
Utah State University Utah State University 

DigitalCommons@USU DigitalCommons@USU 

International Junior Researcher and Engineer 
Workshop on Hydraulic Structures 

6th International Junior Researcher and 
Engineer Workshop on Hydraulic Structures 

(IJREWHS 2016) 

May 30th, 10:45 AM - May 31st, 3:00 PM 

Full Proceedings: IJREWHS 2016 Full Proceedings: IJREWHS 2016 

International Association for Hydro-Environmental Engineering and Research 

Follow this and additional works at: https://digitalcommons.usu.edu/ewhs 

 Part of the Civil and Environmental Engineering Commons 

International Association for Hydro-Environmental Engineering and Research, "Full Proceedings: IJREWHS 
2016" (2016). International Junior Researcher and Engineer Workshop on Hydraulic Structures. 1. 
https://digitalcommons.usu.edu/ewhs/2016/FullProceedings/1 

This Event is brought to you for free and open access by 
the Conferences and Events at DigitalCommons@USU. It 
has been accepted for inclusion in International Junior 
Researcher and Engineer Workshop on Hydraulic 
Structures by an authorized administrator of 
DigitalCommons@USU. For more information, please 
contact digitalcommons@usu.edu. 

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/ewhs
https://digitalcommons.usu.edu/ewhs
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs/2016
https://digitalcommons.usu.edu/ewhs?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FFullProceedings%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/251?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FFullProceedings%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/ewhs/2016/FullProceedings/1?utm_source=digitalcommons.usu.edu%2Fewhs%2F2016%2FFullProceedings%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/


Local Organizing Committee IJREWHS2016 
 
Mario Oertel, Prof. Dr.-Ing. habil. (Chairman) 
Full Professor 
Hydraulic Engineering Section 
Luebeck University of Applied Sciences 
 

 
  
Daniel B. Bung, Prof. Dr.-Ing. (Vice-Chairman) 
Full Professor 
Hydraulic Engineering Section 
Aachen University of Applied Sciences 
 

 
  
Jessica Klein, M. Eng. 
Research Assistant 
Hydraulic Engineering Section 
Luebeck University of Applied Sciences 
 

 
  
Daniel Valero, M. Sc. 
Research Assistant 
Hydraulic Engineering Section 
Aachen University of Applied Sciences 
 

 
 
 
 
 
 



Keynote Lectures and Short Lecture: 
 
Daniel B. Bung, Prof. Dr.-Ing. 
Full Professor 
Hydraulic Engineering Section 
Aachen University of Applied Sciences 
 
"Application of imaging techniques to 
laboratory investigations of aerated flows" 

 
  
Carsten Thorenz, Dr.-Ing. 
Head of Section  
Hydraulics at Structures 
Federal Waterways Engineering and Research Institute (BAW) 
 
"Hydraulic Structures at Federal Waterways" 

 
  
Blake P. Tullis, Prof. PhD 
Full Professor 
Utah Water Research Laboratory 
Utah State University  
 
"How to write a good scientific paper" 

 
 
  



Program: 
 

 
 



Presentations: 
 

 
 

   

 
  



Field Trip: 
 
Ship lift Scharnebeck (Elbe side canal) 

 
  
Weir Geesthacht (Elbe River) 

 
  
Double vertical slot fish pass 
Geesthacht (Elbe River) 

 
  
Boat trip Hamburg 

 
 
 
  



Venue: 
 
Founded in 1134, the Hanseatic City of 
Luebeck is situated near the Baltic Sea. 
With its approximately 210.000 
inhabitants, it is a center of commerce, 
industry, and higher education that is 
playing an increasingly important role in 
bringing together the people of Denmark, 
Sweden, Finland, Russia, the Baltic States 
and Poland. Much of its architecture, 
dating back to the Middle Ages, is still 
intact in the older portion of town, which 
is a UNESCO World Heritage Site. With 
its many restaurants, cinemas, theaters, 
and clubs, the city offers a variety of 
recreation opportunities for young people. 
Luebeck offers a lively art scene, plays 
host to Northern Film Days and is the 
main venue for the world-famous 
Schleswig-Holstein Music Festival. 
Because of its closeness to the Baltic Sea, 
Luebeck offers a wide variety of cultural 
and sporting activities. 
Luebeck's location on the Baltic Sea is 
also of international significance. Long-
existing contacts to the Scandinavian 
countries expand cultural, economic and 
scientific opportunities, and strengthen 
Luebeck as a site for higher education 
within the framework of indispensable 
international cooperation. Among students 
the Hanseatic City of Luebeck is 
considered a well-kept secret, since living 
and studying here take place in easily 
accessible surroundings, in contrast to 
cities with "mass universities". 
The regional economy, with its 
connections to the universities, offers 
further good reasons for studying in 
Luebeck. The close cooperation between 
the universities and companies in and 
around Luebeck becomes obvious in 
many ways. The availability of 
traineeships, the cooperative formulation 
and implementation of diploma theses, 
research projects and possible subsequent 
job offers make higher education in 
Luebeck extremely attractive. Companies 
in Luebeck seek and establish contacts to 
the universities. 

 

 



 
Workshop Proceedings: 
 
All papers published in the Proceedings and have been thoroughly peer-reviewed for technical 
quality and presented at IJREWHS2016. The Proceedings were published by Utah State 
University and is available open access. Each manuscript includes the ISBN of the 
Proceedings as well individual direct object identifiers (DOI). Each manuscript is indexed by 
Scopus and Compendex. Each manuscript is available to users through the USU digital 
commons portal pursuant to a Creative Commons Attribution-NonCommercial CC BY 4.0 
license.  
 
