7.0 (20). Nevertheless, the effects of dephosphorylation are slow 

(4). Both a- and f3-caseins are dephosphorylated. Dephosphorylation 

reduces the protein charge, which may contribute to coagulation, because of 

increased attractive forces between micelles. As a result, casein micelles may 
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become less voluminous. At constant micellar mass, a more voluminous 

micelle will have weaker van der Waals attraction. However, dephosphorylated 

micelles will bind less colloidal calcium phosphate which could cause the 

micelles to dissociate (50). It is known that dephosphorylated casein is much 

more heat labile and binds less Ca2+ (20). 

Of the total protein nitrogen in milk, 1 0-20% is converted to non-protein 

nitrogen (NPN) in 60 minutes when heated at 135°C, and formation of NPN is 

linear with time (21 ). The electrophoretic pattern and elution profile of casein on 

Sephadex and Biegel are altered after heating {21 ). Heating whole casein or K-

casein causes the release of a macropeptide similar to the one produced when 

K-casein is treated with chymosin. The glycopeptide released upon heating has 

a lower carbohydrate to nitrogen ratio and contains 0-mannose, unlike the 

glycopeptide released with chymosin treatment. Thus, heat hydrolyses different 

bonds (21 }. About 20-30% of K-casein is hydrolyzed up to the point of heat 

coagulation (43). 

Severe heat treatment may not only promote proteolysis of casein but also 

polymerization of polypeptides (43). Milk, heated for 10-20 minutes at 140°C, 

results in the formation of covalent bonds (50). According to some investigators 

(50), polymerization of proteins is involved in heat coagulation because the 

coagulated material is not redispersible. The reactivity of some of the side 

chains of amino acids increases with temperature; lysine is especially reactive. 

At increased pH, the formation of lysirioalanine proceeds with heating (43). 

The heat coagulation time due to polymerization reactions is dependent on 

initial pH and the rate of pH decrease, but not on protein concentration. The 

01 o is approximately 3 {55). Via intra- and intermolecular bonds, reactive 

groups (i.e., lysinoalanine, lanthionine or isopeptides) may combine with 

carbohydrates, lipids, and other residues (such as Maillard products) {43). 
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Intermolecular bonds could involve the 1e-casein tail, the deposited serum 

proteins on the micelle, or the precipitated calcium phosphate associated with 

the micelle. However, results show that reactive groups are formed faster at 

higher pH's (Maillard reaction, formation of lysinoalanine, lanthionine, and 

i::;opeptides); yet, covalent bond formation among heated micelles is favored as 

the pH decreases. This suggests that, depending on the pH of heated milk, 

intramolecular bonds would be favored at high pH's and intermolecular bonds 

would be favored at low pH's (50). 

Micellar Structure Changes upon Heating 

Hydration of the micelle is pH-dependent and is affected by micelle size or 

calcium concentration or by micelle size and calcium concentration(43). 

Micellar hydration decreases with decreasing pH (9). There appears to be a 

positive correlation between HCT and casein micelle hydration (21 ). The latter 

is expected since casein micelle formation and stability are related to hydration. 

Hydrated ionic and zwitterionic species orient water to give an overall repulsive 

force (5). The repulsive force between charged groups is a consequence of the 

decreased enthalpy of water since work is required to remove water from the 

vicinity of the charged groups (5). Hydrophobic surfaces orient water molecules 

so that a co-operative attraction follows. This attractive force is entropically 

driven (5). The difference between the serum phase and casein micelle is less 

as micellar hydration increases (55), van der Waals attraction decreases, and 

micellar stability increases (50). Closely related to micellar hydration is the t;­

potential of the micelle, both being important in micelle stability as mentioned 

previously. The t;- potential in the casein micelle is principally due to the 

glycopeptide region of K-casein and the charged sections of a 5- and ~-casein 

(21 ). Organic calcium and phosphate are also thought to affect the 
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electrokinetic potential. A decrease in organic calcium phosphate will increase 

the absolute value of the ~-potential (55). The ~-potential during heat 

treatment may be expected to decrease (become less negative) because of: 

a. hydrolysis of K-casein, 

b. dephosphorylation of a.51-, a.52- and ~-casein, 

c. pH reduction, 

d. calcium phosphate precipitation, and 

e. Maillard browning (21 ). 

However, the ~-potential of milk heated to coagulation temperature does not 

change significantly implying that, at a constant pH, the electrokinetic potential 

of the casein micelle may increase (absolute value) (12). Therefore, the stability 

of micelles to heat may be evaluated in terms of hydrophobic (hydrophobic 

associations due to the entropic forces that bring hydrophobic groups together 

because of their hydrophobicity) and van der Waals interactions rather than 

electrostatic interactions (43). 

The bonds between the molecules in a submicelle are both hydrophobic 

and electrostatic (51). Hydrophobic associations are partly responsible for 

casein micelle structure (54). At cool temperatures (< 5°C), ~-casein will partly 

dissociate from the micelle because hydrophobic associations are weaker (13). 

