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ABSTRACT 

Rapid Determination of Milk Components and Detection of Adulteration 

Using Fourier Transform Infrared Technology 

by 

Ivan V. Mendenhall, Doctor of Philosophy 

Utah State University, 1991 

Major Professor: Dr. Rodney J. Brown 
Department: Nutrition and Food Sciences 

Vlll 

Absorption bands responding to changes in fat, protein, and lactose concentrations 

in milk were determined. The effects of milk fat variation and lipolysis on the infrared 

spectrum were studied. 

Absorbances from 1283 to 1100 cm·l correl ated with fat, protein, and lactose 

concentration and showed a low response to milk fat variation and lipolysis. A Fourier 

transform infrared spectrometer equipped with an attenuated total internal reflectance 

cell was calibrated using these absorption band s, partial least squares statistics, and 

milk samples from herds in Minnesota. When the fat, protein, and lactose 

concentrations in these samples were predicted, the standard deviations of difference 

(reference - infrared) were .22, .06, and .02% . When the fat, protein, and lactose 

concentrations in a separate set of samples from herds in California were predicted, the 

standard deviations of difference were 1.23, .10, and .07%. Substitution of a 15 µm 

pathlength transmission cell for the attenuated total internal reflectance cell changed the 

standard deviations of difference to .07, .11, and .06% in the calibration (Minnesota) 

samples and .09, .10, and .16% in the validation (California) samples. 

Infrared spectroscopy was used to measure whey powder in an adulterated sample 

of nonfat dry milk. Mixtures of nonfat dry milk containing whey powder at various 



concentrations were analyzed using absorption bands between 1400 and 1200 cm-1 in 

the infrared spectrum. There was a strong correlation (r > .99) between predicted and 

measured concentrations of whey powder in adulterated samples. Accuracy was not 

affected by processing conditions , source of nonfat dry milk, and origin of whey 

powder. 

IX 

A rapid method for detecting soybean oil in process cheese was developed. The 

infrared spectrum of each sample was collected using an accessory designed for 

analysis of solid samples. A linear relationship fit ( = .98) when the ratio of absorbance 

at 2957 and 2852 cm-1 was plotted versus percent adulteration. 

(121 pages) 



PART 1. QUANTITATIVE INFRARED ANALYSIS: A REVIEW 



THEORY OF QUANTITATIVE INFRARED ANALYSIS 

Traditionally, multicomponent quantitative analysis required separation of 

components of interest, usually by a chromatographic method, prior to component 

measurement. These types of analyses are time consuming (2). Infrared absorption 

spectroscopy is primarily used to characterize compounds in a qualitative analysis. 

Recently, multicomponent quantitative analysis by infrared absorption has become an 

attractive alternative to traditional methods, due mainly to the proliferation of 

computers interfaced to or built into new instruments . These computers can record, 

sort, transform, and do complex operations on large amounts of data in short times (3). 

The major advantage of using infrared methods instead of chromatographic methods is 

that the components of a system do not have to be separated before analysis. This 

reduces analysis time, and that can be translated into cost savings (2). 

The relationship between light absorbed by a species and its concentration is the 

Beer-Lambert law: 

A = log(Iofl) = a b c (1) 

where A is absorbance, I0 is intensity of radiation incident on the sample, I is intensity 

of radiation incident on the detector, a is absorpti vity, bi s pathlength, and c is 

concentration of the analyte. If we assume radiation emitted by the source is 

monochromatic, and a constant pathlength is used, equation [1] can be expressed as 

A= kc [2] 

where k is the proportionality constant. Normally in a laboratory, samples do not 

contain a single component but multiple components of interest. To allow for multiple 

components, the Beer-Lambert law must be expanded (2). Equation [3] is an expanded 

form of the Beer-Lambert law which accounts for the possible interference between 

components (band overlap). 

2 



A1 = k11 C1 + k12 c2 + . . ..... . + k1n Cn 

A2 = k21 c1 + k22 c2 + ........ + k2n cn [3] 

An = km c1 + kn2 c2 + ..... . .. + knn cn 

Ai is absorbance at the i th analytical frequency, kij is the proportionality constant, and 

Cj is concentration of the j th component. This set of equations can be more 

conveniently expressed in matrix form. In matrix notation, the Beer-Lambert law can 

be expressed as 

A=KC [4] 

A is a matrix of calibration spectra with dimensions n xi where n is the number of 

calibration standards and i is the number of analytical frequencies. C is a matrix of 

component concentrations with dimensions n x j where j is the number of chemical 

components of interest. K is a matrix of proportionality constants with dimensions j x 

i. Several methods are available for calibration of the instrumen t and prediction of the 

components of interest in unknown samples. These methods are based on the 

assumption that there is a linear relationship between absorba nce and component 

concentration (5). 

3 



STATISTICAL METHODS OF MULTIVARIATE QUANTITATIVE 

ANALYSIS 

The K-matrix Method 

The classical least squares method, better known as the K-matrix method, is hased 

on the assumptions that absorbance at each frequ ency is proportional to component 

concentrations and error in spectral absorbanc es is responsible for model en-or (5). 

During calibration, spectra are collected for standard solutions and the K matrix is 

solved for using the following equation: 

K =AC' (CC')-1 [5] 

Once the K matrix is determined, the concentration s of components of interest in an 

unknown sample may be solved for by using the following equation: 

c = (K' K )-1 K' a [6] 

4 

where a is the spectrum of the unknown sampl e and K is from equation [5] (5) . The 

K-matrix method has advantages and disadv antages. The model allows for 

overdetermination of the number of wavelength s used without having to increase the 

number of calibration samples (5). Nonzero intercepts can be incorporated into the 

model, to approximate deviations from the Beer -Lambert law, by adding a column to 

the K matrix and a row of l's to the C matrix (1) . The K-matrix method requires two 

matrix inversions, increasing the possibility of round-off error by the computer (6). 

Also, if the concentrations of components of interest sum to a constant, it is not possible 

to use a nonzero intercept because the C matrix becomes singu lar, therefore 

noninvertable (2) . Finally, all interfering chemical compone nts in the spectral region of 

interest need to be known and their concentration included in the calibration (5) . 



The P-matrix Method 

Inverse least squares, or the P-matrix method , models the concentration as a 

function of absorbance: 

C=PA [7] 

where C and A are as in the K-matrix method and Pis a matrix with dimensions i xj. 

During calibration, the P matrix is determined by the following equation: 

P=CA'(AA') -1 [8] 

5 

The P matrix may be used directly in equation [7] to predict the concentrations of 

components of interest in unknown samples. Like the K-matrix, this method also has 

advantages and disadvantages . Use of the P-matrix method requires only one matrix 

inversion, thereby minimizing round-off error by the compute r (2). Unlike the 

K-matrix method where least squares regression minimizes error in absorbance, the 

P-matrix method minimizes the error in concentration (5). Adding a column to the 

P-matrix and a row of 1 's to the bottom of the A matrix allows for a nonzero intercept in 

the P-matrix method (1). Analyses based on this model are invariant with respect to the 

number of chemical components in the analysis, so presence of an impurity in the 

calibration samples doe s not affect the analysis even if the conc entration is 

unknown (5). The main dis advant age of the P-matrix method is that the number of 

calibration samples has to be equal to or greater than the number of frequencies used 

(2) . Also colinearity problems (the near linear relationships between absorbance at 

multiple frequencies) can become significant and degrade precision when the number of 

frequencies becomes too large (5) . 

Principal component regression (PCR) and partial least squares (PLS) analysis are 

methods that combine the full spectrum advantages of the K-matrix method with the 

ability to do the analysis one chemical component at a time as in the P-matrix 

method (5). 



Principal Component Regression 

In the PCR model, the A matrix in equation [7] undergoes a singular value 

decomposition resulting in formation of three matrices : 

A=USV' [9] 

where V' fa an orthogonal matrix with rows containing principal components of the 

calibration spectra and dimensions equal to the number of analytical frequencies; U is 

an orthogonal matrix, its rows containing the "factor loadings" (the linear combination 

of principal components that form the original matrix A) and having dimensions equal 

to the number of calibration samples; and S is a nonnegative diagonal matrix with 

dimensions equal to the number of calibration spectra . The values in S, when squared, 

represent the contribution of each principal component to the variance of the spectra in 

A (4). The P matrix in equation [7] may be solved for by the equation: 

P=VS-lU'C [10] 

Once the P matrix is determined, the concentration of components in an unknown 

sample may be solved for by: 

c=aP [ 11] 

When using PCR analysis, it is important to retain only principal components 

which are useful for prediction and discard those principal components with smaller 

singular values, which are sensitive to noise. The number of principal components 

retained is the "rank" of the model. The optimum rank is determined by a 

cross-validation procedure (9). 

Partial Least Squares Analysis 

The PLS model described by Martens and Jenson (8) is similar to the PCR model. 

6 

An unknown spectrum is expressed as a linear combination of the principal components 

of the calibration spectra, but in the PLS model, the principal components are chosen 

because they are correlated with the concentration infom1ation. This forces factors with 



high relevance for the chemical data that may be ignored as "noise" in the PCR model 

into the solution (8). In the PLS model the A matrix in equation [7] is decomposed: 

A=TB+E [12] 

7 

where T is a matrix of the orthogonal component vectors of the A matrix (latent 

variables), with dimensions r x i where r is the rank of the model; B is a matrix of 

factor loadings with dimensions n x r; and matrix E contains the residual error in fitting 

the matrix Ator latent variables (4). The C matrix in equation [7] is also decomposed 

into a similar matrix equation: 

C=UP+F [ 13] 

where U is a matrix of latent variables with dimen sions n x r. P is a matrix of factor 

loadings with dimensions j x r; F contains the residual error in fitting the matrix C with 

r factors (4) . Calibration is done by iteratively estimating a latent variable that will 

optimally predict concentrations of the components of interest. All spectral and 

chemical data is then projected onto this latent variable, and a new latent variable 

representing a linear combination of spectral residuals after the first projection is 

iteratively estimated . This second latent variable is orthogonal to the first and optimally 

predicts the residuals of the chemical data after the first projection. This process 

continues until the fit of the model is optimized . The number of latent variables chosen 

corresponds to the rank of the model. Prediction is done by first fitting the spectral data 

of an unknown sample to the calibration model, yielding spectral lack-of-fit data and 

estimates of the underlying PLS factors. From these factors the chemical data is 

predicted (7). 
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DEVELOPMENT OF INFRARED ANALYSIS OF MILK 

The components of milk that normally determine its worth are fat, protein, and 

lactose. Dairy product manufacturers need specific proportions of these components in 

product formulations to make a product acceptable to consumers, meet federal 

regulations, and maximize yield. So, the ability to measure these components rapidly 

and accurately is important. Historically, chemical methods were the standards of the 

industry for making these measurements. Chemical methods are still used in 

laboratories and smaller manufacturing plants. These methods are also used as 

references for calibration of infrared instruments. Some disadvantages of chemical 

methods are long analysis times and expense in time and reagents . Ramm (25) reported 

that in the early 1960s there was a large increase in demand for milk testing that 

prompted instrument manufacturers to develop faster, cheaper methods for measuring 

the components of milk. Of the methods investigated, infrared absorption spectroscopy 

proved most successful. 

