
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

International Junior Researcher and Engineer 
Workshop on Hydraulic Structures 

6th International Junior Researcher and 
Engineer Workshop on Hydraulic Structures 

(IJREWHS 2016) 

May 31st, 2:10 PM - 2:25 PM 

Interfacial velocity estimation in highly aerated stepped spillway Interfacial velocity estimation in highly aerated stepped spillway 

flows with a single tip fibre optical probe and Artificial Neural flows with a single tip fibre optical probe and Artificial Neural 

Networks Networks 

D. Valero 
Aachen University of Applied Sciences, University of Liege 

D. B. Bung 
Aachen University of Applied Sciences 

Follow this and additional works at: https://digitalcommons.usu.edu/ewhs 

 Part of the Civil and Environmental Engineering Commons 

Valero, D. and Bung, D. B., "Interfacial velocity estimation in highly aerated stepped spillway flows with a 
single tip fibre optical probe and Artificial Neural Networks" (2016). International Junior Researcher and 
Engineer Workshop on Hydraulic Structures. 1. 
https://digitalcommons.usu.edu/ewhs/2016/Session4/1 

This Event is brought to you for free and open access by 
the Conferences and Events at DigitalCommons@USU. It 
has been accepted for inclusion in International Junior 
Researcher and Engineer Workshop on Hydraulic 
Structures by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/ewhs
https://digitalcommons.usu.edu/ewhs
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FSession4%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FSession4%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/ewhs/2016/Session4/1?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FSession4%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


      Lübeck, Germany, May 30th to June 1st 2016 6th IAHR IJREWHS 2016 

DOI:10.15142/T3Q590

Interfacial velocity estimation in highly aerated stepped spillway flows with 

a single tip fibre optical probe and Artificial Neural Networks 

D. Valero1, 2 and D. B. Bung1

1Hydraulic Engineering Section (HES) 

FH Aachen University of Applied Sciences 

Aachen, Germany 
2Dept. of ArGEnCo, Research Group of Hydraulics in Environmental and Civil Engineering (HECE) 

University of Liege (ULg) 

Liège, Belgium 

E-mail: valero@fh-aachen.de

ABSTRACT 

Air-water flows can be found in different engineering applications: from nuclear engineering to huge hydraulic 

structures. In this paper, a single tip fibre optical probe has been used to record high frequency (over 1 MHz) 

phase functions at different locations of a stepped spillway. These phase functions have been related to the 

interfacial velocities by means of Artificial Neural Networks (ANN) and the measurements of a classical double 

tip conductivity probe. Special attention has been put to the input selection and the ANN dimensions. Finally, 

ANN have shown to be able to link the signal rising times and plateau shapes to the air-water interfacial 

velocity. 
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1. INTRODUCTION

Air-water flows can be easily found in large hydraulic structures, where self-aeration occurs as a complex and 

turbulent air-water compatibility phenomenon (Valero and Bung 2016). In spillway flows, researchers’ efforts 

have focused both in the aerated regions (Zhang and Chanson 2016a, Bung 2011, Felder and Chanson 2011, 

Boes and Hager 2003, Chanson and Toombes, 2002) and non-aerated regions (Valero and Bung 2016, Zhang 

and Chanson 2016b, Meireles et al. 2014, Meireles et al. 2012, Amador et al. 2006); while some unresolved key 

challenges still exist (Matos and Meireles 2014, Chanson 2013). Hydraulic jumps have been also a common 

case of air-water flow studies as the impingement induced aeration plays a main role (Murzyn et al. 2005, Wang 

and Murzyn 2016, Wang and Chanson 2015, Wang et al. 2014, Chanson and Brattberg 2002). 

Although some new non-intrusive techniques are available (Bung and Valero 2016, Bung and Valero 2015, 

Felder and Chanson 2014, Nóbrega et al. 2014, Leandro et al. 2014, Bung 2013, Chachereau and Chanson 2011, 

Kucukali and Chanson 2008, Misra et al. 2006), intrusive techniques have been more widely used (Wang et al. 

2014, Boes and Hager 2003, Chanson and Brattberg 2002). When the air fraction 𝐶, or water fraction (1 – 𝐶) 

exceeds 1 to 3 %, accuracy of common instrumentations for single phase flow measurements is typically 

affected and conductivity/optical probes become the best option (Felder and Chanson 2015). However, when 

using intrusive measurement techniques, some drawbacks and limitations can arise (Borges et al. 2010). In order 

to save some difficulties involved in air-water flow velocity measurements, Artificial Intelligence (AI) 

techniques have recently been used (Bung and Valero 2016a). Optical fibre probes work based upon the 

difference on light refraction at air/water interfaces. Usually, when velocity measurement is required, these 

probes comprise two conical tips. First and second tip are intended to record two signals based on the same 

bubbly events. Then, by cross-correlating the signals the most probable lag time can be obtained. Altogether 

with the known distance between both probes, a velocity may be computed. Nonetheless, a second option is 

available based on a single tip configuration. 