International Scientific Committee: 

• Daniel Bung, Germany 
• Brian Crookston, USA 
• Rita Carvalho, Portugal 
• Sébastien Erpicum, Belgium 
• Stefan Felder, Australia 
• Robert Janssen, Australia 
• Mario Oertel, Germany 
• Michele Palermo, Italy 
• Michael Pfister, Switzerland 
• Blake Tullis, USA 

  



Papers: 
 
 
 



6th IAHR IJREWHS 2016       Lübeck, Germany, May 30th to June 1st 2016 

DOI:10.15142/T3859Z 

Investigation of the Flow Field inside a Drainage System: 

Gully – Pipe – Manhole 

Md N. A. Beg1, R. F. Carvalho1, J. Leandro1, P. Lopes1 and L. Cartaxo1 
1MARE - Marine and environmental research center  

Department of Civil Engineering, University of Coimbra,  

Coimbra, Portugal 

E-mail: mnabeg@uc.pt

ABSTRACT 

Gully drop connected with manhole is one crucial structural part in several urban drainage systems. This paper 

analyses the flow pattern and flow hydraulics of a gully-manhole drainage structure. Analysis is done 

numerically using computational fluid dynamics CFD tools OpenFOAM®. Data from the Dual Drainage / Multi 

Link Element installation (DD-MLE) at the University of Coimbra hydraulic lab is used to validate the 

numerical simulations. The experimental model setup consists of a 0.5 m wide channel, a 0.6 × 0.24 × 0.32 m (L 

× W × D) gully, a gully outlet with an 80 mm diameter pipe and a manhole of 1 m diameter with a 300 mm inlet 

and outlet pipe connected. The flow pattern is observed under drainage flow conditions with different surcharge 

heights of the manhole. It has been observed that the intercepted flow through the gully decreases with the 

increase of surcharge in the manhole. The shear stress at the gully floor is found much higher than that of 

manhole floor. This indicates the probability that bigger sediment particle can be transported through gully but 

will remain deposited at the manhole floor. The flow pattern in the manhole changes with the change of 

surcharge height. The flow through the manhole inlet seems to disperse less at higher surcharge. 

Keywords: Computational Fluid Dynamics (CFD), Urban drainage, OpenFOAM®, Gully-Manhole 

1. INTRODUCTION

Urban flooding is one of the biggest issues for a large city. Predicting urban drainage flows accurately is an 

important way in preventing or minimizing flood risks.  In most cities, urban drainage system is the only 

pathway to convey the flood water from urban areas. The system is usually described as two different sets of 

components; the major system or overland system is composed of surface paths and temporary storage areas and 

the minor system or below ground system is composed of pipes and manholes. Gullies work as the connectors 

between the two systems. They collect the runoff from paved and unpaved system and supply manholes. During 

a high flood event, pressurized flow may occur and create back flow from the manhole to the surface (Butler 

and Davies 2011; Djordjević et al. 2013; Lopes et al. 2015). To assess the flood risk in a city, evaluation of the 

drainage efficiency of a gully is necessary. 

Some works have been done by different authors to characterize individually gully and manhole hydraulics. 

Galambos (2012) used ANSYS Fluent CFD tools to validate 3D and 2D/3D CFD models and a number of 

computational simulations on different gratings. His works also extended to better understand the effect of 

various geometric and road alignment on the intercepted flow. Lopes et al. (2016) used three dimensional model 

with VOF surface capturing technique using OpenFOAM® to analyse gully efficiency with the grate’s slots 

aligned in the flow direction and compared with experimental data sets.  Djordjević et al. (2013), Martins et al. 

(2014) and Leandro et al. (2014) presented both experimental and numerical investigation for drainage condition 

of a gully. On the other hand, Lopes et al. (2015) showed analysis of the flow field in a gully with surcharge 

condition. Romagnoli et al. (2013) measured the turbulence characteristics of gully for reverse flow. Several 

works have been done on manhole as well. Stovin et al. (2008) have showed a number of possible methods to 

validate CFD model, while Rubinato (2015) has showed uses of scaled models to quantify hydraulic losses in a 

manhole. Beg et al. (2016) used OpenFOAM® with VOF model to assess flow path line and manhole pressure 

variation in surcharged manhole and compared with experimental results. 

In this work, both gully and manhole hydraulics were analysed together using three dimensional CFD model 

OpenFOAM®. The geometry of the numerical model was a replication of a real scale dual drainage 

experimental model setup installed at the hydraulic laboratory of University of Coimbra. The work focuses on 



 

different hydraulic properties on of the gully-manhole structure while draining to a surcharged manhole. These 

results may be used to aid the simulation of pollutant transport model in the drainage system. 

 

This paper starts presenting the experimental and numerical modelling methodologies in section 2, followed by 

presenting the comparison between the numerical and experimental results and some analysis using the 

numerical model results in section 3. Conclusion is made in section 4. 