Early Development Work 

Infrared absorption spectroscopy of dairy products presented difficulties not 

encountered in other applications of the technique . The water in milk absorbs strongly 

in the infrared and can mask the spectral components of interest. Water dissolves 

conventional sample cell materials like sodium chloride. Another problem arises from 

the nonhomogeneous nature of milk that results in loss of transmitted energy because of 

scattering . For these reasons, work in infrared absorption spectros copy of dairy 

products until the early 1960s was confined to the KBr pressed disc method for dried 

milk and butter (13). 

In 1961, Goulden (14) published a method for the quantitative analysis of milk by 

infrared absorption. Samples of milk were first homogenized then analyzed in a double 

beam spectrometer . By filling the reference cell with water and subtracting its 
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spectrum from the sample spectrum, the spectra of components of interest were 

unmasked. However, absorption of water was so intense in both beams that only a 

small amount of radiation reached the detector, resulting in maximum optical densities 

of about .2 for a cell pathlength of 50 µm. Little improvement was made by increasing 

the pathlength because the reduced solvent transmission require d an increase in the 

monochromator slit width that decreased the resolution and increased the stray 

radiation. Homogenization before analysis decreased the diameter of the fat globules to 

a mean of 1 µm. This significantly reduced radiation scattering that happens when 

particles have a diameter range equivalent to the wavelength range of the incident 

radiation (2 to 15 µm). The spectra had absorption peaks near 1724, 1538, and 

1042 cm-1 (5.8, 6.5, and 9.6 µm) that could be mainly attributed to fat, protein, and 

lactose. Fat and lactose concentrations were estimated directly from the 1724 cm-1 

(termed "fat A") and 1042 cm-1 bands. Goulden found that fat concentration affects the 

protein absorption band requiring corrections for changes in fat concentration when 

measuring protein. Twenty different samples from three different breeds of cows in 

different stages of lactation were analyzed. Standard deviations of 3% or less were seen 

for each of the components. 

Infrared Milk Analyzer (IRMA) 

In 1964, an infrared milk analyzer (IRMA) was developed. This instrument had a 

built-in homogenizer and could measure the fat, protein, lactose, and solids-not-fat 

(SNF) in a 30 ml sample in less than 1 min. The optical design of the IRMA was as 

follows: Radiation emitted from the source was split into two beams. One beam 

passed through the sample cell and one through the reference cell. With reciprocating 

mirrors, the beams were alternately focused at the entrance slit of a monochromator that 

consisted of a diffraction grating and prism dispersing unit. Selected wavelengths of 

light exited the monochromator, passed through a semiconductor filter to remove stray 
; 
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radiation, and fell onto a thermocouple that converted the alternating radiant energy into 

an alternating electromotive force. This small voltage was amplified and drove an 

optical comb attenuator into the reference beam until equilibrium between the reference 

and sample beam was reached . A potentiom eter on the shaft of the optical comb 

attenuator converted the beam attenuation into a corresponding d.c. voltage that was 

measured by a digital voltmeter or other suitable output device (16). 

The homogenizer and double beam design alleviated scattering of radiation and 

masking of spectral components of interest by intense water absorption. This 

instrument also has a set of optical filters that when placed in the sample beam, 

simulate the absorption of fat, protein, or lactose. This allows the accuracy of 

calibration and the stability of the instrument between calibra tions to be verified. 

Preliminary testing was done on 24 milk samples representing four different breeds of 

cows. The standard deviations of difference between chemical and infrared values for 

fat, protein, lactose, and SNF were .10, .10, .10, and .25%. 

Goulden (15) and Biggs (1) explained several factors that affected the performance 

of the IRMA. The efficiency of the homogenizer affects the fat signal. Lower 

efficiencies that result in larger fat globules cause an increase in the fat signal as 

expected. Once the homogenization pressure reaches 3,000 p.s.i., multiple 

homogenizations fail to further decrease the signal. The temperature difference 

between sample and reference cell also affects component signals. This effect is about 

.1 % transmission for each degree Celsius temperature difference. A heat exchanger, 

placed in line after the homogenizer, equilibrat es the tempera ture of the incoming milk 

with the temperature of the water in the reference cell, minimizing these effects. 

Interferences by milk components affect the performance of IRMA. A change in 

the percentage of one milk component, all other solid components remaining the same, 

is equivalent to a change in water concentration. Displacement of water results in a 

decreased signal, so the net absorptivities of interfering components are mostly 
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negative. The effect of fat absorbance at the protein wavelength proved to be the only 

significant source of interference. This is corrected by using the already determined fat 

percentage to add to or subtract an appropriate amount from the protein reading. 

Biggs (2) published the results of a study on the precision and accuracy of the 

infrared milk analyzer. The values determined with IRMA for fat, protein, lactose, and 

SNF were compared with Mojonnier, semi-micro Kjeldahl, polarimetry, and USDA 

lactometer methods. Mean differences of .01 % or less and standard deviations of 

difference between means of duplicate test s of .03% were reported for fat, protein, and 

lactose. Mean differences of .015% and standard deviations of difference of .09% were 

reported for SNF. 

The Milkoscan 300 and 203 

In 1978, Biggs (3) published the results of a study on estimation of fat, protein, and 

lactose using a new infrared instrument, the Milkoscan (models 300 and 203) produced 

by A/SN. Foss Electric, Denmark. The model 300 analyzes fat and protein at a rate of 

300 samples/h . The model 203 analyzes fat, protein, and lactose at a rate of 200 

samples/h. 

The Milkoscan instruments operate on the same principle as the IRMA except for a 

few design changes to reduce the errors associated with water displacement and 

scattering by fat globules. Instead of using a reference cell for subtracting the effects of 

water, a single sample cell is used and the sample is analyzed with two different 

wavebands; a primary or sample waveband at which there is high absorptivity by the 

measured component, and a secondary waveband where the opposite is true. With this 

single cell approach, water concentration is constant in the two beams for each 

individual sample. If the water absorptivities are different at the two wavebands, there 

is an interference effect proportional to the magnitude of this absorptivity difference, to 

the amount of interfering component, and to its specific volume. The manufacturer 



anticipated these interference effects and used them to correct the instrument signals 

electronically. Another effect, light scattering by fat and protein particles, is 

compensated for by equivalent scattering in the reference beam. 
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This instrument also uses optical filters instead of a diffraction grating for selection 

of analytical and reference wavelengths . The advantages of filters over diffraction 

gratings are that they simplify the optical design, enabling the instrument to operate at a 

higher energy throughput that is critical in aqueous systems. Filter transmission 

characteristics are difficult to reproduce, stray energy may be transmitted, and 

transmission characteristics may change with temperature. 

Biggs (3) used six instruments located in six different laboratories. Calibrations 

were done independently. Thirty six milk samples were pre-analyzed by accepted 

standard methods then analyzed by Milkoscan. Error components were estimated by 

the statistical methods advocated by Youden (34). Results from pairs of samples at 

similar levels of component concentration are used to calculate estimates of precision 

and systematic errors also differences between the average amoun t found and the 

average amount present. Precision errors for fat were .033% for the first and .022% for 

the second of duplicate tests. Precision errors for protein were .021 % for both tests. 

Systematic errors for fat were .17% with calibrations based on reference analysis at 

each laboratory but decreased to .044% with calibrations by reference analysis from one 

laboratory. Systematic errors of .067% for protein decreased to .03% when calibrations 

were based on a common reference analysis. Standard errors of estimate for lactose 

were .034 and .033%. 

The Multispec Instrument 

The next instrument evaluated by Biggs (4) was the Multispec manufactured by 

Multispec, Ltd, Wheldrake, UK. The Multispec instrument uses the same double beam 

in wavelength, single cell system as the Milkoscan instruments. Sample and reference 
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optical filters are also used instead of a diffraction grating. High pressure double stage 

homogenization (3,000 to 4,000 p.s.i.) and a variable tilt fat sample filter reduce 

scattering of energy from fat globules and errors resulting from shifts in the wavelength 

of fat absorption (3). A sealed optical console, thermostatic temperature control of 

console, homogenizer , and sample cell, and electroriic correction for cross interference 

effects are standard. 

Milk samples including homogenized and unhomogenized herd milks, individual 

cow milks, and packaged milks were analyzed in duplicate by the Multispec on two 

different days, three days apart. Reference analysis for fat, protein, and lactose was by 

Mojonnier , semi-micro Kjeldahl, and polarimetry. For statistical analysis of the data , 

results were separated into four groups: a set of calibration samples, pre-homogenized 

herd milks, individual cow milk, and packaged retail milk. Both individual group data 

and combined data were analyzed. 

For fat analysis, within day mean differences between duplicate estimates were all 

.01 % or less and between day mean differences averaged .025%. Standard deviations 

of difference for both within and between day estimates were nearly all less than .02%, 

averaging .014% for grouped data and .016% for the combined data. For the grouped 

data, mean values for Multispec results varied from .003 to .032% higher than the mean 

standard results, and on the second day from .019% lower to .008% higher. Standard 

deviations of difference averaged .016% for packaged milk, .035% for unhomogenized 

calibration milk, .04% for homogenized herd milk, and .06% for individual cow milk . 

For the combined data, the Multispec results averaged .018% higher than the standards 

on the first day and .007% lower than the standards on the second day, with an average 

standard deviation of difference of .041 %. Sample cell purging efficiency for fat, 

estimated by alternately measuring fat in samples of milk and water, was 99.5%. The 

effect of sample temperature was negligible within the temperature range of 35 to 40°C. 

For protein analysis, within and between-day mean differences averaged .003 and 
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.009%. Standard deviations of difference averaged .015% for both within and 

between-day comparisons. For comparisons between Multispec and reference results, 

Multispec means for the combined data averaged .015 and .006% lower than the means 

for the standards on the first and second day. Standard deviations of difference between 

Multispec and standard results averaged .02% for individual cow milk, .037% for 

unhomogenized calibration milk, .043% for homogenized herd milk, and .041 % for 

packaged milk that combine to give an average standard deviation of difference of 

.035%. Purging efficiency for protein was 98.8% and variations in sample temperature 

between 35 and 40°C had a negligible effect on the results. 

For lactose analysis, within and between-day mean differences between duplicate 

estim ates averaged .003% and .007% for grouped data and .003% or less for combined 

data. Standard deviations of differen ce were .02% for both within and between-day 

differences . Mean differences between Multispec and reference results averaged .005% 

for unhomogenized calibration milks and .002% for homogenized herd milk s. Mean 

values for individual cow milks averaged .04% higher than the references and mean 

values for packaged milks averaged .18% lower than references. Standard deviations of 

difference were .03% for individu al cow milk and .04% for other types. Purging 

efficiency for lactose was 98.1 %. Samples analyzed at 45°C showed a slight sample 

temperature effect. 

Performance Specifications 

In 1979, Biggs (5) published performance specifications for infrared milk 

analyzers. These were given in response to a recommendation from subcommittee C of 

the Association of Official Analytical Chemists (AOAC) who suggested that a set of 

performance specifications be written to alleviate the need for evaluating and approving 

many individual instruments used for an approved method. Instruments meeting these 

specifications would automatically comply with the requirements of the approved 
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method. Maximum limits of .02% are recommended for precision of infrared analysis 

of fat, protein, and lactose, and .04% for total solids. Maximum systematic errors of 

.06% for fat, protein , and lactose, and .12% for total solids are required when 

instrumental results are compared with results of specified AOAC methods. 