At temperatures near boiling, hydrophobic associations are weakened or 

absent. This weakening is observed as soon as high temperatures are reached 

(50). Casein micelles seem to become more flexible at temperatures above 

70°C (55). Because hydrophobic interactions are lessened, electrostatic 

interactions dominate (even more at high pH's); hence, the micelle may start to 

disassociate. Experimental data suggest that K-casein does disassociate upon 

heating. !3--casein should also dissociate similarly (50). However, because the 

turbidity of milk heated to 120°C does not significantly differ from that of milk at 



20°C, this suggests that micelles keep their structural integrity at high 

temperatures (50). 
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Changes in casein micelle structure upon heating involve not only 

dissociation, but also association phenomena. When heated to 90°C whey 

proteins aggregate with little casein micelle changes (43}. It is thought that in 

UHT processing, casein micelle aggregation is due to a combination of factors : 

a. whey protein denaturation, 

b. whey protein complexing with micellar surface, and 

c. increase in micellar calcium (43). 

During heating between 90-140°C, there is an increase in casein micelle size 

with an accompanied increase in number of small casein micelle particles (8) . 

This may be due in part to the disaggregation of casein micelle and 

solubilization of micellar calcium. When milk is heated at 140°C, the following 

changes are noted at pH greater than 6.8: 

a. initial association where viscosity increases and sedimentable casein 

increases, 

b. followed by dissociation of casein micelle with observed decrease in 

viscosity and increase in soluble protein, and 

c. coagulation with rapid increase in viscosity (43). 

K-Casein will dissociate upon heating milk and is pH-dependent, there being 

more solubilization at or above pH 6.9 and less solubilization at or below pH 

6.5. The 01 o in the range of 90-120°C for the dissociation of K-casein in skim 

milk at its neutral pH is 1.3 (53). !}-Lactoglobulin prevents K-casein 

solubilization at pH below 6.7, but not at pH greater than 6.9, when heated. 

!}-Lactoglobulin promotes the dissociation of K-casein after heating for 10 

minutes at 90°C at pH 7.3 (45). Increased dissociation at pH >6.8 is mainly due 

to a change in !}-lactoglobulin occurring at pH >6.8 when heated (15). 



Electrostatic interactions are probably involved in K-casein dissociation 

because anionic detergents intensify and cationic detergents reduce heat­

induced dissociation of K-casein regardless of the pH . Furthermore, 
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dissociation appears to depend on some non-protein serum component (50). 

Increasing the negative charge on micellar surface is known to decrease 

hydrophobic interactions and K-casein dissociates due to electrostatic repulsion 

(43). The structure of the heated micelle after cooling is different because once 

dissociated, the micelle is less capable of binding casein in the cold (50). 

Furthermore, susceptibility to ionic calcium precipitation is also changed. 

Kinetics of Micellar Casein 
Heat Induced-Coagulation 

Aspects of the polymerization behavior of small molecules are 

mathematically modeled using the theory of branching processes (34). 

According to this theory, the number of reactive sites on a monomeric unit, 

functionalities, determines the nature of the polymer: 

a. one functionality will form a dimer, 

b. two functionalities will form a polymeric chain with two unreacted 

groups per polymer molecule, and 

c. three or more functionalities (f) will form a branched polymer, and the 

number of free functionalities will equal (fx- 2x + 2), where x is the 

number of monomers (34). 

When one applies the theory of branching processes describing polymer 

condensation and gelation, heat coagulation curves of milk may be modeled 

(34). In this model the aggregating micelle is a trifunctional unit. The 

t ifunctional unit is characterized by a lag stage followed by a fast precipitation 

and the process follows a single reaction scheme (34). In type B curves, and 
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type A curves above or below the minimum, single-step depletion curves are 

observed and the kinetic model of heat-induced coagulation is in agreement 

with the theory of branching process (33). In type A curves within the minimum, 

two-stage nitrogen depletion curves are observed. The first sign of visual 

coagulation corresponds to the first drop in the nitrogen depletion curve. The 

second drop is not visual (33). The branching process is modified to fit this 

behavior by making the following assumptions: 

a. there exist two distinct molecules, a fast coagulating molecule and a 

slower one, and 

b. each type of molecule is a trifunctional monomer reacting with its own 

kind with little or no cross reaction products (35). 

As to the nature of the reactive groups, according to van Boeke I et al. (51) at 

high temperatures two types of casein micelles can exist: 

a. particle with serum proteins attached, and 

b. particle with K-casein dissociated. 

At pH~ 7.0 the micelles are depleted; when the pH is< 6.7, casein micelles are 

coated with serum; if the pH is between 6.7 and 7.0, a transition zone exists. 

There are at least two reactions to which the particles are subject: reaction I is a 

salt induced coagulation, and reaction II is an unknown reaction (probably 

protein polymerization). Reaction II determines the actual coagulation time. 

However, at pH ~ 6.35 a different situation may exist because the high ionic 

calcium concentration may render the casein micelles unstable. In this case, a 

rapid increase in aggregate size is observed, and reaction I probably 

predominates. van Boeke I et al. (51) analyzed the changes in optical density 

observed during heating of milk at 140°C in terms of W, a stability factor (the 

higher the stability of a particle the larger the value of W). When W is plotted 

against time (for milks at initial pH > 6.35), W is constant for the first 10-20 



minutes, and a slow coagulation is observed. This slow coagulation may be 

due to reaction I. Once a critical pH is reached, the casein particle becomes 

unstable, W rapidly decreases, and fast coagulation occurs. 
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Above pH 6.35, a heat coagulation-time curve may be divided into three 

regions. Region I (pH< 6.7) casein micelles with deposited serum proteins are 

subjected to both reactions I and II. The heat coagulation time depends on the 

initial pH, the rate at which the pH is lowered, and on the initial ionic calcium 

activity. The rate-determining reaction in this region is reaction II. In region II 

(6.7 $ pH $ 7.0) the depleted casein micelle coagulates prematurely due to 

reaction I. Region Ill (pH > 7.0) depleted casein micelles are not destabilized 

because the ionic calcium activity is low; casein micelles associate as the pH 

decreases during heating, and the particles then behave as in region I (50). 