2. METHODOLOGY 

2.1. Experimental Setup 

The experimental facility installed at the hydraulic lab of University of Coimbra was used for this study. A 

detailed description of the facility can be found at Carvalho et al. (2013). The facility contains a quasi-real scale 

multi-link dual drainage network to observe different phenomena of an Urban Drainage Network. For the 

current study, a part of the setup was used, containing a rectangular surface drain (0.5 m wide), a rectangular 

gully pot (0.6 m × 0.24 m × 0.32 m) and a circular manhole (1 m diameter) (Figure 1). The surface drain has a 

slope of 1:1000. The manhole is connected with 300 mm diameter inlet and outlet pipes and does not have any 

guide channel inside. The inlet-outlet pipes are parallel to the surface and has no slope. The gully is connected to 

the manhole with an angular pipe of 80 mm diameter, at an angle of 63º in plan and 90º in vertical. The manhole 

did not have any inflow from its top, however no lid was loosely placed at its top ensuring equal pressure at both 

sides. A discharge flow meter is installed at the end of the pipe and that is represented by a small contraction in 

the numerical model. The gully-manhole size and the slope replicate a typical drainage system in Portugal. But 

the size of the gully outlet pipe is smaller that of the design recommendation. The Portuguese legislation 

recommends a 200 mm pipe for the gully outlet which drains a flow of 100 l/s approximately. This was 

exchanged for an 80 mm pipe due to different limitations of experimental model setup installed. 

 

 

Figure 1: Upper Panel: Experimental setup; Lower panel: Computational mesh of different parts of the domain 

A: Gully with outlet pipe, B: Outlet Pipe, C: Manhole and D: Pipe connected with Manhole 

 

The system is equipped with three electromagnetic flow meters (not shown in the figure). The first one is 

located at the drain inlet, the second one is the referred at the pipe between manhole and gully and the third is at 

the outlet pipe; from which different discharge at the drain, gully and manhole can be measured. 

 

Two separate experimental study data have been used for the numerical simulation. In the first experimental 

work, only the manhole with inlet and outlet pipe were used; in which a flow of 43.7 l/s was applied through the 
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manhole inlet (SE1). The second set of experimental works, flow through the drain and gully was observed; in 

which 19.8 l/s flow was measured upstream of the drain inlet (SE2). The grate of the gully was removed. The 

flow through the rectangular drain was an open channel flow with a flow depth of 8 cm in the channel; which 

yielded a Froude number of 0.6. Some part of the incoming drain inlet flow passed through the gully outlet to 

the manhole and the rest overflowed through the gully and made a free fall to the reservoir tank through the 

drain outlet. As the discharge was overflowing the gully top, the location if the water surface was located in the 

drain above the gully. The intercepted flow by gully enters the manhole as a free fall plunging jet with a 

recirculation zone in the manhole. This flow accumulates with the inflow through manhole inlet and flows out 

through the manhole outlet. The gully was given special attention. The velocity field at the gully was measure at 

three vertical planes using ADV (Acoustic Doppler Velocimetry). The first and the third planes are at 5 cm 

distance from the two longitudinal walls of the gully; which made each of the plans 7 cm apart from the central 

line of the gully. The second plane is the central plane. Each plane had 121 point measurements, at an interval of 

4.8 cm and 2.5 cm towards horizontal and vertical directions respectively (Figure 2). The velocity measurement 

was taken inside the gully only and was not extended to the water surface. 

 

    

Figure 2: Velocity measurement locations using ADV. Left panel shows the location of the three planes and the 

right panel shows the point measurement locations at each plane 

 

In the both experimental scenarios, the manhole was at surcharged condition and the manhole inlet-outlet pipe 

was pressurized. The surcharge height at the manhole was 0.67 m; which was 20.5 cm below the invert level of 

the gully outlet to the manhole.  

2.2. Numerical Model Description 

The objective of the numerical modelling is to characterize the incoming flow through the gully and check the 

flow path in the manhole during drainage condition. Open source three dimensional CFD model tools 

OpenFOAM® version 2.3.0 is used in this study. The solver interFoam is chosen which includes Volume of 

Fluid (VOF) method (Hirt and Nichols 1981) to track the free surface or interface location between two fluids. 

This method uses volume fraction indicator function α to determine the amount of liquid present in each cell. In 

case of α=0 or 1, the cell volume is considered filled with air or water respectively; while 0<α<1 represents that 

the cell contains the free surface as it is partially filled with water. 

 

The interFoam solver uses a single set of Navier-Stokes equations for the two fluids, water and air, and 

additional equations to describe free-surface where the velocity at free-surface is shared by both phases. The 

solver considers a system of isothermal, incompressible and immiscible two-phase flow. The model deals with 

Reynolds averaged conservation of mass and momentum, 

 

𝛻. 𝒖 = 0 (1) 
𝜕𝜌𝒖

𝜕𝑡
+ 𝛻. (𝜌𝒖𝒖) = −𝛻𝑝∗ + 𝛻. 𝝉 + 𝒈. 𝒙𝛻𝜌 + 𝒇𝝈 (2) 

 

where g is the acceleration due to gravity, u is the velocity vector in the Cartesian coordinate, τ is the shear 

stress tensor, p* is the modified pressure adopted by removing the hydrostatic pressure (ρg.x) from the total 

pressure and fσ is the volumetric surface tension force. 

 



 

The viscous stress term is defined by the incompressible Newton’s law, 

 

𝛻. 𝝉 = 𝛻(𝜇(𝛻𝒖)) + (𝛻𝒖). 𝛻𝜇 (3) 

 

The advection equation to describe free-surface in VOF method (Hirt and Nichols 1981), which uses an 

interfacial compressive term to keep the interface region confined in a small space (Rusche 2002; Weller 2002) 

is described as: 

 
𝜕𝛼

𝜕𝑡
+ 𝛻. (𝛼𝒖) + 𝛻. [𝒖𝒄𝛼(1 − 𝛼)] = 0 (4) 

 

The last term of equation (4) is the compressive term. The term α(1-α) ensures that the compressive term or 

compressive velocity uc is calculated only at the interphase (when 0< α<1).  This velocity acts at the 

perpendicular direction to the interface and defined as: 

 

𝒖𝒄 = 𝐶𝛼|𝒖𝒄|
𝛻𝛼

|𝛻𝛼|
 (5) 

 

Cα is a Boolean term (value is 0 or 1) which activates (Cα =1) or deactivates (Cα =0) the interface compressive 

term. The volumetric surface tension fσ is calculated by the Continuum Surface Force model (Brackbill et al. 