In this study, raw signals are recorded in a highly aerated flow on a moderately sloped stepped spillway; similar 

to the setups described in Bung and Valero (2015) and Bung (2011). These signals, altogether with the 

previously obtained information, are later processed and used to train different Artificial Neural Networks 

(ANN) configurations by using PyBrain open-source package (Schaul et al. 2010).  



 

2. EXPERIMENTAL SETUP 

2.1. Stepped spillway 

All measurements have been conducted in a moderately sloped stepped spillway (1V:2H, 𝜙 = 26.56º) with step 

height 𝑠 = 6 cm for three different flow rates 𝑞 = 0.07, 0.09 and 0.11 m2/s. Total drop height is 1.74 m with a 

width of 0.50 m. Water was pumped from a lower basin into an open head tank from where it was conveyed into 

the stepped chute via an approaching channel of 1 m length. In order to complete a wider range of air 

concentrations, measurements have been conducted at steps (E) 13, 14, 18, 19 and 21; being the flow fully 

developed at step 21 for the highest discharge (see Fig. 1). 

 

  

Figure 1. Sketch of flow regions over a spillway (left) and aerated flow at step 21 for 𝑞 = 0.07 m2/s (right). 

2.2. Single tip optical probe description and settings 

Since the early study of Neal and Bankoff (1963), phase detection probes have become a common measuring 

technique in multiphase flows disciplines. In this study, a single tip optical probe is employed (Fig. 2). This 

probe (also known as mono-optical probe) has been placed in the centreline of the spillway, over the step edges. 

As shown in Fig. 2, the probe is moved by a CNC controlling system (isel) with an accuracy of ~0.1 mm. The 

probe is manufactured and distributed by A2 Photonic Sensors, including a signal recording and analyser 

software and an optoelectronic module. 

 

Vertical interfacial velocity profiles (raw signals) have been recorded perpendicularly to the pseudo-bottom with 

2 mm spacing, at steps 13, 14, 18, 19 and 21, resulting in 646 measurements. 

 

  

Figure 2.  Monofibre optical probe location (left) and 2D controlling system configuration (right). 

 

Single optical phase detection probes are able to measure gas velocities provided that their sensitive length (or 

latency length, 𝐿) is accurately known (Cartellier 1998, Cartellier and Barrau 1998a, b). To avoid a certain level 

of sensitivity to uncontrollable parameters (i.e.: angle of the impact on the bubble interface), probes geometry 

can differ from the commonly used dual tip optical fibres. Thus, more complex geometries can be used 



 

(Cartellier and Barrau 1998b), e.g.: a cone + cylinder + cone geometry where the tip reduces its inner diameter 

through an intermediate cone. However, the employed probe corresponds to a simple cone geometry, which is 

more sensitive to uncontrolled parameters. 

 

Air-water interface velocity can be approximated by using: 

 

𝑣 = 𝐿 · 𝑡𝑟
𝑏  (1) 

 

where 𝑡𝑟 is called the rising time, which represents the time it takes the signal to pass from level 10% to 90% of 

the air level, 𝑏 is a dimensionless parameter taking a value close to –1 to correct the estimation and 𝐿 depends 

on the probe’s tip length. For the employed probe, 𝑏 = –1.02 and 𝐿 takes the value of 45.3 μm when the rising 

times are taken in microseconds to obtain the velocity in meters per second. Threshold levels 10% and 90% are 

based on the provider’s experience and directly affect the values taking the other parameters. 

 

Cartellier (1998) reports a relative error of around 10 % both for air fraction and gas flux, while the provider 

points out that an error of 15 % can be expected for the used probe. Further discussion on the probe/bubble 

interaction and the effect upon the air fraction measurement accuracy can be found in Vejražka et al. (2010). 

Errors are globally comparable for the monofibre and the bi-probe techniques, but these techniques are not 

equally sensitive to the flow regime. For finely dispersed flows, monofibre optical probes are better suited while 

double tip probes seem better adapted whenever large gas inclusions are present (Cartellier 1998). This makes a 

challenge for monofibre probes to measure in highly turbulent aerated spillway flows. Also, their actual 

response is sensitive to small geometrical defects occurring at their tips as pointed out by Cartellier and Barrau 

(1998a, b). This fact underlines the benefit of using more complex techniques than the rise time/velocity 

correlation provided by Eq. 1. 