Theory Explaining the Minimum 
in a Type A Curve 

The mechanism proposed by Singh and Fox (44) is based on the formation 

of a ~lactoglobulin and K-casein complex. This complex is known to 

dissociate above pH 6.9 and is thought to make the casein micelle calcium 

sensitive resulting in the heat coagulation of type A milk at pH approximately 

6.9. Because at pH greater than 7 micellar charge increases and ionic calcium 

decreases, the heat stability of the sample increases once again (24). 

However, a plot for N-acetyl neuramic acid (an indicator of K-casein) 

parallels that for total nonsedimentable nitrogen up to pH 6.8. As may be 

observed from a HCT/pH profile of a type A curve, the casein micelle becomes 

destabilized before the dissociation of the complex is recorded. According to 

Horne and Muir (24), destabilization is due to the formation of the ~ 

lactoglobulin-K-casein complex formation. Urea is known to increase the heat 
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stability of milk when a single stage coagulation occurs as in type B milk or type 

A milk outside the minimum (11 ). Within this range, urea may help by buffering 

milk from the acid produced during heating. Another mechanism of protection 

is by interacting with K-casein. Urea is incorporated into the protein after 

heating via the sulfhydryl groups of proteins and cyanate (a product of urea 

upon heating). Outside the minimum, the reaction of urea and K-casein is 

favored and formation of a cyanate-K-casein complex proceeds. In this region 

the heat stability of casein micelle is positively correlated with urea levels. 

Inside the minimum the ~lactoglobulin-K-casein reaction is favored and only 

shift when urea levels are extremely high. At pH 6.8 ~lactoglobulin dissociates 

(from a dimer to a monomer) and undergoes conformational changes which 

make available 1) the free sulfhydryl group available upon dissociation of the 

dimer, and 2) the four other sulfhydryl groups participating in disulfide bonds 

within the monomer. It is the formation of a ~-lactoglobulin-K-casein complex 

that makes the micelle unstable at pH 6.8 rather than the dissociation of the 

complex in this theory. By making the K-casein glycopeptide rigid, the ~­

lactoglobulin-K-casein complex is able to form crosslinking reactions which 

would neutralize the steric stabilization activity of the hairy micelle, making the 

micelle sensitive to calcium moderated precipitation (24). 
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MATERIALS AND METHODS 

Materials 

Milk (SM) from the Utah State University dairy farm was skimmed and vat 

pasteurized (63°C for 30 min) at the university dairy plant. Commercial 

pulpless, standard frozen orange juice (OJ) concentrate (Minute Maid®) was 

purchased locally. The SM/OJ blend was 85% (w/w) skim milk and 15% (w/w) 

reconstituted OJ. To this blend, I added .25% (w/w) microcrystalline cellulose 

(MCC) (Avice!® RC 591 F MCC co-dried with sodium carboxymethylcellulose , 

FMC, Philadelphia PA) and .025% (w/w) carrageenan blend (SeaKem CM 611, 

FMC Marine Colloids, Philadelphia, PA). Preliminary trials included the use of 

other stabilizers and these were 1) TIC Gum (.5% w/w) (Belcamp, MD), Gum 

Colloid 1 084T (a system of natural hydrocolloids), 2) Grinsted (Industrial 

Airport, KS) Mexpectin R5450 (.5% w/w) with FMC Sea Kern CM 611 (.02% 

w/w), 3) Kelcoloid-LVF (.5% w/w) (a propylene glycol alginate) by Kelco 

(Chicago, IL), or 4) Genu® Pectin JMJ (.25% w/w) by Hercules (Middletown, 

NY) with FMC Sea Kern CM 611 (.025%). 

Preparation of Skim Milk/Orange Juice Blend 

Stabilizer Incorporation. The stabilizer(s) was(were) blended with 

approximately 25% of the water necessary to reconstitute the OJ concentrate 

using a household blender (blending was for approximately 10 minutes). The 

hydrated stabilizer(s) was (were) added either to milk heated to 60°C for 30 

minutes or to cold milk. Heated stabilizer/milk samples were cooled to 4°C 

before combining with the reconstituted orange juice. When the stabilizer(s) 

was(were) incorporated without heating, the hydrated stabilizer(s) was(were) 

mixed into the SM/OJ mix with a high speed, high shear recirculating pump. 
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Reconstituted Orange Juice Incorporation. SM/OJ blends of a final pH of 

6.1, 6.3, or 6.5 were made. The thawed OJ concentrate (approximate pH 3.8) 

was adjusted to pH 4.0 or 4.5 with 1 N NaOH for two (pH 6.3, and 6.5) of the 

tlhree pH treatments. The pH-adjusted OJ concentrate was diluted with the 

rremaining 75% water (minus the volume of NaOH used) required to fully 

rreconstitute the OJ. For the th!rd treatment, the pH of the orange juice 

concetrate was not adjusted and was reconstituted with the remaining 75% 

water (Table 1 ). The reconstituded OJ was manually added to the milk to avoid 

protein precipitation. The SM/OJ samples (with stabilizer) were refrigerated 

overnight and then UHT processed with or without prior homogenization (4°C, 

500 psi single stage) prior to UHT processing (Figure 1 ). 