1992).  

𝒇𝝈 ≈ 𝜎𝜅𝛻𝛼 (6) 
 

Here, κ is referred as the surface curvature. 

 

To model the turbulence phenomena, k-ε turbulent modelling approach is used. This turbulence calculation 

approach uses two closure equations for k (turbulent kinetic energy) and ε (Energy dissipation). The 

unsteadiness in flow is averaged out in this model and regarded as part of the turbulence (Furbo et al. 2009). 

 

The value of k is calculated along with ε using k- ε turbulent model. The dynamic viscosity (µ) is calculated as: 

 

𝜇 =  𝜌(𝜈𝑡  +  𝜈0) (7) 

 

where, ν0 and νt are molecular viscosity and turbulent viscosity respectively. 

2.3. Mesh Generation  

Mesh generation is one of the most important issue in CFD modelling. The quality of mesh is the key to have 

quality result from the model. The construction of the computational mesh for this study, was done as follows: 

(1) the geometry was prepared using open source software SALOME v.7.5.1; (2) the geometry was exported to 

Stereolithography (STL) format. (3) another open source meshing tool cfMesh (Juretić 2015) was used to 

prepare the mesh. This tool prepares three dimensional hexahedral mesh in the Cartesian planes. The maximum 

mesh size is kept as 2 cm towards all the three directions. The mesh was further refined at the walls and joins of 

different geometrical shapes. The created computational mesh has 821,500 computational cells with a little more 

than 1.01 million nodes. Some of the mesh properties can be seen at Figure 1 and Table 1. 

 

Table 1: Quality parameters of the computational mesh 

 

Parameter 

Name 

Max. 

Aspect 

ratio 

Max. 

skewness 

Max. non-

orthogonal

ity 

Avg. non-

orthogona

lity 

Min. face 

area 

(m2) 

Max. face 

area 

(m2) 

Min. 

volume 

(m3) 

Max. 

volume 

(m3) 

Value 7.27 1.708 51.32 4.13 3.45x10-06 4.72x10-04 4.19x10-09 1.06x10-05 

2.4. Boundary conditions 

Six open boundaries were used for the computational domain. They are: Drain Inlet, Drain Atmosphere, Drain 

Outlet, Pipe Inlet, Pipe Atmosphere and Pipe Outlet. The drain inlet was further divided in to two parts for the 

incoming water and air phases respectively. The boundary data are calculated from the experimental model 



 

completed before. The upstream boundaries were obtained from measured discharge data while the downstream 

pressure data were obtained from observed water depths in the drain and manhole. 

 

As the simulation used k-ɛ turbulent approach, OpenFOAM® requires six types of Boundary Conditions (BC) for each 

boundary. They are alpha.water (water volume fraction in each cell), u (velocity vector in Cartesian domain), 

p_rgh (relative bottom pressure corresponding to datum), k (turbulent kinetic energy), ɛ (energy dissipation) and 

nut (turbulent viscosity). The first three BC’s are required for hydraulic modelling while the last three are 

required for turbulence calculation. 

 

For both inlets, fixed velocity/discharge were applied using alpha.water and U. Pressure data (p_rgh) were 

prescribed at the outlet boundaries. Both of the atmosphere boundaries were kept as zeroGradient velocity and 

relative air pressure as zero; so that air could be exchanged if needed. All the wall BC’s were kept as no-slip 

condition (i.e. velocity = 0). For the turbulent approach, values of k, ɛ and nut were calculated using the equations 

in FLUENT manual (ANSYS Ins 2009), considering medium turbulence at the gully and manhole. All the walls 

are prescribed as wallFunction as this eliminates the necessity of fine layered boundary mesh and hence reduce 

the computational time (Greenshields 2015). 

 

Three different numerical model setups were simulated using the same mesh. The setups are described in Table 

2. The first scenario replicates the experimental setup while the second and the third scenarios use a higher 

surcharge level in the manhole, in a view of checking the change of flow condition in the gully due to the higher 

surcharge level in the manhole. 

  

Table 2: Numerical model scenarios 

 

 Drain inlet  

Q (l/s) 

Manhole inlet 

Q (l/s) 

Manhole surcharge 

level (m) 

Remarks 

Simulation 1 19.8 43.7 0.67 Experimental case scenario 

= SE1 & SE2 

Simulation 2 19.8 43.7 1.16 Additional scenario 1 

Simulation 3 19.8 43.7 1.47 Additional scenario 2 

2.5. Simulation of the models 

The model was ready to run after the boundary setup. During the simulation, adjustableRunTime was used 

keeping maximum CFL number to 0.8. Cluster computing system at the University of Coimbra was used to run 

the simulations using MPI mode with 16 processors. Each simulation took 40 sec to reach steady state. The 

computation time was 138 hours for each simulation. Results were obtained once the simulation reached steady 

state. 

3. RESULTS AND DISCUSSION 

3.1. Comparison with experimental work at the gully 

The numerical model results are compared with the experimental study data of the velocity profiles at the gully 

obtained by the Vectrino acoustic velocimetry.  Figure 3 shows s contours at the three different planes and 

Figure 4 shows comparison of longitudinal and vertical velocity profiles at different location of the gully.  