The Milkoscan 100 Series 

In 1980, Van de Voort (32) evaluated a new Milkoscan instrument, the Milkoscan 

104. This instrument represented a second generation of the single cell dual 

wavelength instruments first introduced in 1975. Several improvements were 

incorporated into this instrument. The servo motor, optical comb attenuator mechanism 

was replaced with an electronic ratio system . The number of mirrors was reduced from 

nine to two. Other changes were a thermostatically controlled filter housing, relocated 

chopper, and improved filters and detector. 

This instrument was evaluated using herd, individual cow, commercial, and 

composite random milk samples. Mean differences and standard deviations of 

difference were .02% and± .02% for reproducibil ity and .05% and± .06% for 

accuracy. Van de Voort found that variation in the average molecular weight of milk 

fat is the primary reason for the noncorresponden ce between infrared and chemical 

methods. 

A New Fat Wavelength 

Sjaunja (28) studied the effects of variation of molecular weight and unsaturation 

in milk fat. He used a Multispec instrument equipped with a filter for analysis of fat at 

2941 to 2857 cm-1 (3.4 to 3.5 µm, termed "fat B") besides filters for the conventional 

wavelengths used for fat, protein, and lactose analysis. This band results from vibration 

of the carbon-hydrogen bonds in fatty acids. Sjaunja found that fat analysis at the fat A 

wavelength is sensitive to change in refractive index of milk owing to changes in the 

chain length and saturation level of fatty acids. This sensitivity to variation in 
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refractive index accounted for 27% of the total variation in analysis difference between 

infrared and standard methods at the fat A wavelength and 3% at the fat B wavelength. 

The standard deviation of difference of milk fat analysis at fat B was similar to that at 

fat A (SD = .083 and .084% ). When a combination of the two wavelengths was used, 

the standard deviation decreased to .075%. This slight increase in accuracy is 

accomplished at the expense of increased analysis time because four wavelengths are 

used instead of three. 

The Milkoscan 605 

In 1985, Sjaunja and Andersson (31) reported the evaluation of another new 

infrared milk analyzer, the Milkoscan 605. This instrument is a single cell, dual 

wavelength analyzer with an optical system similar to the Milkoscan 104. Changes 

made in the model 605 were modifications to the infrared detector, addition of a filter 

wheel that holds five pairs of filters, and an improved pumping unit and homogenizer. 

The model 605 has a microprocessor that converts primary signals of infrared 

absorption to correspond to concentrations of milk components. The microprocessor 

allows intercorrection factors, linearity corrections, slopes, and intercepts to be 

controlled as numerical values. Some critical points in the instrument (flow pressure, 

temperature, and sample volume) are monitored by the microprocessor and rinsing and 

zero-setting routines are controlled. The instrument has programs for automatic 

calibration, linearity setting, and intercorrection factor setting. 

The instrument was evaluated using milk samples from 30 individual cows and 30 

herds of two different breeds (Swedish Red and White and Swedish Freisan). The 

samples were preserved with .02% bronopol and analyzed in duplicate with the 

Milkoscan 605 for fat (at both 5.7 and 3.5 µm), protein, and lactose. Reference analysis 

for fat, protein, and lactose was by Rose-Gottlieb, Kjeldahl, and Luff-Schoorl methods. 

Standard deviations between duplicate infrared analyses were .006, .005, .008, and ;001 
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for fat A (5.7 µm), fat B (3.5 µm), protein, and lactose. Standard deviations of 

difference between infrared and reference methods were .095, .057, .056, .048, and .061 

for fat A, fat B, fat A+B, protein, and lactose. 

All wavelengths had transfer errors (purging efficiency) of less than 1 % per unit 

component concentration. Protein and lactose had larger transfer errors than fat. The 

analytical effect of temperature variations was small. Between 30 and 47°C, the error 

was within± .02%: 

The citric acid content of milk influenced all the infrared results. The dependence 

was estimated as an increase of between .005 and .009% in the fat A, fat B, and protein 

results as citric acid increased by .01 %. Lactose results decreased by .008%. Because 

the normal range of citric acid in cow milk is± .05% (10), the analytical error in 

practice is small but the differences in concentration of citric acid in milk from different 

species can cause systematic analytical errors if the infrared determinations are based 

on calibration with cow milk samples. 

Future Prospects for Infrared Analysis of Milk 

The trend in infrared milk analyzers is toward simplified, robust optics, and 

computerization. This improves the stability and reliability of measurements and ease 

and accuracy of calibration. These advances in fixed filter spectroscopy have not 

overcome the limits imposed by the small number of sensors (filter bands) available 

(17, 31), nor have they overcome interference by changing levels of saturation in milk 

fat from one sample to the next or the effects of lipolysis on milk fat. Although fixed 

filter infrared absorption still has desirable features, other procedures that allow for the 

use of many more wavelengths should be adopted for testing of dairy products. 

Fourier transform infrared (FTIR) spectrometry has many advantages over fixed 

filter methods . With FTIR, measurements at many wavelengths can be made 

simultaneously. FTIR measurements are narrow bands of the spectrum instead of the 
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broad bands of filter measurements. With added wavelengths available, estimates of 

sample composition can be made more accurately. The large number of measurements 

possible in a short time allows more powerful data processing methods to be used. Any 

number or combination of readings can be used to measure any component. Handling 

of this large amount of data is no longer a problem. With the aid of a computer, a FTIR 

instrument can consider variables like saturation level of fat, chain length of fatty acids 

and lipolysis of fat so they do not interfere with accurate measurements. 

In summary, application of instruments such as FfIR to dairy product analysis will 

let us to do a better job of measuring the components we now measure and to measure 

other components as they become import ant (7). 



THE EFFECTS OF SATURATION AND CHAINLENGTH OF 

MILK FAT ON INFRARED ANALYSIS OF MILK 
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Because infrared analysis is an indirect method, it is not surprising that chemical 

changes in the component of interest can cause errors in measurement of concentration. 

Early researchers in infrared milk analysis realized this and studied the effects of 

compositional changes on instrument accuracy. 

Milk protein concentration, as determined by infrared, is nearly proportional to the 

weight of milk proteins since the amino acid composition is nearly constant. Variations 

in amino acid composition, if they did occur, would have a similar effect on infrared 

.::ind Kjeldahl (reference) methods (6). Milk fat composition, on the other hand, is 

affected by factors like feed, breed, stage of lactation, season, and mastitis. (29). 

Feeding Studies 

Early investigation of the effects of change in fatty acid composition on the 

infrared fat A signal (5.73 µm) was feeding studies. Dunkley et al. (8) fed one group of 

six cows (group C) a conventional hay ration and another group of 6 cows (group P) a 

formaldehyde protected sunflower-soybean supplement. Samples were collected 

bi-weekly over 12 wk for a total of 36 samples from each group. Fat, protein, and 

lactose were measured chemically by the Babcock, Udy dye-binding, and polarimetric 

methods. The fatty acid composition of each sample was determined by gas 

chromatography. Each sample was also analyzed with an IRMA infrared milk analyzer. 

Mean differences (chemical - infrared) for the group C cows were .09:-:02, and .06% for 

fat, protein, and lactose. Mean differences for group P cows were .46, -.08, and .23%, 

the fat result being significantly different by a Students t test. The expected increase in 

linoleic acid (C18:2) in group P cows was accompanied by an increase in stearic 

(C18:0) and oleic (C18: 1) acid concentrations for a total increase in 



concentration of 18-carbon fatty acids of 38.5%. The significant difference between 

Babcock and infrared fat analysis in group P cows was attributed to the increase in 

molecular weight of the fatty acids. 
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Franke et al. (11) did a similar experiment using protected tallow as a supplement. 

Three groups of 7 cows (basal, medium, and high) were fed 0, 15, and 30% protected 

tallow supplements. Samples were collected every 3 wk for the first 15 wk post-partum 

for each group of cows. The mean differences for cows in the basal, medium and high 

groups were : for fat; .01, .29, and .30%; for protein; .08, -.02, and .03%; and for 

lactose; .05, .25, and .21 %. The differences between the fat analysis related to the 

treatments were significantly different from zero and were correlated with the mean 

molecular weight of the fatty acids. For protein, there was little difference between the 

analysis related to the treatments and the differences did not correlate with mean 

molecular weight of the fatty acids. For lactose, feeding protected tallow caused a 

significant difference only for the high group and correlations with mean molecular 

weight were not significant. 

In a later paper by Franke et al. (12) a 30% whole cottonseed diet caused a 

significant difference between infrared and Babcock res ults and the difference was 

correlated with mean molecular weight of fatty acids. The significance of this 

experiment is that samples were collected only after 14 and 15 wk of treatment to 

remove the effect of changes in fatty acid composition in early lactation (24). For each 

group, distributions were not as broad as the ranges of mean molecular weight in the 

protected tallow study. The effect on the infrared measurement of fat was the same. 

In these studies, supplementation of the diet with protected fats caused a decrease 

in the infrared fat readings relative to the reference method. This can be explained 

because infrared radiation at the fat A wavelength measures the number of ester · 

linkages present (ca. 3/molecule), effectively measuring the molecular concentration of 

the fat. Chemical methods for fat determination generally measure the weight 
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concentration. Changes in the mean molecular weight of fat caused by changes in fatty 

acid composition will cause variation between the chemical and infrared methods (32). 

Relation of the Error at the Fat A 
Wavelength to Refractive Index 

Analytical error at the fat A wavelength has been attributed to changes in refractive 

index of the milk caused by variation in mean molecular weight of the fat (19, 27, 29, 

32). The refractive index of milk fat increases with an increasing number of carbon 

atoms in the fatty acid chain and with higher unsaturation. Kerkhof-Mogot et al. (20) 

postulated that based on a refractive index range of 1.4524 to 1.4566 for milk at 40°C, 

corresponding to refractometer numbers of 40 and 46, and milk with a fat content of 

4%, deviations of .06% fat per refractometer number unit would be seen. The fatty acid 

composition of 34 samples of milk fat was determined by gas chromatography and the 

mean molecular weight of each sample was calculated. The relationship between mean 

molecular weight and the respective refractive index was determined. Based on the 

confidence limits of the slope, the effect was estimated to be =s; -.05% fat per 

refractometer number unit. Only 65% of the variation in mean molecular mass was 

explained by differences in refractive index. It is not a matter of variation of refractive 

index but of variation in mean molecular mass that causes the difference between 

chemical and inf rared (fat A) determination of fat content. 

Sjaunja (29) analyzed milk samples from 89 cows (of three different breeds) 

weekly for 7 mo. Reference analysis for fat, protein, and lactose was by Gerber, 

Kjeldahl, and Luff-Schoorl methods . Inf rared analysis of each sample was by a 

Milkoscan 104. The refractive index and saponification number were also determined 

for each sample. Standard deviations of difference for fat and protein were .110 and 

.052%. Fat content was underestimated at high refractive index and overestimated ·at 

low refractive index. The variation in refractive index accounted for 28% of the total 

variation in analysis difference and the variation in average molecular weight accounted 
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for only 7%. This contradicts the findings of Kerkhof-Mogot et al. (20). Variation in 

the average molecular weight of the milk fat probably would have accounted for more 

of the deviation between the methods had the infrared method (using fat A) been 

sensitive only to variations in fatty acid chainlength. Also, the average molecular 

weight accounting for less of the variation than the refractive ·index might be explained 

by poor accuracy when measuring the average molecular weight and correlation 

between light scattering effects owing to poor homogenization and the refractive index 

(29). The effects of breed, individual cow, stage of lactation, and somatic cell count all 

had significant effects on fat analysis by the infrared method with stage of lactation the 

most pronounced. 