UHT Processing 

Direct Heat Exchange. The SM/OJ drink blends were UHT processed by 

direct heat exchange (steam injection) using an Alta-Laval Sterilab® UHT pilot 

plant. The sample blends were preheated in a plate heat exchanger to 77°C 

and UHT treated by direct steam injection to 140°C and held for 4 s. The 

sample blends were vacuum cooled (flash evaporation) to 71 oc and cooled to 

14°C by plate exchangers. SM/OJ blend samples were aseptically collected 

under an Alta-Laval StericabTM hyperfiltered, positive pressure air chamber 

(Figure 2). Blend samples were packaged in pre-sterilized, 120 ml 

polypropylene containers. 
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TABLE 1. Orange juice (OJ) preparation. 

Reconstituted OJ 1 2 3 

Parts OJ Cone. 

(pulpless) 1 1 1 

Parts water 3 3 3 

• stabilizer mix 1 yes yes yes 

• 1 N NaOH no yes yes 

pH adjustment no yes yes 

Approx. OJ cone. pH 3.8 4.0 4.5 

Approx. drink pH 6.1 6.3 6.5 

1 Hydrated separately 



J Skim milk 
L_ (40C) 

Recirculat ion 
pump 

Reconstituted orange 
juice ( see Table 1 ) 
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UHT processing 
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Figure 1. Flow chart for drink preparation. 
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Figure 2. Direct UHT system product flow where HE= heat exchanger, and 1T =temperature transmitter. 
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Indirect Heat Exchange. Using the above mentioned pilot plant, the system 

was plumbed for indirect heat exchange. Plate heat exchangers were used to 

preheat sample blends to 77°C and UHT-treated to 140°C and held for 4 s. The 

sample blends were cooled to 14°C by plate exchangers. Samples were 

collected as for the direct UHT processed samples. 

Sample Storage and Analytical Methods 

Samples were stored at room temperature (RT) and 35°C. The pH, tit ratable 

acidity, and percent top surface clearing of undisturbed samples were recorded 

every 7 days for a 28-day period. The pH measurements were made at RT, 

and measurements were made as soon as the pH meter indicated a variation of 

less than ± 30 mV. Percent clearing was the ratio of the height of the top 

surface clear zone to the total sample height multiplied by 1 00. The drink 

blends prior to and a day after UHT processing were viewed under a phase 

contrast microscope. 

Sensory Analysis 

Untrained judges (18 years and older), representing a general consumer 

population, participated in the sensory panels. Taste panel facilities at the 

university's Department of Nutrition and Food Sciences were used. Partition 

booths in a closed area are available with sufficient ventilation. Each booth has 

flworescent lights (white or red) positioned to reduce glare. The judge and 

taste panel coordinator communicate through a sliding metal window. 

RT samples stored for 28 days were used for sensory texture evaluation. A 

paired comparison test was conducted under red lighting. Random numbers 

were used to label the samples. Forty (40) panelists compared the three pH 

treatments in all possible combinations (three sets per judge). Every other 



participant evaluated the drinks in alternate order (Appendix A). A single 

serving size was 10 ml of the chilled (4°C) drink blend. 
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In a second evaluation, a nine point hedonic scale (9 being "most liked," 5 

being "neither liked nor disliked," and 1 being "least liked") was used to 

determine the consumer acceptability of SM/OJ drink (pH 6.5) cor,taining 2.5% 

(w/w) sugar that had been stored at room temperature for 7 days (Appendix B). 

The appearance, flavor, texture, and overall acceptability of the single chilled 

sample was rated by 83 panelists. The sample size was 1 0 mi. 

Statistical Design 

UHT Processed Test Material. A complete random block with a split-split 

plot design was used for analysis of variance using least squares means. The 

following model was used: 

where Yijkl is the dependent variable (pH, titratable acidity, or percent clearing), 

J.l is the overall mean of the population, and independent variables Ri, Tj. Sk, 

and D1 are the coefficients for the averages of replication, treatment pH, storage 

temperature, and day effects. Two-way interactions (TSjk. TDjl. and SDkl) and a 

three-way interaction (""fSDjkl) are included. The data set comprised four 

replications (i = 1, .. 4), three treatment pH's U = 6.1, 6.3, 6.5), two storage 

temperatures (k = RT, 35°C), and five 7-day intervals (k = 0, 7, 14, 21, 28). The 

whole plot error (Eij). subplot error ("{{jk), and sub-subplot error (8ijkl) were 

assumed to be normal and independently distributed with zero expectation and 

common variance cr2. Fisher's least significant difference was used to separate 



means. Analysis of variance was performed using release 7.2 of Minitab© 

(State College, PA). 
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Sensory Test Method. Sensory evaluation data concerning texture were 

analyzed by tallying correct answers and calculating the significance of the 

results using chi-square. Hedonic ratir1g data were evuluated using frequency 

distributions with reported means, sample standard deviations, and 95% 

confidence intervals. Linear correlation between overall acceptability and 

appearance, flavor, or texture was determined. 
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RESULTS AND DISCUSSION 

Drink Blend Preparation 

Regardless of the stabilizer type and level, blend preparation, or UHT 

processing, milk proteins precipitated when blend pH was less than 6.4. FMC­

Avicel® MCC was the only stabilizer with practical application in the UHT 

processed SMIOJ drink. The prehomogenized SM/OJ blend containing .25% 

FMC MCC and .025% FMC Sea Kern CM 611 (added to increase creaminess) 

maintained the milk proteins of the UHT -processed blend in suspension 

throughout the 28-day shelf storage study. Homogenization of milk (with milk 

fat) decreases heat stability (52). This is because casein becomes adsorbed 

onto the fat globule, and the fat globules then tend to behave as if they were 

casein micelles (52). The effect of homogenization in our product was probably 

to efficiently incorporate the stabilizer into the colloidal system, even though the 

MCC stabilizer used required low shear for incorporation (as obtained with a 

blender). However, because pectin was not able to perform similarly, even after 

prehomogenization, there may be other factors involved. Increased hydration of 

protein molecules may be possible by formation of a protein-polysaccharide 

complex. The polysaccharide may also bind water molecules and retard 

settling of precipitated proteins. 