 

In order to obtain an accurate estimation of 𝑡𝑟, the sampling rate has been set to 1 MHz, being around 50 times 

larger than the minimum recommended sampling rate for dual tip probes for similar types of flows, where only 

small discrepancies can be observed in the turbulence estimations at a higher sampling frequency of 20 to 40 

KHz (Felder and Chanson 2015). The sampling duration is recommended to be over 45 s, however in the study 

of Felder and Chanson (2015) only small differences can be observed over 20 s for similar flows. André et al. 

(2005) investigated the effects of sampling duration upon the interfacial velocity and the cross-correlation 

coefficient and suggested a sampling duration of more than 30 s. Consequently, the sampling duration has been 

set to 30 seconds, yielding over 30 million data points per recorded signal and nearly 20,000 million data points 

considering the entire set of recorded signals. 

3. SIGNAL ANALYSIS 

As described above, 646 million raw signals have been recorded, obtaining 30 million data points at each 

location to be later analyzed and used to train and test the artificial neural network employed in this study. Each 

signal displays a signature every time that a bubble impacts the monofibre probe tip (see Fig. 3 for an exemplary 

bubble event), which may provide a large amount of information. 

 

Figure 3. Exemplary signal of a bubble-tip impact extracted from the phase function recorded by the single tip 

probe, main features and ANN input definition (variables marked in green). 



 

High frequency small amplitude oscillations can be observed in the data files which may affect the analysis of 

the phase indicator function. To remove these small oscillations, a central moving average filter with a moving 

window of 10 time steps (at a time resolution of 1 MHz produces a 1 𝜇𝑠 signal delay) has been applied. By 

removing sampled frequencies above a certain cutoff frequency, the moving average creates a smoothing effect 

which has shown to remove effectively the noise. Further information on application of similar and more 

complex filtering techniques to air-water measurements can be found in the study of Bung and Valero (2015). 

 

In order to make the signal independent from the used voltage range, water and air levels defined with the 

providers’ software, all the signals have been scaled to be comprised between 0 and 100 %; thus a normalized 

voltage (𝑉∗) results, but an air-water voltage range over 5 Volts was always ensured in the original recordings. 

Every recording included thousands of events (i.e. phase changes from water to air or bubble/droplet impacts). 

To make the ANN independent of the number of events and the bubble size, a median signature (or median 

phase indicator function) has been extracted from each recording. Different parameters defining this median 

phase indicator function have been selected, which may be separated in (a) rising time parameters and (b) phase 

indicator shape parameters. As defined in Fig. 3, rising time related variables are: 

 

 𝑡10−25, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the 25 % value 

(𝑡25) and the time it reached the 10 % value (𝑡10). 

 𝑡25−50, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the 50 % value 

(𝑡50) and the time it reached the 25 % value (𝑡25). 

 𝑡50−75, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the 75 % value 

(𝑡75) and the time it reached the 50 % value (𝑡50). 

 𝑡75−𝑚𝑎𝑥, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the maximum 

value (𝑉∗
𝑚𝑎𝑥) at the time 𝑡𝑚𝑎𝑥 and the time it reached the 75 % value (𝑡75). 

 

The phase indicators shape variables (also defined in Fig. 3) are: 

 

 𝑉∗
𝑚𝑎𝑥  is the dimensionless maximum value reached by the signature at each event, close to 100 %. 

 𝑉∗
1, 𝑉∗

2, 𝑉∗
3 and 𝑉∗

4 split the signal from 𝑡𝑚𝑎𝑥 to 𝑡𝑒𝑛𝑑 (where the signal crosses the 10% value again) 

in five equal portions. 

 𝑉∗
1𝑚 and 𝑉∗

2𝑚 are the normalized voltages measurements between 𝑉∗
𝑚𝑎𝑥  and 𝑉∗

1, 𝑉∗
1 and 𝑉∗

2 

respectively. These extra voltages where selected to better describe the exponentially decreasing tail 

which can be usually observed after the 𝑉∗
𝑚𝑎𝑥  takes place. 

 

All these time and phase parameters have been chosen arbitrarily based on a better representation of the overall 

phase function. 