Effects of Fatty Acid Variation on the 
Fat B Wavelength 

Nexo et al. (23) suggested measurement of fat at the fat B wavelength to overcome 

the error in infrared fat determin ation at the fat A wavelength. Infrared absorbance at 

fat B, caused by stretching vibrations of C-H bonds, is more closely related to mass 

than the fat A wavelength (20) . 

Mills et al. (22) evaluated the C-H stretch region for estima tion of fat in aqueous 

fat emulsions. Ten emulsions were prepared from the follow ing natural fats and oils: 

refined and bleached coconut, corn, palm, peanut, and soy bean oils; slightly, 

moderately, and highly saturated soy bean oils; cold pressed olive oil, and butter oil. 

Each emulsion was analyzed for fat content by the Mojonnier method and for fatty acid 

composition by gas -liquid chromatography . The iodine and saponification numbers of 

each sample were calculated from the chromato graphy data. Each sample was also 

analyzed with a Multispec infrared milk analyzer at both the fat A and fat B 

wavelengths . Regressions were done to relate the absorbance at fat A, fat B, and · 

fat A + fat B to the concentration of fat in each sample. A Students t test for 

homogeneity of regression compared slopes of individual fat samples to see if a single 
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calibration could be used for all types of fat. 

When using the fat A wavelength, 8 of the 10 slopes were estimates of a common 

slope with butter and coconut oils being significantly different. The 8 fat samples with 

a common slope all had a similar molecular weight (ca. 200) and when used in a linear 

regression to predict fat concentration, gave a standard deviation of difference of 

.060%. 

When the slopes were compared using the fat B data, homogeneity was seen for 

butter, palm, and coconut oils. Although these samples differed in iodine number 

(saturation), the expected variation owing to saturation was offset by converse 

differences in mean molecular weight. In soybean oils, where the mean molecular 

weights were similar but degree of hydrogenation differed, there was a decrease in 

signal as a function unsaturation. This decrease can be explained because the C-H 

bonds next to carbon double bonds exhibit a depressed absorbance (6). When the fat B 

data was used in a linear regression to predict fat concentration, the standard deviation 

of difference was .20%. This value decreased to .076% by including the iodine number 

in the regression. Use of the fat A+ fat B data and the iodine number in the regression 

decreased the standard deviation of difference to .027%. 

Sjaunja (28) compared the accuracy of fat A, fat B, and fat A + fat Bin the 

determination of fat content in milk samples collected from 50 cows (of three different 

breeds) once a week for 7 wk. Accuracies, expressed as standard deviations of 

difference between chemical and infrared methods were .084, .083, and .075% for 

fat A, fat B, and fat A+ fat B wavelengths. Although fat determination at fat B 

appeared to be independent of refractive index, accuracy did not improve. When 30 

analyses were done on a milk sample of average fat content, the residual standard 

deviation was .036% when using the fat B wavelength compared to .007% when using 

the fat A wavelength suggesting a lower repeatability at the fat B wavelength. Another 

consideration that must be taken into account when using the fat B wavelength for fat 
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detennination is that since protein and lactose absorb at this wavelength, they must be 

simultaneously determined and corrected for (20, 28), increasing analysis time. 

Eastridge et al. (9) studied the effects of feeding a high fat diet on infrared analysis 

of milk using the fat A and fat A + B methods. Diets supplemented with calcium soap, 

tallow, and yellow grease were compared to control groups and no significant 

difference in fat concentration as determined by Babcock, fat A, or fat A+ B methods 

was seen. Fatty acid analysis showed that stage of lactation has a greater effect on 

mean molecular weight of fatty acids than does feeding of fat confirming the findings 

of Sjaunja (29). 



THE EFFECTS OF LIPOLYSIS ON INFRARED ANALYSIS OF MILK 

Milk collected for infrared analysis is subject to conditions during sampling and 

transport that could lead to varying degrees of lipolysis of the milk fat (33). 
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Sjaunja (30) found that as the free fatty acid level of milk increases, the fat A 

signal decreases by .025% /mmol of free fatty acid. Because the absorption at fat A is 

characteristic of ester carbonyl groups, a decrease in the number of ester groups caused 

by enzymatic hydrolysis is accompanied by a decrease in absorbance (33). The fat B 

signal, the protein signal, and the lactose signal all increased steadily at a rate of .033, 

.010, and .010%/mmol of free fatty acid. Suggested reasons for the increase in signal at 

fat B are hydrogen bonding between water and released fatty acids, dimerization of free 

fatty acids, and absorption by the CH2 groups on the glycerol part of the molecule all of 

which absorb at this wavelength (6). The increase in the protein signal is attributed to 

an absorption of the carboxylate anion of soluble free fatty acids at 1563 cm ·l (20, 30). 

Sjaunja and Andersson confirmed these findings in a later paper (31). Robertson 

et al. (26) and Grappin and Jeunet (18) published similar findings. 

Kerkhof-Mogot et al. (20), Kyla-Siurol a and Antila (21), and Yan de Yoort 

et al. (33) published similar findings with the exception that they found the fat B signal 

is independent of lipolysis. 
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ABSTRACT 

Absorption bands from 1283 to 1100 cm-1 correlated with fat, protein, and lactose 

concentrations and show a low response to fat variation and lipolysis A Fourier 

transform infrared spectrometer equipped with an attenuated total internal reflectance 

cell was calibrated using these absorption bands, partial least squares statistics, and a set 

of standard milk samples from herds in Minnesota . When the fat , protein, and lactose 

concentrations in the set of samples used to calibrate the instrument were predicted, the 

standard deviations of difference were .22, .06, and .02%. When the fat, protein, and 

lactose concentrations in a separate set of standard samples from herds in California 

were predicted using the generated calibration, the standard deviations of difference 

were 1.23, .10, and .07%. Substitution of a 15 µm pathlength transmission cell for the 

attenuated total internal reflectance cell decreased the standard deviations of difference 

of fat, protein, and lactose prediction to .07, .11, and .06% in the calibration samples 

and .09 , .10, and .16% in the separate set of samples. 
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INTRODUCTION 

Goulden (10) first used infrared radiation to measure fat, protein, and lactose in 

milk. The measurement of fat is based on absorbance at 1724 cm-1 (fat A wavelength) 

by ester carbonyl groups of fat molecules. Protein measurement is based on absorbance 

at 1538 cm-1 by peptide bonds of protein molecules, and lactose measurement is based 

on absorbance at 1042 cm-1 by hydroxyl groups of lactose molecules. 

Absorbance at the fat A wavelength measures the molecular concentration of the 

fat. Most chemical methods for fat determination measure the weight concentration 

(25). Changes in the mean molecular weight of fat caused by feed, breed, stage of 

lactation, season, and mastitis will cause variation between the chemical and infrared 

methods (22). This was shown in feeding studies where an increase in mean molecular 

weight of fatty acids when cows were fed a protected fat supplement caused the 

infrared method to underestimate the chemically determined fat concentration (5, 6, 7) . 

Nexo et al. (18) suggested measurement of fat at 2865 cm-1 (fat B wavelength) as 

an alternative to the fat A wavelength . Absorbance at the fat B wavelength, caused by 

stretching vibrations of C-H bonds, is more related to mass than the fat A wavelength 

(14). Absorption at the fat B wavelength is affected by variation in saturation of fatty 

acids caused by a decrease in absorbance by C-H groups next to carbon double 

bonds (17) . 

Sjaunja (21) compared measurement of fat in milk using fat A, fat B, and 

fat A+ B. Milk was collected from 50 cows (three different breeds) once a week for 7 

wk. Standard deviations of difference between chemical and infrared methods were 

.084, .083, and .075%. When 30 analyses were done on a milk sample of average fat 

content, the residual standard deviation was .036% when using fat B compared to 

.007% when using fat A suggesting a lower repeatability at fat B. When using fat B, 

protein and lactose must be measured and corrected for because both components 



absorb at this wavelength (21). This results in increased analysis time. 

Mille collected for infrared analysis is subject to conditions during sampling and 

transport that lead to varying degrees of lipolysis (26). 
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Sjaunja (23) found that as the free fatty acid level of millc increases, the fat A 

signal decreases by .025%/mmol of free fatty acid. Because absorption at fat A is 

characteristic of ester carbonyl groups, a decrease in the number of ester groups caused 

by enzymatic hydrolysis is accompanied by a decrease in absorbance (26). The fat A, 

protein, and lactose signals all increased at a rate of .033, .010, and .010%/mmol of free 

fatty acid. Suggested reasons for the increase in signal at fat B are hydrogen bonding 

between water and released fatty acids, dimerization of free fatty acids, and absorption 

by the CH2 groups on the glycerol part of the molecule (3). The increase in the protein 

signal is attributed to absorption by the carboxylate anion of soluble free fatty acids at 

1563 cm-1 (14, 23). Sjaunja and Andersson confirmed these findings in a later paper 

(24). Robertson et al. (19) and Grappin and Jeunet (11) published similar findings. 

Kerkhof-Mogot et al. (14), Kyla-Siurola and Antila (15), and Van de Voort et al. (26) 

published similar findings except they found that the fat B signal is independent of 

lipolysis. 

The objective of this study was to find a set of absorptio n bands that respond to 

changes in fat, protein, and lactose concentration and exhibi t a low response to variation 

in saturation and molecular weight of fatty acids and lipolysis. We then evaluated the 

ability of these absorption bands to measure the fat, protein, and lactose in milk 

samples. 



MATERIALS AND METHODS 

Preparation of Samples Used to Find 
Absorption Bands That Respond to 
Changes in Fat and Protein Concentration 
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Fresh milk was collected from five herds and combined for a total volume of 10 L. 

Seventeen milliliters of bronopol preservative was added to the milk and the milk was 

kept overnight at 4°C to allow creaming. The following day the milk was separated 

into four fractions. The skim layer was siphoned away from the cream layer. Parts of 

the naturally skimmed milk and cream were retained to make up two of the four 

fractions. Another part of the naturally skimmed milk was mechanically skimmed with 

a small electric separator to reduce the fat content to < .1 %. This skim milk was then 

ultra filtered to a 2x concentration with a Filtron GP 163 ultrafiltration instrument using 

a 10,000 molecular weight cut-off membrane. The retentate and ultrafiltrate were the 

remaining two fractions . A sample of each of the four fractions was collected for fat 

and protein analysis. Table 1 shows the results of the fat and protein analysis. 

TABLE 1. Results of fat and protein analysis on four milk fractions. 

Fat by the Gerber Protein by the Amido 
Fraction method (g/L) black method (g/kg) 

Naturally skimmed milk 
5.0 30.7 

Cream 
168.0 10.9 

2x Retentate 
1.0 60.6 

Ultrafiltrate 
0 .3 

Twenty five 100 ml samples were prepared from the four fractions. The samples were 

designed for a fat range of 20 to 55 g/L and a protein range of 22 to 42 g/kg. Reference 

methods for fat and protein were Gerber and Amido black. Table 2 lists the average fat 



and protein concentration of each sample . 

