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Surface Voltages Predicted by Spacecraft Charging Models

NASCAP
Upgrades

Materials
Research

SEE Handbook or NASCAP predicts 
on-orbit spacecraft charging in GEO 
and LEO environments

Typical SEE Handbook Simulation
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USU Resistivity Engineering Tool Inputs

Electric Field
Temperature

Dose Rate
Sample Thickness

ESD 
Strength

Density
Dielectric 
Constant

Material
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USU Resistivity Engineering Tool Inputs

Resistivity Database Master Parameter List
Excel File
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USU Resistivity Engineering Tool Outputs
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Scope of USU Experimental Studies

Determine the resistivity and related materials properties of 
critical JWST materials over the appropriate range of 
environmental conditions:

• Temperature: ~100 K to 365 K

• Electric field: low to breakdown field (~3x108 V/m)

• Radiation dose: low dose to ~10 rad/sec

Appropriate theory has been used to obtain parametric fits to 
the data and, where necessary, extend the data to 
experimentally inaccessible regions.  

Validity and range of the theories were determined.
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Transient Currents

Temporal changes in current as sample comes to equilibrium are not 
considered in this study.

Polarization Current (short term—10 s to a few hrs) 
Diffusion Current  (long term—10 min to a few days)
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Polarization Space Charge Diffusion
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RIC Measurements

• Designed and built an entirely new test system
• Characterized instrumentation and methods
• Used standard model for RIC, augmented with T-dependent k and Δ

• Determined k and Δ for JWST materials over range of dose rates 
encountered by JWST

• Measurements made from ~0.01 to ~10 rad/s

• Determined T dependence of k and Δ for JWST materials  
• Measurements made from ~105 K to ~335 K
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Electrostatic Breakdown (ESD) Measurements

• Extensive room T measurements (5-20 per material)
• Limited studies completed at T<Trm, down to ~140 K.
• Limited studies completed on endurance (ramp rate) testing

------------------------------------------------------------------------------
• Breakdown fields were mid-107 V/m to mid-108 V/m for all 
materials, except ePTFE.

• Typical results have 10% to 30% variation in Vesd.

• Typically measured results 10-25% higher than manufacturer’s 
values.  Attributed to slower ramp rate and dry samples.

• Found modest dependence on ramp rate.
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Conductivity Mechanisms

Engineering tool considers three conductivity mechanisms.

TAH and VRH depend on F and T

RIC depends on D and T

 ),(),(),(),,( TDTFTFDTF RICVRHTAHTotal

••

++= σσσσ
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Conduction Models

Model: T and E Dependence of DC ConductivityModel: T and E Dependence of DC Conductivity

RICIntrinsic SC TAH VRH
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Thermally Activated Hopping Conductivity
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TAH theory is based on thermally assisted quantum tunneling from
adjacent trap sites of a single well depth and separation.  

An E-field favors one direction of motion over another, leading to sinh
behavior:

Reduced fitting parameters
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TAH Dependence on E and T
 

T
he

rm
al

ly
 A

ct
iv

at
ed

 H
op

pi
ng

 
C

on
du

ct
iv

ity

Temperature and electric field dependence of thermally activated hopping conductivity. (a) 
Temperature dependence with electric fields of 1·107 V/m (purple), 5·107 V/m (blue), 1·108 V/m 
(green), 2·108 V/m (orange) and 3·108 V/m (red).  (b) Electric field dependence with temperatures of 
150 K (purple), 250 K (blue), 300 K (green), 350 K (orange) and 400 K (red).  Curves are based on 
Eq. (2).  To approximately match LDPE data we have set σTAHo=1.4·10-10 (Ω-cm)-1 and FA=9.5·108 
V/m for TA=6626 K.  FESD is ~3·108 V/m.
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Conduction Models

Model: T and E Dependence of DC ConductivityModel: T and E Dependence of DC Conductivity

TAH
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16

Theory of Thermally Activated Hopping Conductivity

Theory of thermal assisted hoping 
conductivity provides a model for 
the temperature and electric field 
dependence of the conductivity of 
polymers:
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E-field Dependence of TAH

Note divergence at EESD
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Variable Range Hopping Conductivity
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Variable range hopping model of Mott and Davis (as extended by Huges and 
Apsley for E-field dependence), allows hopping at a range of distances over a
distribution of trap energy states:

Theory leads to “T ¼ “ behavior
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Reduced fitting parameters
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Temperature and electric field dependence of variable range hopping conductivity. (a) 
Temperature dependence with electric fields of 1·107 V/m (purple), 5·107 V/m (blue), 1·108 
V/m (green), 2·108 V/m (orange) and 3·108 V/m (red).  (b) Electric field dependence with 
temperatures of 50 K (purple), 100 K (blue), 150 K (green), 200 K (orange) and 300 K (red).  
Curves are based on Eq. (4).  To approximately match LDPE data we have set σVRHo=1.0·10-
10 (Ω-cm)-1 and FV=6.9·1013 V/m for TV=1.0·108 K. 