UHT Processing of Drink Blend 

Skim milk/orange juice drink with satisfactory shelf storage must be 

subjected to minimal heat treatment for commercial sterility. The heat load in 

indirect UHT processing is more intense than in direct UHT processing due to a 

longer residence time of the product in the system. Direct UHT processing 

involves large temperature gradients when live steam is injected into the 



31 

product and vacuum evaporated (expansion cooling) (26). To ensure that the 

milk drink was not concentrated or diluted during processing, an energy-mass 

balance was calculated for each run (Appendix C). However, heat losses to the 

surrounding atmosphere were not considered, and the theoretical value was 

not large enough to remove all the steam that was injected. Furthermore, 

because of the presence of hygroscopic components, such as stabilizers, the 

removal of the steam may have been affected. In our results, it was determined 

that the temperature difference needed between the preheat temperature and 

the vacuum evaporator temperature was approximately 5.6°C (1 0°F), to obtain 

a product of the same total solids prior to UHT processing. 

Fouling in indirect UHT processing increases with reduced pH milks. At pH 

below 6.35, UHT processed samples will coagulate (46). This was also 

observed in my results. I was unable to process the skim milk/orange juice 

blends of pH 6.3 and 6.1 by indirect UHT because the system flow was stopped 

within minutes. The increased deposit formation of proteins is due mainly to the 

heat exposure (though whey protein denaturation is unchanged) (46). Milk with 

initial pH above 6.35 and below normal milk pH (approximately 6.67) during 

indirect UHT processing will deposit mostly protein, with reduced mineral 

fouling, onto the heat exchanger walls (46). Flakes were seen in collected milk 

samples processed by indirect heat exchange with initial pH at 6.5. This could 

be precipitated material coming off the heat exchanger plates. However, 

transfer of ionic calcium to colloidal calcium may be affected during the UHT 

treatment. Insufficient time for transfer of ionic calcium may lead to localized 

high levels of ionic calcium with subsequent protein precipitation (46). Fouling 

with the skim milk/orange juice drink pH 6.5, processed by indirect UHT, 

increased with time, and eventually fluid flow was restricted, particularly in the 

second heat exchanger where the product was heated to sterilization 
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temperature. Heat processing by direct UHT was feasible, though the flow rate 

did drop by the end of the run. 

Drink Blend pH 

Treatment pH, storage temperature , day, and storage temperature-day 

interaction were statistically significant (Table 2). The decrease in drink pH over 

time in the RT samples was not statistically significant within treatment pH. 

There were some significant differences across days within treatment pH in 

samples stored at 35°C (Figure 3B). Storage temperature sometimes affected 

the pH of various pH treatments (Figures 3A and 3B). This was true for 

treatment pH 6.1 on all days after day 0 and all treatments on day 28. In these 

cases a higher storage temperature had a lower pH. Treatment pH 6.1 and 6.3 

within storage temperature and day statistically differed only on day 21. 

Treatment pH 6.5 was consistently different from the other pH treatments within 

storage temperature and day (Figures 3A and 3B). Some of these pH 

decreases could be attributed to the milk buffering system reaching equilibrium. 

Drink Blend Titratable Acidity 

Titratable acidity is another way to determine the concentration of acids in a 

sample (2). However, because the acidic groups of the SM/OJ drink blend were 

unknown, the exact concentration of acids in the drink remained unknown. 

At best, we were able to determine the equivalents of base needed to reach a 

phenolphthalein end point. Values are reported as milliliters of NaOH (.1 00 ± 

.0001 N) to titrate ten milliliters of SM/OJ sample. Treatment pH was the only 

statistically significant source of variability in titratable acidity (Table 3). For the 



TABLE 2. Analysis of variance for the dependent variable pH1. 

Source df 

Rep. 3 

Treatment pH (T) 2 

Error (a) 6 

Storage Temp. (S) 1 

TxS 2 

Error (b) 9 

Days (D) 4 

TxD 8 

SxD 4 

TxSxD 8 

Error (c) 72 

1 Total df = 11 9 
* p ~.05 

** p ~.01 

Sum of squares 

.04 

1.68 

.03 

.23 

.00 

.03 

.32 

.01 

.07 

.01 

.29 

MS 

.01 

.84 

.01 

.23 

.00 

.00 

.08 

.00 

.02 

.00 

.00 

F- test 

2.80 

157.36** 

67.85** 

.49 

20.40** 

.47 

4.25** 

.38 
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TABLE 3. Analysis of variance for the dependent variable tit ratable acidity 1. 