TABLE 2. The average fat and protein concentration of each sample 
prepared from the four fractions. 

Sample Fat Concentration (g!L) Protein concentration (g/kg) 

11 21.15 23.50 
12 19.95 28.15 
13 20.60 33.30 
14 20.50 38.60 
15 20 .75 44.00 

21 29.95 24.55 
22 30.95 28.90 
23 30.40 34.00 
24 30.55 39.45 
25 30.50 44.70 

31 39.25 25.30 
32 39.75 29.65 
33 39.70 34.90 
34 39.80 40.20 
35 39.50 45.30 

41 48.00 25.80 
42 48 .00 30.50 
43 48.15 35.65 
44 48 .25 41.05 
45 49.00 45.90 

51 58 .00 26.30 
52 57 .75 31.45 
53 57 .55 36.35 
54 58.00 42.00 
55 57.55 46.95 

Table 2 shows that the concentration of fat and protein in each sample allowed 
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comparison of several samples where one component remained as constant as possible 

and the other varied. 

Each sample was scanned 32 times at 4 cm-I resolution from 3000 to 800 cm-I 

using a Nicolet model 740 Fourier transform infrared (FTIR) spectrometer (Nicolet 

Instrument Corp ., Madison, WI) equipped with a deuterated triglycine sulfate detector. 

l 
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The sampling apparatus was manufactured by Delta Instruments, Holland, and 

consisted of a two-stage homogenizer and a sampling cell with calcium flouride 

windows and a 17 µm pathlength. The samples were preheated to 40°C and 

temperature control points (homogenizer and sample cell) were also regulated at 40°C. 

The 32 scans were averaged to produce the spectrum of each sample. The spectrum of 

distilled water was the background. 

Preparation of Samples Used to Find 
Absorption Bands That Respond to 
Changes in Lactose Concentration. 

Five samples were prepared with lactose concentrations varying from 1 to 5%. 

The samples were prepared by weighing the desired amount of a-lactose monohydrate 

(Mallinckrodt Chemical Works, St. Louis, MO.) and dissolving it in 15 ml of distilled 

water. The samples were held overnight at room temperature to allow equilibration 

between the a and ~ forms of the sugar. Each sample was scanned 64 times at 4 cm-I 

resolution from 3000 to 800 cm-I using a Digilab FTS-7 FTIR spectrometer (Bio-Rad, 

Digilab Division, Cambridge, MA) equipped with a deuterated triglycine sulfate 

detector. The 64 scans were averaged to produce the final spectrum of each sample. 

The sampling accessory was an attenuated total internal reflectance (A TR) cell (Buck 

Scientific Inc., East Norwalk, CT) with a zinc selenide crystal. No temperature control 

device was used but the temperature of the optical bench was 30°C during the 

experiment. 

A blank cell was the background and the spectrum of water was subtracted from 

each sample spectrum. Subtraction was done by first multiplying the spectrum of water 

by a subtraction factor corresponding to the percent water in the milk sample and then 

subtracting this modified water spectrum from the spectrum of the sample. 



Preparation of Samples Used to Find 
Absorption Bands with a Low Response 
to Variation in Saturation and Chainlength 

Fatty acids (99% pure by capillary gas chromatography) were purchased from 

Sigma Chemical Co., St. Louis, MO. Reagent alcohol (HPLC grade) was purchased 

from Fisher Scientific, Fair Lawn, NJ. 

Saturation effects were studied using solutions of n-octadecanoate (C 18:0), 

cis-~9-octadecenoate (C18:1), cis, cis-~9, ~12-octadecadienoate (C18:2), and 
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cis, cis, cis-~9, ~12, ~ 15-octadecatrienoate (C18:3), prepared by dissolving .2000 g of 

fatty acid in 5 ml of reagent alcohol for a final concentration of 4.82%. These samples 

were selected because of their identical number of carbon atoms and varying degree of 

saturation. Solutions of n-decanoate (ClO:O), n-dodecanoate (C12:0), n-tetradecanoate 

(C14:0), n-hexadecanoate (C16:0), and n-octadecanoate (Cl8:0) were prepared and 

analyzed in the same manner to study the effects of chainlength variation. These 

samples were selected because of their varying number of carbon atoms and identical 

degrees of saturation . Each sample was analyzed with the Digilab FTIR using 

parameters identical to those used for the lacto se solutions. The background spectrum 

was a blank sample cell. The spectrum of reagent alcohol was subtracted from each 

sample spectrum by first multiplying the spectrum of reagent alcohol by .9518 (the 

fraction of reagent alcohol in each solution) and then subtracting this modified 

spectrum from the spectrum of each sample. 

The fatty acids used in this experiment are commonly found in the triglycerides of 

milk. 

Preparation of Samples Used to Find 
Absorption Bands with a Low Response 
to Lipolysis 

Pasteurized, homogenized, 2% milk from the dairy processing plant at Utah State 

University was used. Lipase (Type VII-S from Candida cylindracea) was purchased 



from Sigma Chemical Co., St. Louis, MO. The Digilab FfIR spectrometer, equipped 

with an A TR sample cell, was used to record the infrared spectra. 
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Lipase enzyme (.0011 g) was dissolved in 50 ml of distilled water. This solution 

was placed in the sample cell and 64 scans at 4 cm-1 resolution were averaged to 

produce the background spectrum. The sample cell was then cleaned, dried, and filled 

with 5 ml of a solution prepared by dissolving .0011 g of lipase enzyme in 50 ml of 2% 

pasteurized homogenized milk. Sixty four scans at 4 cm-1 resolution were collected 

and averaged every minute for 1 h as lipolysis occurred. The temperature of the optical 

bench was 30°C during the experiment. 

Calibration Samples 

Milk standard samples were purchased from Dairy Quality Control Institute 

(DQCI), St. Paul, MN and Michelson Laboratories, Commerce, CA. The samples were 

herd milks collected in Minnesota and California . These laboratories collect samples 

from their suppliers every week . Fat, protein, and lactose are determined by Babcock, . 

Kjeldahl, and high performance liquid chromatography (note: Michelson Laboratories, 

Inc . measures lactose by infrared analysis which is an approved reference method for 

lactose in California). The samples are then shipped to milk analysis laboratories where 

they are used to calibrate infrared instruments. Table 3 shows the fat, protein, and 

lactose concentrations in each sample as measured by the reference methods . The 

variation of component concentrations in a set of samples reflects the expected 

variation due to feed, breed, and stage of lactation. 

Each sample was incubated in a water bath at 40°C for 5 min and homogenized 

with a Milkoscan homogenizer (A/S N. Foss Electric, Denmark) before analysis. The 

samples were then scanned 64 times at 4 cm- 1 resolution using the Digil ab FTS-7 FTIR 

spectrometer equipped with a deuterated triglycine sulfate detector. 
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TABLE 3. Fat, protein, and lactose content in standard 
samples as determined by reference methods (D means 
samples from DQCI and M samples from Michelson Labs). 

Samele Fat(%) Protein(%) Lactose(%) 

Dl 2.49 3.28 4.84 

D2 3.22 3.32 4.77 

D3 3.46 3.14 5.86 

D4 3.70 3.19 4.82 

D5 3.84 3.16 4.82 

D6 4.64 3.73 4.76 

D7 3.18 3.15 4.85 

D8 3.68 3.10 4.81 

D9 3.81 3.32 4.75 

DlO 4.11 3.26 4.84 

Dll 4.75 3.30 4.85 

D12 5.86 3.87 4.71 

Ml 5.35 3.28 4.89 

M2 2.42 3.24 4.98 

M3 3.73 3.15 4.92 

M4 3.27 3.32 5.05 

MS 3.72 3.31 5.10 

M6 3.96 3.26 4.93 

M7 3.98 3.41 4.94 

M8 3.93 3.40 4.98 

M9 4.50 3.59 5.09 

MlO 5.14 4.26 4.88 

Mll 4.90 4.16 4.98 
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The 64 scans were averaged to produce the final spectrum of each sample. No 

temperature control device was used but the temperature of the optical bench was 30°C 

during the experiment. Calibration was by a PLS software package provided by 

Digilab. 



RESULTS AND DISCUSSION 

Spectral data was transformed to ASCII format using software provided by 

Digilab. This data was sent to a Vax computer where statistical analysis software 

(SAS Institute, Inc., Cary, NC) was used to compute the statistics. 

Effects of Fat Concentration on the 
Infrared Spectrum of Milk 

Figure 1 shows the spectra of five milk samples (samples 11, 21, 31, 41, and 51 

from Table 2) with varying fat concentration and minimal variation (26.30 to 

23.50 g/kg for protein) in protein and lactose concentration . Although the percent 
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lactose was not measured, no variation was seen at 1042 cm-1 which is used for lactose 

measurement. Figure 2 shows a plot of the correlation coefficient of absorbance and fat 

concentration versus wavenumber for these samples. Regions of the spectrum with 

correlation coefficients greater than .90 were 2994 to 2825 cm-1, 1799 to 1724 cm-1, 

1471 to 1451 cm-1, 1284 to 1103 cm-1, and 860 to 859 cm-1. 

Effects of Protein Concentration on the 
Infrared Spectrum of Milk 

Figure 3 shows the spectra of five milk samples (samples 31, 32, 33, 34, and 35 

from Table 2) with varying protein concentration and minimal variation (39.80 to 

39.25 g/1 for fat) in fat and lactose concentrations. The correlation coefficient for 

absorbance and protein concentration was calculated at each wavenumber and a graph 

of correlation coefficient versus wavenumber is shown in Figure 4. Coefficients greater 

than .90 were seen at 3030 to 2500 cm-1, 1698 to 1656 cm-1, 1621 to 1038 cm-I, 1017 to 

990 cm-1, and 850 to 841 cm-I. 
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Figure 1. The effect of varying fat concentration (protein and lactose held 
constant) on the infrared spectrum of milk (spectra are keyed as follows: 
red= 21.15, yellow= 29.95, green= 39.25, blue= 48.00, and black= 58.00 g 
fat/L) . 
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Figure 2. The correlation of absorbance and fat concentration at each 
wavenumber in the infrared spectrum of milk. 
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Figure 3. The effect of varying protein concentration (fat and lactose held 
constant) on the infrared spectrum of milk (spectra are keyed as follows: red = 
25.30, yellow = 29.65, green= 34.90, blue= 40.20, and black= 45.30 g protein/kg). 
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Figure 4. The corre lation of absorbance and protein conce ntration at each 
wavenumber in the infrared spectrum of milk . 
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Effects of Lactose Concentration on the 
Infrared Spectrum of Milk 

Figure 5 shows the spectra of five lactose solutions with concentration varying 

from 1 to 5%. Figure 6 shows a graph of correlation coefficient for absorbance and 

lactose concentration versus wavenumber. Absorption bands with correlation 

coefficients greater than .90 were 3145 to 2551 cm-1, 2262 to 1992 cm- 1, and 1776 to 

833 cm- 1. 