VRH Dependence on E and T
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Conduction Models

Model: T and E Dependence of DC ConductivityModel: T and E Dependence of DC Conductivity

VRH
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Temperature Dependence of TAH and VRH

Note change in slope for transistion from TAH to VRH.  

This occurs near a beta structural phase transition.
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Fit for RIC
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Basic theory for RIC follows from the Rose, Fowler, Vaiserberg for 
radiation assisted thermal hopping from a distribution of multiple trap 
sites

The key power law relation has T dependant coefficients kRIC andΔ

 )()()( T
RICRIC DTkD Δ= &&σ
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Temperature dependence of the RIC parameters. (a) Proportionality constant, kRIC, based on 
Eq. (8).  (b) RIC power,  Δ, based on Eq. (7).  Values shown are for TRIC set to 200 K (purple), 
400 K (blue), 600 K (green), 800 K (orange) and 1000 K (red).  To approximately match LDPE 
data we have set kRICo=1.8·10-14 (Ω-cm-Rad/sec)-1 and kRIC1=4.6·10-5 for TRIC=600 K. 

 

RIC Dependence on D and T
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Conduction Models

Model: T and E Dependence of DC ConductivityModel: T and E Dependence of DC Conductivity

RIC
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What IS Radiation Induced Conductivity (RIC)

Theoretical Model: T and D Dependence of RIC
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Theoretical Model: T and D Dependence of RIC
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Comparison of RIC at Various T
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Comparison of RIC at Various T
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Comparison of RIC at Various T
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Time Behavior of RIC

Persistent RICDose Dependant RIC

 1)1()( −+= trapRICRIC tt
O

τσσ
 Δ••

⋅= DkD RICRIC )(σ
In real time, when the radiation is turned on, a finite period is required for the measured 
conductivity to approach the  radiation induced conductivity.

Similarly, when the radiation is turned off, the measured conductivity also takes a finite 
amount of time to decay down to the material’s initial conductivity.
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Electrostatic Breakdown Theory
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Based on the thermodynamic model for ESD

From an expression for bond disruption, from an expression  for charge 
mobility similar to the TAH model, we get 
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Reduced fitting parameters

Finally, an expression for breakdown field strength in terms of 
endurance time and the fitting parameters:
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Temperature dependence of the electrostatic field breakdown strength. (a) Endurance, or time 
to breakdown, a function of applied electric field, based on Eq. (9).  Curves shown are for 
temperature set to 150 K (purple), 200 K (blue), 250 K (green), 300 K (orange) and 400 K (red). 
(b) Breakdown field strength as a function of temperature, based on Eq. (10).  Curves shown 
are endurance times set to 100 s (purple), 102 s (blue), 104 s or 2.8 hr (green), 106 s or 11.6 
days (orange) and 108 s or 3.2 yr (red).  To approximately match LDPE data, we have set 
FESD=9.5·108 V/m and ΔG’=1.22 eV.

ESD Dependence on Endurance Time
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Representative Fitting Parameters for LDPE

Based on the best overall fits to the full data set, 
Using the equations above, we estimate the 
fitting parameters to be:

σTAHo = 8.0·10-8 (Ω-cm)-1 σVRHo = 1.0·10-10 (Ω-cm)-1

EA = 9.5·108 V/m EV = 6.9·1013 V/m
TA = 8.9·103 K TV = 1.0·108 K

kRICo=1.8·10-14 (Ω-cm-Rad/sec)-1 ΔG, of 1.2 eV
kRIC1=4.6·10-5

TRIC=600 K
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Individual Conductivity Components 

LDPE Data

TAH                                   VRH

RIC



INTRODUCTION TO INTERFACEING AND CONTROL  WITH LabVIEW

Alec M Sim

Introduction    Section 0     Lecture  1     Slide  34

AIAA Presentation

January 5, 2009

Constant Voltage  Resistivity Fits--LDPE

Low 
dose 
rate

Average
L2 Dose 

Rate

5 mRad/s

lo
g 
σ 

 (Ω
·c

m
)-1

 

(b) 

Figure  .  Total conductivity as a function of temperature and E-field for various absorbed dose rates.  E-field and conductivity ax
logarithmic.  (a)  Low absorbed dose rate of 10-6 Rad·sec-1.  (b)  Approximate average L2 absorbed dose rate of 5.4·10-4 Rad·se
Approximate worst case (storm) L2 absorbed dose rate of 2.7·10-1 Rad·sec-1.  (d)  High absorbed dose rate of 10+2 Rad·sec-1.   
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Extensive Resistivity measurements made.

Physics-based parameterized models determined from 
literature.

New Engineering tool developed.

Tool capabilities are being updated.

Hopefully more materials will be added.

Looking for mechanism to distribute information.

Summary
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