 

 

Figure 3: Comparison of velocity between numerical (upper panel) and experimental (bottom panel) study at 

three longitudinal planes of the gully 

 

Figure 4: Velocity profile at different location of gully. Firm lines showing numerical model data and cross (x) 

markers showing data from experimental study 



 

 

It can be seen from Figure 3 and Figure 4 that the numerical model shows good agreement with experimental 

data. The vertical vortex size and location created in the numerical result shows similarity to those observed in 

the experimental model data. Average statistical comparison between the two data can be shown in at Figure 4 

and more detailed in Table 3. It shows that the model can reproduce the longitudinal velocity component (Vx) 

very well (average r2 = 0.95 and BAIS = 0.004 m/s). The representation of vertical velocity component (Vz) in 

the gully is at satisfactory level (average BIAS 0.011 m/s and r2 = 0.56). 

 

Table 3: Statistical BIAS and correlation coefficient (r2) 

 

 BIAS r2 

 x=0.1m x=0.2m x=0.3m x=0.4m x=0.5m Avg. x=0.1m x=0.2m x=0.3m x=0.4m x=0.5m Avg. 

P 1 

V
x

 

0.060 0.014 -0.078 -0.068 -0.007 -0.016 0.99 0.97 0.98 0.99 0.96 0.98 

P C -0.223 -0.034 -0.024 -0.009 0.186 -0.021 0.67 0.93 0.95 1.00 0.87 0.88 

P 2 0.096 0.023 -0.010 -0.016 0.028 0.024 0.99 0.99 0.99 0.98 0.97 0.98 

Avg. -0.023 0.001 -0.037 -0.031 0.069 -0.004 0.935 0.88 0.96 0.97 0.99 0.95 

P 1 

V
z 

0.004 -0.031 0.009 0.072 0.073 0.025 0.87 0.70 0.53 0.79 0.71 0.72 

P C -0.020 -0.141 0.015 -0.020 0.021 -0.029 0.36 0.05 0.84 0.53 0.65 0.49 

P 2 -0.029 -0.021 0.069 0.079 0.089 0.037 0.85 0.05 0.02 0.71 0.71 0.47 

Avg. -0.015 -0.064 0.031 0.044 0.061 0.011 0.69 0.27 0.46 0.68 0.69 0.56 

  

 

Figure 5: Transverse velocity (Vy) at the gully 

 

Figure 5 shows the transverse velocity (Vy) in the gully at three different transects. It can be seen from Figure 5 

that transverse velocity is very low, in the range of 3 cm/s to +3 cm/s. This velocity component was found 

insignificant to compare with experimental results. 

3.2. Pressure and Shear stress 

The pressure and the wall shear stress at the gully bottom were analyzed and can be seen in Figure 6. Similar 

plot have been made for the bottom of the manhole in Figure 7. In both of the figures, the water flows from the 

left to right.  

 

   

Figure 6: Pressure variation (left panel) and wall shear stress (right panel) at the bottom of the gully 
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It can be seen from Figure 6 that the bottom pressure at the gully is not uniform. Excluding the outlet location, 

the pressure gradually increases from upstream direction to the downstream direction. The deviation of the 

pressure at the gully bottom is in the range of 300 Pa. At the right panel of Figure 6, the wall shear stress at the 

gully bottom can be seen. The figure shows that the shear stress at the immediate upstream of the gully outlet is 

the highest. The shear stress direction can be seen towards the opposite direction of the flow.  

 

From Figure 7, a similar view of bottom pressure and shear stress at the manhole bottom can be found. Like the 

gully bottom, the pressure at the manhole bottom also increases from the downstream to the upstream. Here the 

variation of bottom pressure is in the range of 200 Pa. The bottom shear stress shows higher value near the 

outlet. Both bottom shear stress and pressure diagram are asymmetric at the manhole bottom; whereas those 

diagrams showed symmetric pattern at the gully bottom. The influence of oblique flow from the gully outlet 

might be the reason of this asymmetric pattern. 

 

    

Figure 7: Pressure variation (left panel) and wall shear stress (right panel) at the bottom of the manhole 

 

The pressure and shear stress diagrams at the bottom of the two structures might be useful in predicting 

sediment deposition pattern inside the structures. The pressure and shear stress diagrams at the bottom of the 

two structures might be useful in predicting sediment deposition pattern inside the structures. It is likely that in 

case of particulate transport in the system, the particles are more likely to be deposited at the region with higher 

pressure with lower shear stress and erosion may take place at the region with higher shear stress and lower 

pressure. A relation between critical shear stress and sediment particle size is given by Berenbrock and Tranmer 

(2008). The shear stresses at the gully bottom are in the range of 3 to 6 N/m2. This stress is higher than the 

critical shear stress of fine gravel (D50 = 4-8 mm) While the shear stresses at the manhole bottom are in the 

range of 0.4 to 1.0 N/m2, which is more than the critical shear stress of coarse sand (D50 = 1 to 2 mm). So it is 

likely that gully flow can transport sediment particles up to 8 mm; while the manhole flow can transport 

sediment particles of up to 2 mm. The bigger sediment particles are likely to be deposited at the manhole 

bottom. 

3.3. Flow path line 

During the experimental and numerical study, the following flow distribution (Table 4) was observed at 

different part of the domain. 