Effects of Saturation and Chainlength 
of Fatty Acids 

Figure 7 shows the spectra of fatty acids used to study saturation effects . The 
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standard deviation of absorbance was calculated at each wavenumber and plotted versus 

wavenumber in Figure 8. High variation was seen in the fat B and lactose regions of 

the spectrum. As the number of double bonds increased the fat B signal decreased, 

which agrees with the findings of Mills (17). 

Figure 9 shows the spectra of fatty acids used to study chain length effects. The 

standard deviation of absorbance was calculated at each wavenumber and plotted 

versus wavenumber in Figure 10. High vari ation was seen in the fat A and in the 

lactose regions of the spectrum. As chainlength of the fatty acids increased, the 

fat A signal decreased which agrees with the literature (5, 6, 7, 22). In this 

experiment, absorption in the fat A region of the spectrum was not caused by ester 

carbonyl groups but by undissociated carboxyl groups of fatty acids that absorb at 

1724 cm-1 (20). The same effect would be expected had triglycerides been used. 

Variation at the lactose wavenumber (1042 cm-I) caused by both saturation and 

chainlength effects may be a characteristic of fatty acids and not triglycerides. Long 

chain fatty acid absorption bands that disappear upon esterification have been found 

in this region of the spectrum (1). 
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Figure 5. The effects of varying lactose concentration (in solutions of lactose) 
on the infrared spectrum of lactose (the spectra are keyed as follows: red = 1.00, 
yellow= 2.00, green= 3.00, blue= 4.00, and black= 5.00% wt/wt lactose). 
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Figure 6. The correlation of absorbance and lactose concentration at each 
wavenumber in the infrared spectrum of lactose. 
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Figure 7. The effects of saturation on the infrared spectrum of the series of 18 
carbon fatty acids (the spectra are keyed as follows: red= C18:0, yellow= C18: 1, 
green= C18:2, and blue= C18:3). 
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Figure 8. A plot of standard deviation of absorbances versus wavenumber for 
the 18 carbon fatty acids Cl8:0, C18:1, C18:2, and Cl8:3. 
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Figure 9. The effects of chainlength on the infrared spectrum of a series of 
fatty acids (the spectra are keyed as follows: red= ClO:O, yellow= Cl2:0, green= 
Cl4:0, blue= Cl6:0, and black= Cl8:0). 
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Figure 10. A plot of standard deviation of absorbances versus wavenumber for 
a series of fatty acids (C10:0, C12:0 , C14:0, C16:0, and C18:0). 
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Franke et al. (6, 7) found that the effect of rations, causing variation in chainlength 

and saturation, on lactose readings was not significant, and fat concentration had more 

of an effect than fat composition which agrees with the findings of Grappin and 

Collin (12). 

Absorption bands from 2801 to 1066 cm·l and 1034 to 800 cnrl showed a low 

response to saturation variation. Absorption bands from 3333 to 1795 cm·l, 1580 to 

1088 cm· 1, and 1034 to 800 cm· 1 showed a low response to molecular weight variation. 

Effects of Lipolysis on the Infrared 
Spectrum of Milk 

Figure 11 shows five spectra collected at intervals as lipolysis occurred . The 

standard deviation of absorbance was calculated at each wavenumber and plotted versus 

wavenumber in Figure 12. Absorption bands with a low response to lipolysis were 

2725 to 1795 cm·l and 1391 to 942 cm-I. 

Figure 13 shows the fat B region of the five spectra in Figure 11. As the free fatty 

acid concentration increased, the signal also increased confirming the findings of 

Sjaunja (23), Robertson et al. (19), and Grappin and Jeunet (11). 

Figure 14 shows the fat A region of the five spectra in Figure 11. The signal 

decreased as the free fatty acid concentration increased. The fat A signal is caused by 

absorption of ester carbonyl groups. As lipoly sis occurs, a molecule of glycerol and 

three fatty acid molecules are formed. The lower molecular weight fatty acids are 

soluble in the aqueous phase of the milk and at the normal pH of milk are 

predominantly in the ionized coo- form (23) . When ionization happens, the 

absorption band in the fat A region disappears and a new band appears at 1563 cm· 1 

characteristic of coo- groups (20). Figure 15 shows this band (at 1563 cm -1) that 

appears as a shoulder to the protein absorption band at 1538 cm·l. 
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Figure 11. The effects of lipolysis on the infrared spectrum of milk (the spectra 
are keyed as follows: red= 13, yellow= 25, green= 37, blue= 49, and black= 60 
min after enzyme addition). 
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Figure 12. A plot of standard deviation of absorbances (caused by lipolysis) 
versus wavenumber in a milk sample. 
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Figure 13. The effects of lipolysis on the "fat B" region of the infrared 
spectrum of milk (the spectra are keyed as follows: red= 13, yellow = 25, green= 
37, blue= 49, and black= 60 min after enzyme addition). 
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Figure 14. The effects of lipolysis on the "fat A" region of the infrared 
spectrum of milk (the spectra are keyed as follows: red= 13, yellow= 25, green= 
37, blue= 49, and black= 60 min after enzyme addition). 
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Figure 15. The effects of lipolysis on the protein (amide II) absorbance region 
of the infrared spectrum of milk (the spectra are keyed as follows: red= 13, 
yellow= 25, green= 37, blue= 49, and black= 60 min after enzyme addition). 
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Figure 15 shows that as lipolysis happens, the protein signal increases. In the 

literature, this increase in signal is attributed to absorption by ionized carboxyl groups 

of free fatty acids (23, 26). Our results show the ionized carboxyl group absorption 

band (at 1563 cm-1) and the protein band (at 1538 cm-1) are separate. We suspected 

that proteolytic activity of the enzyme caused the increase in absorption at the protein 

signal. When the experiment was repeated using skim milk, no increase in signal was 

seen (Figure 16). The reason for increase in absorbance at 1538 cm-I remains to be 

determined. 

Figure 17 shows that absorbance in the lactose region of the spectrum is unaffected 

by lipolysis. The results of this experiment show that with the exception of lactose, all 

the absorption bands used in modem infrared milk analyzers are affected by lipolysis . 

Selection of Absorption Bands and 
Calibration Procedures 

Absorption bands from 1283 to 1100 cm-1 respond to changes in fat, protein, and 

lactose concentration and show a low response to variation in saturation and mean 

molecular weight and lipolysis. 

Many statistical methods were considered for incorporating the information in 

these absorption bands into a meaningful calibra tion. A method was desired that 

would allow us to overdetermine the calibration with respect to the number of 

absorption bands and calibration samples . Overdetermination decreases any 

systematic or random error in the calibration spectra thereby increasing the 

robustness of the calibration (9). Overdetermination using the K-matrix and 

P-matrix methods is described in the literature (4, 13). The K-matrix or classical 

least squares method allows for overdetermination of absorption bands and 

calibration samples, but all interfering chemical components in the spectral region 

of interest need to be known and their concentration included in the calibration. 
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Figure 16. The effects of lipolysis on the infrared spectrum of skim milk (the 
spectra are keyed as follows: red= 9, yellow= 13, green= 25, blue= 37, and 
black= 49 min after enzyme addition). 
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Figure 17. The effects of lipolysis on the lactose absorbance region of the 
infrared spectrum of milk (the spectra are keyed as follows: red= 13, yellow= 25, 
green= 37, blue= 49, and black= 60 min after enzyme addition). 
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The K-matrix method is well suited to solutions of pure components of known 

concentration instead of a biological solution like milk that contains many minor 

constituents . The P-matrix or inverse least squares method can accommodate 

interferi n g chemical components (impurities). To discriminate against impurities, 

samples containing the impurities at various concentration levels must be included in 

the calibration set, though the impurity concentrations themselves need not be known. 

The limitation of the P-matrix method that makes it unsuitable for our application is that 

the number of calibration samples must be greater than the number of absorption bands 

used . Using all 94 data points would require the preparation and analysis of at least 95 

calibration samples. To make the P-matrix method more practical, the limitation of 

more references than frequencies must be overcome. 

Principal component regression (PCR) (8) or partial least squares regression (PLS) 

(16), are used for this purpose. In both cases, the information in the spectral region of 

intere st is compressed into a smaller number of factors by computing the orthogonal 

directions of the maximum variance in the spectral data. Unknown spectra are then 

modeled as linear combinations of these factors. In the PCR model, a factor may not 

contain any information about the components of interest but may be dominated by 

matrix effects for example (9). In the PLS model, concentration information is used so 

that only factors that are correlated with component concentrations are selected. This 

forces factors with high relevance for the chemical data, that may be ignored as noise in 

the PCR model , into the solution (16). We used the PLS method in our experiment 

because of these advantages. 

The PLS algorithm requires assignment of a rank to the calibration. The rank of a 

calibration is the number of latent factors used to model the concentrations of 

components of interest in unknown samples. Assignment of a rank must be done 

carefully because the number of factors selected must be large enough to estimate the 

concentrations of components of interest and small enough to avoid including latent 
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factors composed largely of noise in the model. 

Once a rank is assigned, concentrations of components of interest in unknown 

samples are estimated using the generated calibration model. For this experiment, a 

rank of 5 was assigned to the model. The samples from DQCI were used to calibrate 

the instrument. When infrared milk analyzers are evaluated, the results reported in the 

literature are based on prediction of component concentrations in samples used to 

generate the calibration, Table 4 summarizes the results when the fat, protein and 

lactose concentration in the samples used to calibrate the instrument were predicted . 

TABLE 4. Predicted fat, protein, and lactose content in samples (DQCI) used to 
generate the calibration (SDD = standard deviation of the difference between reference 
and infrared methods) . 

Predicted Fat Predicted Protein Predicted Lactose 
Sample (% wt/wt) (R-I) (% wt/wt) (R-I) (% wt/wt) (R-I) 

1 2.57 .08 3.26 -.02 4.85 .01 

2 3.59 .37 3.22 -.10 4.81 .04 

3 3.19 -.27 3.18 .04 4.83 -.03 

4 3.61 -.09 3.20 .01 4.80 -.02 

5 3.65 -.19 3.07 -.09 4.83 .01 

6 4.62 -.02 3.69 -.04 4.77 .01 

7 3.02 -.16 3.17 .02 4.83 -.02 

8 3.64 -.04 3.17 .07 4.80 -.01 

9 4.25 .44 3.37 .05 4.78 .03 

10 4.23 .12 3.35 .09 4.83 -.01 

11 4.70 -.05 3.28 -.02 4.85 .00 

12 5.67 -.19 3.86 -.01 4.70 -.01 

SDD .22 SDD .06 SOD .02 
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Table 5 summarizes the results when the fat, protein and lactose concentrations in the 

California samples were predicted. 

TABLE 5. Predicted fat, protein, and lactose content in the California samples 
(Michelson Laboratories). 

Predicted Fat Predicted Protein Predicted Lactose 
Samele (% wt/wt) (R-I) (% wt/wt) (R-I) (% wt/wt) 

1 3.91 -1.44 3.36 .08 4.81 

2 3.23 .81 3.20 - .04 4.79 

3 3.30 - .43 3.12 - .03 4.81 

4 3.97 .70 3.17 - .15 4.79 

5 2.78 - .94 3.24 - .07 4.83 

6 4.03 .07 3.28 .02 4.79 

7 3.40 -.58 3.26 - .15 4.79 

8 5.73 1.80 3.50 .10 4.76 

9 3.23 -1.27 3.52 - .07 4.82 

10 6.48 1.34 4 .05 - .21 4.69 

11 6.94 2.04 3.97 - .19 4 .67 

SDD 1.23 SDD .10 SDD 

The standard deviation of the difference (SDD) is a commonly used measure of 

accuracy of the infrared method. The Association of Official Analytical Chemist's 
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(AOAC) specification for accuracy of infrared milk analyzers is a SDD of not greater 

than .06 for each component, based on the samples used for calibration (2). 