Source df Sum of squares MS F- test 

Rep. 3 .71 .24 4.73 

Treatment pH (T) 2 6.76 3.38 66.77** 

Error (a) 6 .30 .05 

Storage Temp. (S) 1 .02 .02 2.17 

TxS 2 .00 .00 .03 

Error (b) 9 .08 .01 

Days (D) 4 .06 .02 1.65 

TxD 8 .07 .01 .95 

SxD 4 .06 .01 1.51 

TxSxD 8 .03 .00 .42 

Error (c) 72 .71 .01 

1 Total df = 11 9 

* p $.05 

** p $ .01 
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most part, titratable acidity did not differ from one time interval to the next for a 

treatment pH and fixed storage temperature (Figures 4A and 48). Storage 

temperature did not affect the titratable acidity of a treatment pH for a given day. 

Yet, treatment pH 6.5 on a fixed day differed in titratable acidity from treatment 

pH 6.1 and pH 6.3 for each storage temperature (Figures 4A and 48). 

Treatment pH 6.1 and 6.3 only differed in titratable acidity of day 0 (Figures 4A 

and 48). Storage temperature did not affect the titratable acidity measurement 

as much as it did pH measurements. Hydrogen ion activity varies with 

temperature (19). Although the samples stored at 35°C were allowed to come 

to room temperature before pH measurements were made, and the pH meter 

had a temperature compensating unit, the drink was a dynamic system where 

an equilibrium state was not reached. This was evident because the pH 

continued to coast down even after the pH meter had registered pH variations of 

less than ±30 mV. The acidic groups in the drink blend should remain constant 

regardless of storage temperature; hence, tritratable acidity should not change 

either. 

Drink Blend Percent Clearing 

Treatment pH, storage temperature, day, and treatment pH-day interaction 

all affected percent clearing (Table 4). In pH treatment 6.1, the percent clearing 

was 5.2% (RT) or 7.3% (35°C) in homogenized drink blends compared to an 

average of 87.5% in nonhomogenized drink blends. Percent clearing varied 

significantly across storage temperature, within day and treatment pH, and 

across days, within storage temperature and treatment pH (Figures SA and 58). 

There were some differences across treatment pH within storage temperature 

and day: 1) at RT storage, day 21 and 28, treatment pH 6.1 and 6.3 were 
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TABLE 4. Analysis of yariance for the dependent variable percent clearing 1. 

Source df Sum of squares MS F- test 

Rep. 3 89.00 29.67 2.72 

Treatment pH (T) 2 260.60 130.30 11.93** 

Error (a) 6 65.51 10.92 

Storage Temp. (S) 1 57.82 57.82 45.52** 

TxS 2 9.73 4.87 3.83 

Error (b) 9 11.43 1.27 

Days (D) 4 263.28 65.82 26.00** 

TxD 8 87.03 10.88 4.30** 

SxD 4 18.44 4.61 1.82 

TxSxD 8 16.16 2.02 .80 

Error (c) 72 .29 .00 

1 Total df = 11 9 
* p $.05 

** p $ .01 
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significantly different from treatment pH 6.5; 2) at 35°C storage, treatment pH 

6.5 differed from treatment 6.1 on all days except day 0 (for other differences 

see Figures 5A and 58). 
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Under a phase contrast microscope (1 OOx) differences in the size of 

particulates among the treatments were seen. pH treatments 6.1 and 6.3 were 

indistinguishable (Figures 6A to 60). This is in accordance with our percent 

clearing statistical data, where treatment pH 6.1 and pH 6.3 did not differ. The 

size of the particles seen in treatment pH 6.1 and 6.3 were approximately 50 to 

60 j.lm in diameter. Assuming we had spherically precipitated protein particles, 

at a constant temperature, the rate of sedimentation may be predicted by 

Stoke's Law (6): 

V = r22(d1 - d2)g/9T\, where V =velocity of sedimenting particle, 

r = radius of sphere, d1 =density of liquid phase, d2 =density of sphere, 

g =acceleration due to gravity, and T\ =viscosity of fluid. 

If both densities and viscosity of the fluid remain constant, larger particles will 

become sediment faster at a given g-force. Hence, the precipitated protein 

spheres increased in size in this manner: treatment pH 6.1 =treatment pH 6.3 > 

treatment pH 6.5. Furthermore, sedimentation is opposed by diffusion. Those 

particles in the drink blend small enough ( < 1 j..!m) to be disturbed by Brownian 

motion or convection currents will not sediment (56). At higher temperatures the 

viscosity of milk is reduced (3). Percent clearing at 35°C storage temperature 

was higher for the same treatment at room temperature storage; however, 

statistical analysis did not show any differences; hence, viscosity changes may 

have been negligible. 

The differences observed are not attributed to differences in milk supply as 

evident in the replications in ANOVA presented in Tables 2 through 4. 

Furthermore, 



Figure 6. Phase contrast micrographs (1 OOx) of skim milk/orange juice drink blends. A. Blend prior to UHT 

processing. B. UHT processed drink blend pH 6.5. C. UHT processed drink blend pH 6.3. D. UHT processed 

drink blend pH 6.1. 
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the F-test did not identify any significant three-way interactions for either pH or 

percent clearing. 

Drink Blend Sensory Evaluation 

Panelists were statistically unable to perceive a textural difference among 

the three blends (P ~ .05). When comparing treatment pH 6.1 with treatment pH 

6.3, 24 panelists out of 39 (one of the ballots in the first pair was inaccurately 

labeled and was disregarded) successfully identified the coarser sample. Out 

of 40 panelists, 23 and 25 panelists correctly identifed the coarser sample when 

comparing treatment pH 6.3 with treatment pH 6.5, and treatment pH 6.5 with 

treatment pH 6.1, respectively. 

The sensory evaluation did not involve comparison with a control blend 

since one does not exist and was conducted to evaluate the drink blend profile. 