 

Table 4: Flow distribution 

 

Simulation Drain Inlet 

(l/s) 

Drain Outlet 

(l/s) 

Gully Pipe (l/s) Manhole Pipe 

Inlet (l/s) 

Manhole Pipe 

Outlet (l/s) 

Simulation 1 19.80 12.4 7.4 43.7 51.1 

Simulation 2 19.80 13.4 6.4 43.7 50.1 

Simulation 3 19.80 15.9 3.9 43.7 47.6 

 

Inflow
Inflow



 

In all the three simulations, the inflows at the drain inlet were 19.80 l/s. The intercepted flow by the gully was 

7.4 l/s (40 % of the inflow) at the experimental case scenario (Simulation 1). The remaining 12.4 l/s (60 % of 

the inflow) was over flown through the drain. The discharge at the manhole outlet was 51.7 l/s of which 15 % 

was coming through the gully and the remaining 85 % was coming through the manhole inlet pipe. At 

simulation 2 and 3, with the increase in manhole surcharge, the flow through the gully outlet decreases. Out of 

19.8 l/s inflow through the drain inlet, only 6.4 l/s (32.3 %) and 3.9 l/s (19.7 %) flow were intercepted and 

drained out by the gully. The flow ratio between manhole inlet and gully pipe plays a significant role in 

determining the flow circulation pattern inside the manhole. 

 

In this study, the flow path inside the manhole was analysed through the numerical model result. Figure 8 shows 

different streamline inside the manhole from the above mentioned three simulation results. The yellow 

streamlines show the flow path coming from the drain and gully whereas the red streamlines are showing the 

flow path coming through the manhole inlet pipe. The blue arrows show the direction of flow at each case. 

 

 
 

Figure 8: Flow path line / streamline inside the manhole and gully 

 

It can be seen from Figure 8 that both of the flow coming from the gully and manhole inlet circulates inside the 

manhole and become well mixed. At the left panel, the streamline from simulation 1 shows that the flow from 

the gully enters the manhole as a plunging jet and recirculates around the manhole. In simulation 1, the flow 

from the manhole circulates with the manhole. With the increase of surcharge in simulation 2 and 3, the 

dispersion in manhole inlet flow decreases.  

4. CONCLUSION 

This study provides first step assessment of flow behaviour inside a gully-manhole linking structure in an urban 

drainage system. The manhole intakes flow from a gully and adjacent manhole through inlet pipes. A three 

dimensional CFD model of a quasi-real scale gully-manhole structure was produced using OpenFOAM®, which 

includes VOF through interFoam solver and k-ɛ turbulence modelling approach. The model shows good 

agreement with the observed velocity profiles at different plane of the gully. 

 

The flow behaviour at the gully-manhole system was analysed from different surcharge conditions of the 

manhole. It shows that the intercepted flow by the gully decreases when the surcharge at the manhole. The shear 

stress at the manhole bottom is much lower than that of gully bottom.  This indicates that all the sediment 

particle sizes transported by the gully will not be transported by this kind of manhole. Some bigger particles 

may be deposited at the manhole bed. The streamlines from the numerical model showed that the flow from the 

gully and from manhole inlet becomes well mixed in the manhole. The flow through the manhole inlet showed 

less depressive nature in higher surcharge. 

 

The study described here is useful to calibrate/validate a numerical model created with the open-source toolbox 

OpenFOAM® and in characterizing the physical model setup. The work will be further continued to develop an 

experimental and numerical approach to better understand particulate transport phenomena inside the gully-

manhole-pipe drainage. Datasets obtained in this study will be used to calibrate/validate a numerical model 

created with the open-source toolbox OpenFOAM®. 

Simulation 1 Simulation 2 Simulation 3
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ABSTRACT 

Piano Key Weirs (PKW) are hydraulic structures which can be used for flood release systems on dams or for in-

channel weir replacement. The efficiency can be increased compared to linear weirs, since the effective overfall 

length will be majorly increased by arranged piano keys. The present research investigation deals with 

experimental model results of scaled PKW models and compares resulting discharge coefficients and scale 

effects. One PKW geometry was manufactured with included fractal elements with the main aim to increase the 

structure’s efficiency. The paper includes detailed information on the investigated experimental model. The 

concept of the fractal PKW has a major positive effect on PKW efficiency for very low energy heads. With 

increasing discharges this advantage gradually decreases. Additionally, the paper focuses on future concepts 

and possible PKW adaptions.   

Keywords: Piano Key Weir, PKW, discharge coefficient, efficiency, fractal elements 

1. INTRODUCTION

Piano Key Weirs (PKW) are nonlinear weir types. The general design was developed by Blanc and Lempérière 

(2001) and Lempérière and Ouamane (2003). The PKWs are used for improving flood release structures for 

reservoir systems. They can also be used as a weir replacement in regular flow channels. Because of the 

nonlinear geometry an increase of discharge capacity can be provided. In comparison to the total crest length the 

footprint size of a PKW is relatively small and it is ideal for top-of-dam spillway control structure (Oertel & 

Tullis 2014). 

In general, PKWs are differentiated into three main classifications: Type A, Type B and Type C. A PKW Type 

A has symmetric upstream and downstream overhang lengths. A PKW Type B has only overhangs to the 

upstream direction and the PKW Type C is the opposite with only overhangs to the downstream. Figure 1 shows 

the inlet key has its overhangs downstream and the outlet key its overhangs upstream. A PKW is built out of 

PKW units Wu, which contains one inlet key and two half outlet keys. The main geometrical parameters are 

listed and visualized in Figure 1. 

Previous studies within scaled physical models show that the hydraulics of PKWs depend on several 

geometrical parameters. Ribeiro et al. (2012) identified that primary and secondary parameters influence the 

discharge capacity considerably. The weir height P and the total weir width W are defined as primary 

parameters. The inlet and outlet width ratio WiWo
–1 and the height ratio PiPo

–1 are for example defined as 

secondary parameter. However, Machiels et al. (2014) defines the main influence factors as the weir heights P, 

the width ratio of the inlet and outlet WiWo
–1 and the overhang ratio BiB–1. 