The bias in estimation of lactose in the Michelson samples was probably caused by 

the higher average lactose concentration in these samples relative to the calibration 

samples. The SDD for fat prediction in the Michelson samples is far from satisfactory. 
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Further investigation showed that absorbance of water in this region of the 

spectrum affected error in fat prediction and had little effect on estimation of protein 

and lactose. We attempted to compensate for water contribu tion by subtracting the 

spectrum of water from each sample until the absorbance at 2083.33 cm-1 (an 

unsaturated water absorption band that does not overlap a component absorption band) 

became zero in the resultant spectrum. However, some of the modified spectra 

appeared to have abnormalities caused by either over-subtrac tion or under-subtraction 

of water and when the calibration and prediction scheme outlined previously was done 

using these spectra, SDD's for fat, protein, and lactose were 1.25, .09, and .07%. 

These observations led us to believe that the large error in fat prediction was a 

direct result of our inability to accurately and reproducibly subtract water. We 

optimized the water subtraction procedure by doing a linear regression for each sample 

using fat prediction error as the independent variable and the percentage of water 

subtracted from the sample spectrum (water subtraction factor) as the dependent 

variable. When the spectra obtained by subtracting the percentage of water 

corresponding to zero fat prediction error were used in the calibration and prediction 

scheme, the SDD for fat decreased to .02% and the SOD for protein and lactose did not 

change appreciably. Our original intent in optimizing the water subtraction factor was 

to correlate the optimized factors with some measurable compo nent in the milk samples 

but we found no correlation. We speculated that preferential adsorption of fat onto the 

surface of the crystal in the ATR cell was causing our problem with fat prediction. 

Sets of milk standard samples (similar to those used in previous experiments) were 

purchased from the same suppliers and the experiment was repeated using a 

transmi ssion cell with calcium flouride windows and a 15 µm pathlength. The water 

subtraction approach (using the absorption band at 2083.33 cm-1) showed no 

improvement in fat prediction. When the sample spectra were used in the calibration 

and prediction scheme without water subtraction, the standard deviations of difference 
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for fat, protein, and lactose prediction were .06, .11, and .05% in the calibration samples 

(Table 6) and .09, .10, and .16% in the separate set of samples (Table 7). 

TABLE 6. Predicted fat, protein, and lactose content in samples used to generate the 
calibration. A transmission cell was used in this experiment. 

Predicted Fat Predicted Protein Predicted Lactose 
Samele (% wt/wt) (R-I) (% wt/wt) (R-I) (% wt/wt) (R-I) 

1 3.45 -.01 3.15 .07 4.90 .09 

2 3.93 .10 3.32 .11 4.81 .02 

3 4.01 .01 3.29 -.07 4.67 -.0 1 

4 3.24 -.12 3.19 -.19 4.77 -.05 

5 3.62 .08 3.46 .18 4.88 .06 

6 3.91 .01 3.20 .05 4.78 -.06 

7 5.84 -.02 3.68 .04 4.84 .04 

8 4.63 .04 4.24 -.01 4.92 -.04 

9 4.45 -.02 3.37 -.14 5.03 -.08 

10 4.65 -.07 4.09 -.04 4.91 .03 

SDD .07 SDD .11 SDD .06 



TABLE 7. Predicted fat, protein , and lactose content in a set of samples used to 
validate the calibration . A transmission cell was used in this experiment. 

Predicted Fat Predicted Protein Predicted Lactose 
Samele (% wt/wt) (R-I) (% wt/wt) (R-I) (% wt/wt) 

1 3.58 -.04 3.14 -.10 4.84 

2 4.79 .01 3.92 -.15 4.79 

3 3.85 .13 3.19 -.09 4.81 

4 3.60 -.15 3.19 -.04 4.81 

5 3.25 -.03 3.17 -.07 4.84 

6 3.72 .10 3.19 -.02 4.90 

7 4.04 .03 3.51 .15 4.93 

SDD .09 SDD .10 SDD 
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CONCLUSIONS 

We conclude that there is information available in the inffrared spectrum for 

predicting the fat, protein, and lactose concentrations in milk. Current milk analysis 

technology uses only small pieces of this information. 
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Although variation caused by changes in saturation and c;hainlength of fatty acids 

was seen in all regions of the spectrum, the variation at the fatt A and fat B absorption 

bands is high compared to all others . 

Absorption bands from 1283 to 1100 cm-1 allow us to acccurately predict the fat, 

protein, and lactose concentrations in a diverse set of herd millk samples when 

appropriate sampling techniques are used . This instrum ental 1method is as rapid as 

conventional filter instruments and has the addition al advantafge of minimizing errors 

caused by milk fat variation and lipol ysis. 
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ABSTRACT 

Infrared spectroscopy was used to measure the level of whey protein concentrate in 

an adulterated sample of NDM. Three samples of NDM (including high and low-heat 

processed samples) and three whey protein concentrate powders with protein and 

lactose concentrations similar to those in NDM (34% protein and 50% lactose) were 

obtained from various sources. One hundred and thirty five blends of NDM containing 

various concentrations of whey protein concentrate were analyzed with spectral 

information between 1400 and 1200 cm-1. There was a strong correlation (r >, .99) 

between predicted and measured concentrations of whey protein in adulterated samples. 

Accuracy was not affected by processing conditions, source of NDM, and origin of 

whey protein concentrate powder. 
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INTRODUCTION 

Increased cheese production has increased the quantity of whey produced. In the 

past, whey was commonly dumped, a practice deterred by high sewage treatment costs 

that encouraged cheese manufa(?turers to find alternative, preferably profitable, uses for 

whey . Whey protein concentrates (WPC) are ingredients in a variety of processed 

foods. Commercial applications of WPC are limited compared to NDM, so WPC is 

less expensive than NDM (5). This makes it attractive to sell blends WPC/NDM blends 

labeled as NDM in violation of the Code of Federal Regulations (3). Measuring protein 

or lactose content of suspect samples will not detect and quantify WPC added to NDM . 

WPC can be manufactured to contain the same concentrations of protein and lactose as 

NDM . 

Haarland and Ashworth (6) developed a turbidimetric method for estimating the 

amount of nondenatured whey protein in NDM to determine the baking quality of 

NDM s lids. This method was later modified by Leighton (9). However, Basch et al. 

(2) four.ct both the Haarland and Ashworth and Leighton methods inadequate to 

me asure whey protein in WPC/NDM blends . Olieman and van den Bedem (12) 

determi1ed rennet whey solids (levels greater than .8%) in skim milk powder by 

measur ing glycomacropeptide isolated by high performance liquid chromatography 

(HPLC ;. This procedure cannot detect added whey powder produced by the direct 

acidification of cheese milk (5). Greenberg (5) described an amino acid analysis 

method that could detect added WPC at levels greater than 10%. The method works 

equally well with acid or sweet (rennet) whey and is not affected by heat treatment of 

the skim milk. Basch et al. (2) used an electrophoretic method to measure WPC (levels 

greater :han 15%) added to NDM. Hill et al. (7) detected added WPC (levels greater 

than 10%) based on the difference in concentration of sulfhydryl groups in NDM and 

WPC. 
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These methods require substantial time for either preparation or analysis. Infrared 

spectroscopy has been widely used to quantitatively measure components in mixtures. 

It is rapid, nondestructive, and does not require that components be separated before 

measurement. The increased signal -to-noise ratio and computing ability achievable 

with commercially available Fourier transform infrared instruments has overcome the 

major disadvantages once associated with infrared methods. 

Proteins have three characteristic absorbances in the infrared spectrum. Two of 

these, the amide I (ca. 1600 to 1700 cm· 1) and the amide III (ca. 1200 to 1400 cm-1) 

absorbance bands are sensitive to the polypeptide backbone conformation and have 

been used to study the secondary sn·ucture of proteins (14). The sensitivity to 

secondary structure of proteins means that these absorption bands might be able to 

distinguish between proteins (11). The amide I band is more intense, but its overlap 

with an intense water deformation band at 1645 cm· 1 means the spectrum of water must 

be subtracted or D20 must be used as the solvent. Algorithms developed to subtract 

water from spectra (4, 13) often do not give reprodu cible results. D20 solvent causes a 

shift in amide I vibrations and precludes the study of biologically intact systems ( 4 ). 

The amide III band, although less intense than the amide I band, has been used 

successfully to study the secondary structure of proteins (1, 8) and is not overlapped by 

water absorptions. For these reasons, we selected the amide III absorption band to 

detect adulteration of NDM with WPC. 



MATERIALS AND METHODS 

Three NDM and three WPC samples were used in the experiment. Two of the 

NDM samples (low-heat and high-heat processed) were from the American Dairy 
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. Products Institute, Chicago, IL . The third NDM sample was a commercially available 

low-heat processed sample from California Milk Producers, Artesia, CA. WPC 

powders with protein and lactose concentrations similar to those in NDM (34% protein 

and 50% lactose) were from Dairyland Products Inc., Savage, MN; Davisco 

International, Inc ., St. Peter, MN; and Foremost Whey Produc ts, Baraboo, WI. 

Twelve calibration standards were prepared by combining one NDM sample with 

one WPC sample . The concentration of WPC powder in the standards ranged from .99 

to 36.59% (dry basis) . 

Five blends of WPC and 1\TDM (1.26, 5.00, 9.99, 18.00, and 33.00% WPC) were 

prepared for each possible combination of a NDM sample with a WPC sample for a 

total of 45 blends . Three repetitions of this preparation scheme resulted in a total of 

135 blends. On day-1, the calibration standards and 45 of the blends (repetition 1) were 

analyzed. Blends in the other two repetition s were analyzed on separate days. Each 

sample was reconstituted on the day it was analyzed with 20 ml of distilled water for a 

total solids concentration of 10%. 

The analysis was done by scanning blends sixty four times at 4 cnrl resolution 

from 1400 to 1200 cm-1 using a Digilab FTS-7 FTIR spectrometer equipped with a 

deuterated triglycine sulfate detector. The 64 scans were averaged and ratioed against 

the spectrum of a blank sample cell to produce the final spectrum of each blend. The 

sampling accessory used was an attenuated total reflectance (A TR) cell with a zinc 

selenide crystal. 

Calibration of the FTIR was done using partial least squares statistics (PLS) in a 

software package provided by Digilab, Cambridge MA. The PLS method has been 
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described by Martens and Jenson (10). Information contained in the spectral region of 

interest is compressed into a smaller number of factors by computing the orthogonal 

directions of the maximum variance in the spectral data. Unknown spectra are then 

modeled as linear combinations of these factors. Factors correlated with concentration 

information are selected for the model, thereby forcing minor factors with high 

relevance for the chemical data into the solution (10). 

Calibration of the FTIR using PLS statistics is a two stage process. First, 

concentration and absorbance information from a set of standard samples is used to 

show the instrument what response to expect from given percentages of each 

component of interest. Then, the generated calibration is used to predict concentrations 

of components of interest in a separate set of standard samples called the validation set. 