Therefore, results were not subjected to a complete statistical analysis. The 

histograms (Figures 7A to 70) indicate there was a split population in the 

hedonic rating of the appearance, flavor, and overall acceptability of the blend. 

It might have been possible to avoid this split if a score of 5 (neither like nor 

dislike) had been omitted. This also shows that few panelists were undecided 

about the drink. A greater part of the population moderately liked the drink for 

all parameters tested as seen in the skewed distribution on the histograms. 

Linear correlations indicate that overall acceptability was correlated with flavor 

(R2 = .90), appearance (R2 = .83), and texture (R2 = .69). Flavor would be the 

main factor in future efforts to improve the acceptability of the SM/OJ drink blend 

since panelists did indicate that the drink lacked flavor. 



Figure 7. Consumer style panel (n =83) hedonic ratings of 

skim milk/orange juice drink. Hedonic scale ranges from 9 = like 

extremely, to 5 =neither like nor dislike, to 1 =dislike extremely. 

A. Appearance. B Flavor. C. Texture. D. Overall acceptability. 

(Corresponding statistical distribution is included in each 

histogram, where x =sample mean, SD = standard deviation, 

and Cl =confidence interval) . 
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CONCLUSIONS 

We developed a UHT -processed SM/OJ drink that contained selected 

stabilizers. Addition of stabilizer(s) alone to the SM/OJ blend did not stabilize 

milk proteins during UHT processing or during extended storage at room 

temperature. Low pressure homogenization of the SM/OJ blend containing 

added stabilizers significantly increased milk protein stability during UHT 

processing and storage. The stabilizing effects of pre-homogenization may 

have been due to the high turbulence and cavitation of the blend at the 

homogenizer valve, which enhanced the interaction between stabilizer and milk 

proteins that would not have occurred under low-turbulence mixing. Flavor 

appears to be an important factor in efforts to improve the consumer 

acceptability of the product. 
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Appendix A 



BALLOT FOR SENSORY TEXTURE EVALUATION 

SENSORY TEXTURE EVALUATION OF AN ORANGE JUICE-SKIM MILK 

DRINK 

53 

Please evaluate the samples only on texture. Ignore the flavor of the 

drink. In this case "coarse" means the sample feels grainy or particulate, and is 

not smooth. The samples are presented as labeled below. Circle according to 

your response. 

Which sample has the coarser mouthfeel? 

607 820 

Which sample has the coarser mouthfeel? 

232 881 

Which sample has the coarser mouthfeel? 

738 915 

SENSORY TEXTURE EVALUATION OF AN ORANGE JUICE-SKIM MILK 

DRINK 

Please evaluate the samples only on texture. Ignore the flavor of the 

drink. In this case "coarse" means the sample feels grainy or particulate, and is 

not smooth. The samples are presented as labeled below. Circle according to 

your response. 

Which sample has the coarser mouthfeel? 

820 607 

Which sample has the coarser mouthfeel? 

881 232 

Which sample has the coarser mouthfeel? 

915 738 
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Appendix B 



BALLOT FOR CONSUMER ACCEPTABILITY 

Sensory Evaluation of an Orange Juice/Skim Milk Drink 

Name:. ______________ _ Drue:. ______________ __ 

Please evaluate the sample presented for each of the following 

characteristics. Check the description that best identifies the characteristic 

like extremely 

like very much 

like moderately 

like slightly 

Appearance 

neither like nor dislike 

dislike slightly 

dislike moderately 

dislike very much 

dislike extremely 

Flavor Texture Overall Acceptability 

What do you think about the product?---------------------------

55 
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Appendix C 



DETERMINATION OF CONDITIONS AT FLASH EVAPORATOR 

UHT parameters for repetition 1 were (refer to Figure 2): 

TT2 = 160°F (71 .1 °C) 

TT 4 = 168°F (75.6°C) 

TT6 = 50°F (1 0°C) 

TT8 = 128°F (51.1 °C) 

vacuum pressure "" 4.8 psi (32.8 kPa) 

enthalpy (vapor) (hu) at 160°F = 1130.10 Btu/Ibm (2628.69 KJ/kg) 

flow rate = 25.1 0 gallons/hour (951/h) 

hu at 284°F and 52.52 psi = 1175.34 Btu/Ibm (2144.7 KJ/kg) 

1. Determination of amount of steam needed, Mv, to raise the temperature of 

11bm of skim milk, MsM , from 168°F to 284°F (refer to Figure SA) 

CsM (specific heat of skim milk)= .95 Btu/Ibm °F (3.98KJ/kg K) at 20°C 

(assume approximately equal to that of the SM/OJ drink between 168°-

2840F) 

Cw (specific heat of steam in milk)= 1.022977 Btu/Ibm °F (4.283KJ/kg K) 

.6. T = temperature change 

Mass balance: MsM+ Mv = MsM + v 

Energy balance: MsMCsMT1 + Mvhu = MsMCsMT2 + MvCwT2 

MsMCSM(.6. T) = MvCw T 2- Mvhu = Mv(Cw T 2 - hu) 

Mv/MsM = CsM(.6. T)/(Cw T 2 - hu) = (.95 Btu/Ibm °F) (168°F- 284 °F) 

57 

Mv/MsM = (.95 Btu/Ibm °F)(168- 284)°F /(1.022977Btu/lbm °F){284 °F) 

- 1175.34 Btu/Ibm 

Mv/MsM = 11 0.2/884.8 = .1245 

Therefore, for every MsM. we need to remove .1245 Ibm of vapor 

2. Expansion conditions needed to remove all the steam added (refer to Figure 

8B) 

Mass balance: MsM+ Mv = MsM + v 



M 
v 

M ~ 
SMtV 

T
2
=284°F P=? 