To determine discharge coefficients according to Poleni the upstream water surface level hT above weir crest is 

necessary. By extending the Poleni formula with the velocity head the Du Buat formula can be developed:  

Q = 
2

3
 Cd L (2g)0.5 HT

1.5 (1) 

with: Q = discharge, Cd = dimensionless discharge coefficient, L = total centerline crest length, g = acceleration 

due to gravity, HT = total upstream energy head including the velocity head = hT + vT
2(2g) –1. The required flow 

velocity vT is averaged over the total upstream flow depth h.  



 

 

 Parameter Definition 

 Pi  upstream weir height 

 Po downstream weir height 

 Wi inlet key width 

 Wo outlet key width 

 Nu No. of PKW units 

 Bh side crest length 

 Bi downstream overhang length 

 Bo upstream overhang length 

 Bb weir foot length 

 Ts wall thickness 

 
Wu 

PKW unit width,  

Wu = Wi + Wo + 2 × Ts 

 W total weir width, W = Nu × Wu 

 
Lu 

crest centerline length of PKW unit, 

Lu = Wu + 2 × Bh – 2 × Ts 

 
L 

total crest centerline length,  

L = Nu × Lu. 

Figure 1.  Main geometric PKW notations (flow direction left to right), according to Pralong et al. (2011) and 

Oertel and Bremer (2016). 

2. FRACTALIZATION PRINCIPLE  

Objects that are similar to their constituents are called fractals. The term fractal was coined in 1970 by the 

French-American mathematician Benoit Mandelbrot. But already in 1926 the British physicist Fry Richardson 

discovered the phenomenon of fractal patterns (Lossau 2016).  

With the propose to improve the PKW’s discharge capacity a new concept of “fractalizing” the PKW crest was 

developed by Laugier et al. (2011). It consists of implementing small PKW units at the top side crest to majorly 

increase the developed total centerline crest length, since this parameter has a major influence on resulting 

PKW’s discharge capacities, especially for small energy heads (Laugier et al. 2011).  

 

3. EXPERIMENTAL MODEL 

3.1. General remarks 

The present paper focuses on water surface profiles and the resulting discharge coefficients and efficiency 

studies of two PKW geometries. A (1) Type A PKW and a (2) Type A PKW with fractal components were 

designed, based on Bremer (2016) and labeled as (1) PKW_A and (2) PKW_AF.  

The physical modeling data were produced by installing the two PKW geometries in a tilting flume (length 

L = 10.0 m, width W = 0.8 m, height H = 0.8 m) at Lübeck University of Applied Sciences’ Water Research 

Laboratory.  

The flow supply was provided by two frequency regulated pumps (fabricate: Grundfos NBE-150-250, each 

11 kW) and a piping system containing a valve and a magnetic inductive flow meter (MID, fabricate: Krohe, 

model: Optiflux 2000, accurate to ±0.1 l/s). The flow depths were measured by using an ultrasonic sensor (USS, 

fabricate: general acoustics, model: USS635, accurate to ±1 mm) mounted on an automatic step motor 

(fabricate: isel, accurate better than 1 mm) for positioning the USS in 1 cm steps along the flow direction in the 

tilting flume. 

3.2. PKW geometries 

The most important geometric parameters for the two PKW geometries are shown in Figure 2. The PKWs are all 

designed with an inlet- and outlet key widths of Wi = 105 mm and Wo = 85 mm. This represents an inlet to outlet 



 

ratio of WiWo
–1 = 1.25. The weir heights P, the weir widths W, the weir foot lengths Bb and the number of PKW 

units Nu are also equal in the two designed PKW geometries. 

 

The PKW_A geometry (Figure 2 (a)) is a symmetric PKW with equal down- and upstream overhang lengths 

(Bi = Bo =129.1 mm). The total crest centerline length is L = 4667.2 mm. It results in a weir width total crest 

centerline length ratio of LW–1 = 5.86. 

The configuration PKW_AF  (Figure 2 (b)) is based on the PKW_A geometry. Fractal elements were placed on 

the PKW side walls crest. In every side wall five orthogonal fractal elements after the model of a PKW B type 

were included, so the total crest centerline length increases up to L = 6691.2mm with a resulting ratio of LW–1 = 

8.41. 

 

 
(a) PKW_A 

(b)  

 
(b) PKW_AF 

 Parameter  Unit PKW_A PKW_AF 

 P     [mm] 196.9 196.9 

 L   [mm] 4667.2 6691.2 

 W     [mm] 800.0 800.0 

 Wi    [mm] 105.0 105.0 

 Wo   [mm] 84.0 84.0 

 Bb [mm] 230.7 230.7 

 Bh  [mm] 488.9 741.9 

 Bi  [mm] 129.1 129.1 

 Bo [mm] 129.1 129.1 

 Ts [mm] 5.0 5.0 

 Nu [−] 4 4 

 WiWo
–1 [−] 1.25 1.25 

 PTs
–1 [−] 39.38 39.38 

 LW–1 [−] 5.86 8.41 

 PTs
–1 [−] 41.4 41.4 

Figure 2.  3D visualization and dimensions of the manufactured PKW geometries (flow direction left to right) 

according to Oertel and Bremer (2016) . 

 

3.3. Model runs 

For the two investigated PKWs 18 model runs each, in total 36, were performed with varying discharges 

(specific discharges q = 2.50, 6.25, 10.00, 13.75, 17.50, 21.25, 25.00, 31.25, 37.50, 43.75, 50.00, 56.25, 62.50, 

75.00, 87.50, 100.00, 112.50, 125.00 l(sm) –1). 