The rank (number of factors used in the algorithm) of the model is varied and the 

process is repeated to minimize the difference between true and predicted 

concentrations in the validation set. For this experiment , the optimal calibration 

resulted from using a rank of 4. This calibration was then used to predict concentration 

of WPC in the 135 blends. 

A split plot model was used in the analysis of variance. WPC, NDM, and 

repetition were the whole plot and concentration was the subplot. The variable of 

interest was the relative difference between the predicted and true concentrations of 

WPC in each blend. 



RESULTS AND DISCUSSION 

Spectra (1400 to 1200 cm-1) of typical NDM and WPC samples are shown in 

Figures 18 and 19. The different absorbance characteristics of caseins and whey 

proteins in this region of the spectrum allow quantitative measurement of WPC in a 

blend of WPC and NDM. 
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Inspection of the results from prediction of WPC in the blends showed a bias in the 

data within repetitions as well as the presence of suspected outliers. The bias was 

attributed to instrument drift during the 8 h required for scanning of each replication set 

(45 samples) . To compensate, the observations for the five samples of varying 

concentration in each WPCINDM blend were normalized to a mean of zero. Six of the 

135 values were farther than 3 SD away from the mean relative difference for their 

concentration groups . The corresponding values in the two replications not containing 

the outlier blend were averaged and used to replace each outlier and 6 degrees of 

freedom were removed from the error term in the analysis of variance (Table 8). 

A diagram of predicted versus true concentration for the 135 blends is shown in 

Figure 20. The correlation coefficient for the means (n = 27) plotted in Figure 20 was 

r > .99. Variability decreased as concentration of WPC increased . In the analysis of 

variance (Table 8), concentration was the only significant variable a~ .05. When a 

Fishers least significant difference (LSD) test at a~ .05 was applied to the mean 

relative difference at each concentration, the 1.26% concentration was significantly 

different from the concentrations~ 5.00%. 
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TABLE 8. Analysis of variance table used to determine the treatment effects in the 
whey protein concentrate adulteration experiment. 

Mean 
Source df Squares F Ratio Prob> F 

Repetition 2 1.9020 .5776 >.25 

NDM 2 .5355 .1620 >.25 

WPC 2 2.9100 .8837 >.25 

NDMxWPC 4 4.8662 1.4777 >.25 

Whole plot enor 16 3.2931 

CONC 4 59.7180 11.8022 <.001 

CONCxNDM 8 1.1375 .2248 >.25 

CONCxWPC 8 7.3111 1.4449 .25 > P > .10 

CONCxNDM 

xWPC 16 6.6377 1.3118 .25>P>.l0 

Sub plot enor 66* 5.0599 

Total 134 6.1901 

WPC = source of whey protein concentrate, NDM = source of nonfat dry milk, 
CONC = concentration. 

* six degrees of freedom removed for the six estimated values. 
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Figure 18. The spectrum (1400 to 1200 cm-1) of a nonfat dry milk sample . 
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CONCLUSIONS 

This method enabled us to predict the concentration of WPC in NDM with a 

correlation between measured and predicted WPC concentrations of r > . 99. The 

method is independent of processing conditions or source of NDM and origin of WPC 

powder. Rapidity of this method is its main advantage. Calibration of the instrument 

required 1 h to complete. Once the calibration was completed, the turnover time for 

analysis of individual samples including analysis and cell cleaning and drying was 

5 min . 
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ABSTRACT 

A rapid method for detecting partially hydrogenated soybean oil in process cheese 

was developed. Ten samples were prepared by combining various portions of an 

imitation process cheese made from partialJy hydrogenated soybean oil with real 

process cheese. The infrared spectrum of each sample was colle cted with a Fourier 

transform infrared spectrometer equipped with an attenuated total reflectance sample 

cell designed specifically for the analysis of solid samples. Use of this sample cell 

eliminated all sample preparation that was previously required for infrared spectroscopy 

of food materials . A linear relationship (r = .9801) was seen whe n the ratio of 

absorbance at 2957 cm-I and 2852 cm-I was plotted versus the percent adulteration. 
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INTRODUCTION 

Adding vegetable fat to dairy product s is a common form of food adulteration. 

The following spectroscopic methods are proposed to detect this type of adulteration. 

Bartlet and Ch apman (3) found that the ratio of infrared abs orption by isolated 

trans double bonds at 967 cm-1 to absorptio n by cis-trans conjugated double bonds at 

948 cm -1 is constant in butter fat. One hundred and eighty nine samples of butter fat 

were collected for 1 yr . A differential spectrum of a 4% solution of the fat in carbon 

tetrachloride was re corded using a 4% solut ion of pure butterfat in the referenc e beam. 

The percentage tran smittance readin gs at 967 cm-1 and 948 cm-1 were subtra c ted from 

the readin gs at 920 cm -1 and plott ed as the abscissa and ordinate of a graph (4) . Ninety 

nine per cent confiden ce limit s were assigned to the line on the gr aph . Absorbance 

ratio s fall outside of the confid ence limit s for samples adulterate d with as little as 7% of 

various partiall y hydro genated nond airy fa ts that contain predom inantly isol ated trans 

double bonds . 

De Ruig (4) reported the abilit y to detect addition of comme rcial margarines , 

parti ally hydro ge nate d fats, and beef tallow to pure butter fat at ithe 5% level using a 

modification of the B artlett -Chapm an method. The modificatio is the use of pure 

sample and refer ence instead of a 4% solu tion in carbon tetrachloride . 

Other infrared ab sorption band s that have potential for deteteting adulteration are 

those from 3030 cm -1 to 2857 cm -1 that characterize various C-H absorptions; an 

olefinic C-H absorption occurrin g at 3030 cm-1 and aliphatic abs orptions at 2941 cnr 1 

and 2857 cm -1. Arnold and Hartung (2) report ed a correlation (r = .98) of the iodine 

number of various food fats and oils with the ratio of absorbanc e at 3030 cm- 1 to that at 

2857 cm- 1. This relationship is valid for unpro cessed fats and oiils. However, 

hydrogenation of fats and oils has the effect of reducing the infrared ratio more than 

expected because trans double bonds result in less olefinic C-H absorption than cis 



double bonds. The authors concluded that a prediction equation is valid only for a 

specific type of hydrogenated oil. 
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Anderson et al. (1) reported a linear correlation (r = .99) between unsaturation in 

various unprocessed fats and oils (includi ng several milkfat samples) and the 

absorbance at 3030 cm-1 when differenti al infrared spectra are collected using a 

completely saturated substance (tristearin) in the reference beam. Hydrogenated 

samples deviate from the regression line confirming the finding of Arnold and Hartung 

(2). 

The purpose of this experiment was to develop a simplified spectroscopic method 

for measuring addition of vegetable fat to dairy products. 
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MATERIALS AND METHODS 

Pasteurized process American cheese and an imitation proces s cheese made with 

partially hydrogenated soybean oil were purchased from the dai:ry case in a local 

supermarket for use in this experiment. Eleven samples were plfepared by combining 

various portions of the imitation process cheese with the real pnocess cheese. The 

amount of imitation process cheese in the samples ranged from O to 100% in increments 

of 10%. 

Each sample was prepared by first weighing the appropriiat<e amounts of each 

cheese, blending the mixture, melting the mixture with contiruuous stirring, and pressing 

until cool to form a homogeneous slice of process cheese. 

The infrared spectrum of each cheese slice was collected as follows. The cheese 

slice was placed on the surface of a zinc selenide crystal in a CC)ntact Sampler™ 

sampling accessory manufactured by Spectra-Tech Inc. Stamfo1rd, CT and held against 

the crystal with a pressure device . The sampling accessory was pilaced in the optical 

bench of a Digilab FTS-7 (Bio-Rad, Digilab Division, Cambridige, MA) Fourier 

transform infrared spectromet er equipped with a deuteratea frigllyc::ine sulfate detector. 

Sixty four scans of each cheese slice collected at 2 cm·l resoltuti1or1 were averaged to 

produce the final spectrum. The Contact Sampler™ is a hori:zoint:al attenuated total 

reflectance (ATR) accessory . In the ATR technique, infrared ratdi ation reflects through 

a crystal of high refractive index. At each reflection point, an eva nescent wave 

penetrates into the sample that is in contact with one or more fatces of the crystal. The 

penetration of the evanescent wave provides a short, reproducib1le pathlength . 
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RESULTS AND DISCUSSION 

The spectra of samples containing 0, 50, and 100% imitati1on process cheese 

(Figures 21, 22, and 23) show how the ratio of absorbances at 2 957 cm-1 and 2852 cm-1 

is directly related to the amount of imitation process cheese in teach sample. This is 

expected because the addition of imitation process cheese incre ases the mean saturation 

level of the fat in each sample proportion ately. An abnormally· high absorbance ratio 

was seen for the sample containing 20% imitation process chee se. We attributed this to 

inadequate mixing of the sample and discarded it from our sam1ple set. 

When a least squares line was fitted to the remaining ten s.amples (Figure 24) , a 

correl ation coefficient of .98 was see n that compares well with the correl ation reported 

by Arnold and Hartung (2). 

Absorbance s at 967 cm·l and 948 cm-1 were too weak to dieterrnine if the method 

of Bartlet and Chapman (3) would be useful in this application .. 
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Figure 21. The infrared spectrum of a process cheese sample containing no 
imitation cheese. 
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Figure 22. The infrared spectr um of a process cheese sample conta ining 50% 
imitation cheese. 
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Figure 23 . The infrared spectrum of an imitation proces~ cheese . 
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CONCLUSIONS 

The infrared method described by Arnold and Hartung (Arn old and Hartung 1971) 

for determining the saturation level of fats and oils was easily adapted to the direct 

determination of parti ally hydrogenated soybean oil in pasteuriz ed process American 

cheese. The Contact Sampler™ allow ed us to get good results with no sample 

preparation. 
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GENERAL SUMMARY 

Information is available in the infrared spectrum for predicting the fat, protein, and 

lactose concentrations in milk. Current milk analysis technology uses only small pieces 

of this information. 

Although variation caused by changes in saturation and chainlength of fatty acids 

was seen in all regions of the spectrum, the variation at the fat A and fat B absorption 

bands is high compared to all others . 

Absorption bands from 1283 to 1100 cm-1 allow us to accurately predict the fat, 

protein, and lactose concentrations in a divers e set of herd milk samples when 

appropriate sampling techniques are used. This instrumental method is as rapid as 

conventional filter instrument s and has the additional advantage of minimizing errors 

caused by milk fat vari ation and lipolysis. 

Infrared spectro scopy coupled with multivariate statistical methods is a valuable 

tool for rapidly detecting adulteration of dairy products . Whey protein concentrate 

powder was detected in nonfat dry milk at concentrations as low as 5%. The method is 

independent of proces sing conditions of nonfat dry milk and origin of whey protein 

concentrate powd er. 

The infrared method describ ed by Arnol d and Hartun g (2) fo r determining the 

saturation level of fats and oils was easily adapted to the direct detem1ination of 

partially hydrogenated soybean oil in pasteuriz ed process American cheese. The 

Contact Sampler™ allowed us to get good results with no sample preparation. 
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