MsM 
T. =? 3 . 

A 

B 

Mcondensate 

Figure 8. A. Mass flow for heating product to sterilization 
temperature. B. Mass flow at flash evaporator. 
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From the above problem we assume Mv/MsM remains constant (i.e., equal to 
.1245). 

Energy balance: MsMCsMT2 + Mv(CwT2- hu(g)) = MsMCsMT3 

T 3 = T 2 + .1245 Cw T 2/CsM - .1245hu(g)ICsM 

T 3 = 284°F + (.1245)(1.022977 Btu/Ibm °F)(284°F)­

.1245hu(g)l.95 Btu/Ibm °F 

T 3 = 284°F + 38.07°F- .13hu(g)/Btu/lbm°F 

.13hu(g)IBtu/lbm°F + T 3 = 322.07 (must iterate) 

From the steam tables (3), the hu(g)-T 3 relation for which the above equation 

has a solution was (although conditions in the flash evaporator are for 

superheated vapor, they are approximately equal to saturation temperature­

pressure): 

T 3 = 174.4°F, hu(g) = 1135.96 Btu/Ibm, and pressure at vacuum 

evaporator 6.66 psi 

In this run, the temperature of the product leaving the flash evaporator was 

160°F. From percent solid determinations, the average values were 9.36% 

before UHT treatment and 9.39 after UHT processing. 

If: 

T 3 = T 2 + (Mv/MsM)(Cw/CsM)T 2- (Mv/MsM)(hu(g))/(CsM) 

Then by substitution: 

160°F = 284°F + (Mv/MsM)(1.022977 Btu/Ibm °F)(284°F)/(.95 Btu/Ibm °F) 

- (Mv/MsM)(1130.1 Btu/lbm)/(.95 Btu/Ibm °F) 

160°F = 284°F + (Mv/MsM)(305.82°F- 1189.58°F) and 

Mv/MsM = . 1 4030 

Therefore, .1245- .14030 = -.0158 Ibm of extra vapor was removed per Ibm of 

milk. For 11 0 Ibm of product we would get 98.419 lb. of product after 

processing. 
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Appendix D 



Dependent variable pH means 

Treatment pH day 0 day 7 day 14 day 21 day 28 means 

Room temperature (RT) 

6.1 6.24 6.21 6.22 6.15 6 .15 6 .20 

6.3 6 .31 6 .24 6 .29 6.25 6.24 6.26 

6.5 6.52 6.48 6.47 6.43 6.45 6.47 

means 6 .36 6 .31 6 .33 6 .28 6.28 

35° c 
6 .1 6.24 6.09 6 .11 5 .99 6.05 6 .10 

6.3 6.31 6 .17 6.22 6 .12 6.14 6.19 

6.5 6.52 6.38 6.41 6 .33 6.28 6 .38 

means 6 .36 6.21 6 .24 6.15 6 .16 

Compounded means 

6.1 6.24 6.15 6.17 6 .07 6.10 6.15 

6.3 6 .31 6.20 6.25 6 .18 6.19 6.23 

6.5 6.52 6.43 6.44 6.38 6.37 6.43 

means 6.36 6.26 6.29 6 .21 6 .22 

0') _. 
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Appendix E 



Dependent variable titratable acidity means 

Treatment pH day 0 day 7 day 14 day 21 day 28 means 

Room temperature (RT) 

6.1 3.13 3 .18 3.13 3.10 3.13 3.13 

6.3 2.98 3 .10 3 .10 3.05 3.00 3.05 

6.5 2.58 2.60 2.55 2.63 2.60 2.59 

means 2.89 2.96 2.93 2.93 2.91 

35° c 
6.1 3.13 3.10 3.23 3.18 3.18 3 .16 

6.3 2.98 3.08 3.13 3 .05 3.10 3.07 

6.5 2.58 2.60 2.60 2.58 2.73 2.62 

means 2.89 2.93 2.98 2.93 3 .00 

Compounded means 

6.1 3.13 3.14 3.18 3.14 3.15 3.15 

6.3 2.98 3.09 3.11 3.05 3.05 3.06 

6.5 2.58 2.60 2.58 2.60 2.66 2.60 

means 2.89 2.94 2.95 2.93 2.95 

(j) 

w 



64 

Appendix F 



Dependent variable percent clearing means 

Treatment pH day 0 day 7 day 14 day 21 day 28 means 

Room temperature (AT) 

6.1 .00 2.13 2.55 4.63 5.18 2.90 

6.3 .00 .43 1.65 4.15 5.05 2.26 

6.5 .00 .00 .00 .00 4.50 .09 

means .00 .85 1.40 2 .93 3.56 

35° c 
6.1 .00 5.58 6.30 5.80 7.25 4.99 

6.3 .00 2.93 4.15 4.70 6.40 3.64 

6.5 .00 .48 .00 1.70 1.75 .79 

means .00 2.99 3.48 4.07 5.13 

Compounded means 

6.1 .00 3.85 4.43 5.21 6.21 3.94 

6.3 .00 1.68 2.90 4.43 5.73 2.95 

6.5 .00 .24 .00 .85 .11 .44 

means .00 1.92 2.44 3.50 4.35 

0"> 
()1 
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