4. ARTIFICIAL NEURAL NETWORK FOR INTERFACIAL VELOCITY 

ESTIMATION 

4.1. Introduction 

Artificial Neural Networks (ANN), one of the earliest techniques of Artificial Intelligence, have become a 

powerful tool for prediction and forecasting of water resources, being a large number of studies published 

recently addressing mainly hydrological (Maier et al. 2010) and sediment problems. However, when it comes to 

hydraulic instrumentation prediction improvement, only a few attempts are documented. Carosone et al. (1995) 

and Chen et al. (1998) employed neural networks altogether with Particle Tracking Velocimetry (PTV) and 

Particle Image Velocimetry (PIV) techniques. Recently, Bung and Valero (2016a) and Bung and Valero (2016b) 

have applied Artificial Intelligence techniques obtaining, at least, as accurate velocity fields as classical cross-

correlation based techniques for bubbly and swirling flows. 

 

All ANN models take the form: 

 

𝑌 = 𝑓(𝑋, 𝑊) +  𝜀 (2) 

 

Where 𝑌 is the vector of model outputs, 𝑋 is the vector of model input, 𝑊 the vector of model parameters (or 

connection weights), 𝑓(·) is a functional relationship between model outputs, inputs and parameters; and 𝜀 is the 



 

vector of model errors. The functional relationship depends strongly on the ANN architecture (e.g.: the number 

of hidden layers and number of neurons). In this study, the model output is a single scalar (velocity, 𝑣), the 

vector of model input is discussed in Section 4.2 on the basis of the event-driven description of the recorded 

signal; the number of neurons is discussed in Section 4.3 and the vector of model errors is the result of the ANN 

training, discussed in Section 4.4. All the described operations have been carried out by using Python 2.7, 

altogether with PyBrain 0.3 for the ANN setup (Schaul et al. 2010) and Matplotlib 1.5 (Hunter 2007) for 

scientific plotting. 

4.2. Input selection 

One of the most important steps in the ANN model development process is the determination of an appropriate 

set of inputs (𝑋). However, this task is generally given little attention in ANN modelling and most inputs are 

determined on an ad-hoc basis or using a priori system knowledge (Maier et al. 2010). 

 

 

Figure 4. Correlation matrix for the signal descriptors marked in Fig. 3. 

 

 

All the variables marked in Fig. 3 are obtained for each event of the 646 measurements. This yields thousands of 

values for each measurement. In order to get only one value per signal, the median value is computed. Temporal 

variables are inverted (𝑡−1) which physically represents a velocity – instead of a time – and the shape 

parameters are selected based on the observed fact that the bubble impacting the tip produces a characteristic 

signature (Cartellier 1998, Cartellier and Barrau 1998a, b). In order to make the shape parameters independent 

from the event duration (and consequently from the bubble size), they have been selected by splitting the plateau 

of each event in equal parts. For the temporal variables, a logarithmic distribution has been noticed. 

Consequently, logarithm of 𝑡−1 is used to obtain a more homogeneous distribution. 

 



 

Given a fixed number of training samples, the addition of redundant model inputs increases the ratio of the 

number of connection weights to the number of training samples, thus increasing the likelihood of overfitting, 

while not providing any additional information to the model. Secondly, the inclusion of redundant model inputs 

introduces additional local minima in the error surface in weight space (Maier et al. 2010). To detect redundancy 

between the described variables, correlation among them has been computed (see Fig. 4). 

 

A strong correlation between the shape variables has been observed in the tail of the signal while 𝑉∗
𝑚𝑎𝑥, 𝑉∗

1𝑚 

and 𝑉∗
4 were less correlated. Thus, the other shape variables have been disregarded. Within the temporal 

variables, only 𝑡10−25 were found to be correlated to 𝑡25−50. Given that 𝑡10−25 is more correlated to the 

remaining parameters than 𝑡25−50, the former one has been neglected. Consequently, selected variables for the 

ANN input vector (marked in green in the Fig. 3) are the following: 

 

𝑋 = [log(𝑡25−50
−1) , log(𝑡50−75

−1) , log(𝑡75−𝑚𝑎𝑥
−1) , 𝑉∗

𝑚𝑎𝑥 , 𝑉∗
1𝑚, 𝑉∗

4] (3) 

 

Every element of the vector of model inputs is normalized between 1 and 1; which makes the training faster. 

4.3. ANN architecture 

The ANN of this study is a feedforward network with six input neurons and one output neuron and full 

connectivity (see Fig. 5). The dimensions of the input and output layers are directly determined by the selected 

inputs (Eq. 3) and the choice of the desired output or target (herein the interfacial velocity). However, 

dimensions of the hidden layer and the number of layers have undergone an iterative process. While one hidden 

layer can identify simple patterns, two can guarantee recognition of more complex patterns. Usually, it is not 

recommended to go over three hidden layers. In this study, two hidden layers have been selected. Different 

types of transfer functions between neurons have been examined, obtaining the best results for linear (input 

layer), sigmoid (hidden layer 1 and 2) and linear (output layer). Other types of transfer functions are available in 

PyBrain (Schaul et al. 2010) and in the literature (Rojas 2013). 

 

 

Figure 5. ANN architecture: feedforward network with full connectivity, 6 input neurons, 2 hidden layers and 1 

output layer. 

4.4. ANN training and testing 

As ANNs are prone to overfitting the calibration data, cross-validation is generally used, as part of which the 

calibration data are divided into training and testing subsets (Maier et al. 2010). The available dataset (646 

samples) has been divided in training and testing subsets with a proportion of 70 % and 30 % respectively (452 

and 194 samples respectively). The training algorithm adjusts the parameters reducing the mean squared error 

(MSE, as defined by Bennett et al. 2013) for the training subset while tracking the effect upon the testing subset. 

When the error in the testing subset stops decreasing the training is stopped (see Fig. 6). The iterations are 

commonly called epochs. 



 

 

Figure 6. Training with cross validation for the ANN model. Mean squared error (MSE, as defined by Bennett et 

al. 2013). 

 

The employed training algorithm is RProp- of Igel and Hüsken (2003) with all training samples with the same 

weight. Classic backpropagation algorithm has been also used resulting usually in a worst training. 

5. RESULTS 

Alternatively to the MSRE computed in the training process, the correlation coefficient (𝑟) as defined by Bennet 

et al. (2013) has been computed to assess both Eq. 1 and ANN performance; which is commonly used for model 

evaluation. In Fig. 7, 𝑟 values are shown for ANN training and testing datasets for a total number of 2541 

trainings (21 per combination). It is clearly observed that all shown combinations provide a 𝑟 value over 70 % 

for both training and testing datasets for all of the studied number of neurons in the hidden layers; and a 

maximum value of 88.9 % and 81.9 % respectively. 

 

In Fig. 7 it can be also observed that higher number of neurons in the hidden layers improves the accuracy for 

the training datasets while it suddenly stabilizes for the testing dataset. As the number of samples does not 

increase, a smaller number of neurons for the same accuracy level might be desirable. Consequently, a 

combination of five neurons in the hidden layer one with five neurons in the hidden layer two has been selected 

to show the ANN results (see Fig. 8). In order to illustrate utility of the present ANN, results from Eq. 1 are also 

shown in Fig. 8. 

 

 

Figure 7. Best correlation coefficient for training (left), testing (center) and all dataset (right) after 21 trainings 

until convergence and different neurons number in the hidden layers. 

 



 

 

Figure 8. Dual tip conductivity probe (CP) measurements of Bung (2011) and predicted interfacial velocity of 

the quasilinear Eq. 1 (left) and the ANN (right). 

 

 

Figure 9. Interfacial velocities histograms for the cross-correlation based velocity of Bung (2011) and the ANN 

approach presented herein. 

6. CONCLUSIONS 

In this study, a large number of measurements with a single tip optical fibre probe have been performed in a 

1V:2H stepped spillway. Measurements have been conducted every 2 mm at different steps, obtaining different 

velocities at regions of different aeration. After a correlation analysis (see Fig. 4), some irrelevant parameters 

have been discarded, finally selecting three temporal parameters and three phase function shape parameters as 

input for a feedforward ANN. Choice of these initially proposed parameters is based on previous studies 

observations, which showed that rising times are related to the interfacial velocities and that signature shape 

may depend on small geometrical defects occurring at the probes tips (Cartellier and Barrau 1998a, b). 

 

When using an ANN approach, non-linear model flexibility allows reproducing complex patterns and detection 

of important relations which could remain unseen otherwise. The proposed ANN counts on two hidden layers 

and one output (the interfacial velocity). The number of neurons in the hidden layers has been the result of an 

iterative process, as shown in Fig. 7, where training performance has been studied accounting also for the 

dimension of the network thus avoiding over fitting. 

 



 

In this study, improvement of the predictions has shown to be significant when compared to the initial proposed 

model. Accuracy enhancement of ANN model over the quasilinear approach (Eq. 1) can be observed in Figs. 8 

and 9. Majority of ANN predictions fall within the +/− 10 error, showing higher difficulty to reproduce extreme 

values. 
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