The water surface levels (WSL) were collected up to 2.5 m upstream and 0.3 m downstream of the PKW axis in 

1 cm steps. The measuring time was set to 10 seconds. Outliners, which were identified using a standard 

deviation criterion (outlier of: d > m + 2 × s or d < m – 2 × s, with: d = time dependent flow depth data point, 

m = mean time averaged flow depth and s = standard deviation), were removed from the data. The corrected 

time-averaged flow depths h was used for data analysis. 

For calculating the upstream energy heads HT the time-averaged upstream flow depth h was deducted by the 

weir height P (hT = h – P). Also the velocity head vT(2g)–1 gets added. To fulfill the discharge coefficients 

formula by Du Buat (equation 1) the total upstream energy heads becomes HT = hT + vT(2g)–1. Oertel (2016) and 

Bremer (2016) both point out, that the distance to the weir geometry for the point on which the WSLs are taken 

has a great influence on calculating precise discharge coefficients Cd. Hence, for all 36 model runs the WSLs are 

taken at a distance of 5 × P upstream from the PKW axis to ensure a safe result production.   

http://www.linguee.de/englisch-deutsch/uebersetzung/great.html


 

4. RESULTS 

4.1. Water surface profiles 

Figure 3 shows for the two investigated PKW models, the resulting time averaged water surface profiles in the 

flumes centerline for all tested specific discharges. The two plots show that a smooth water surface occurs for 

distances xP–1 > 2. Between 0 < xP–1 < 2 flow will be accelerated and the WSL starts to decrease. In between 

−1.5 < xP–1 < 0 the structure’s overflowing edges lead to an increase in the resistance forces of the PKW. The 

flow decreases and the WSL de- and increases to a waved surface. Figure 4 to 6 show detailed plots of the 

WSLs over the inlet cross section in a direct comparison of the PKW_A and PKW_AF. Three exemplary 

specific discharges were selected (q = 13.75 l(sm)–1, 50.00 l(sm)–1, 125.00 l(sm)–1). The considered discharges 

are also illustrated by photographs. Figure 4 (a) shows that the PKW_AF has a lower water surface profile than 

the PKW_A. Figure 5 (a) & 6 (a) illustrate that the water surface profile of PKW_A and PKW_AF have a 

similar height. Also the photographs in Figure 6 (Figure 6 (b) & (c)) show that, the outlet cross section of the 

PKW_AF is more filled with water. This indicates a lower hydraulic efficiency of the PKW_AF outlet cross 

section. In addition to these plots Figure 7 shows the water surface levels in direct comparison for PKW_A and 

PKW_AF geometries at measuring distance 5 × P up water. In general comparison the PKW_AF geometry has 

the lowest WSLs at the measuring distance 5 × P. In further consideration the PKW_A has for specific 

discharge q < 20 l(sm)–1 higher WSLs in comparison to the PKW_AF. Between the specific discharge 20 l(sm)–1 

< q < 40 l(sm)–1 the PKW_A decreases its WSLs relative to the PKW_AF. For discharge q > 40 l(sm)–1 the 

WSLs of the PKW_A are approximately equal to the WSLs of the PKW_AF.  

Scale effects might influence the water surface profiles, which would have an effect on the calculated discharge 

coefficients. Scale effects in particular might affect the PKW_AF geometry and especially small discharges. To 

identify these scale effects further investigation in a large-scale model should be provided. In this paper the 

influence of scale effects is neglected. 

 

 

(a) PKW_A  

 

(b) PKW_AF 

Figure 3.  WSL at flume’s centerline for investigated discharges (inlet key section, exaggerated plot).  

 

 

(a) WSL 

 

(b) PKW_A 

 

(c) PKW_AF 

Figure 4.  Detail plot of the WSLs over the PKW cross section and photographs for a specific discharge 

q = 13.75 l(sm)–1. 
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(a) WSL 

 

(b) PKW_A 

 

(c) PKW_AF 

Figure 5.  Detail section of the WSLs over the PKW cross section and photographs for a specific discharge  

q = 50.00 l(sm)–1. 

 

(a) WSL 

 

(b) PKW_A 

 

(c) PKW_AF 

Figure 6.  Detail section of the WSLs over the PKW cross section and photographs for a specific discharge  
q = 125.00 l(sm)–1. 

 

 

Figure 7.  Direct comparison of water surface heights for PKW_A and PKW_AF geometries at measuring 

distance 5×P. 

4.2. Discharge coefficients and PKW efficiency 

Figure 8 (a) shows the calculated discharge coefficients Cd as absolute values. The discharge coefficients are 

calculated by using equation 1 including the velocity head vT(2g)–1. For comparing the two investigated PKW 

models the PKW_A will be taken as reference geometry. Figure 8 (b) shows the relative comparison of resulting 

Cd values for the investigated PKW geometries. 

Figure 8 (a) show a typical development of discharge coefficients with larger Cd values for small discharges and 

for higher discharges with lower values. This is a result of the outlet cross section reduces its hydraulic 

efficiency with increasing discharges, so the discharge coefficients decreases. 
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Generally, the PKW_A geometry shows the largest Cd values. For a given ratio HTP–1 < 0.05 the PKW_AF has 

larger Cd values than PKW_A. By increasing the energy heads the discharge coefficients of the fractal PKW 

rapidly decrease. For ratios HTP–1 < 0.05 the PKW_AF Cd values are lower than the Cd values of the PKW_A.  

By looking at Figure 8 with consideration that a large Cd value equals a good efficiency, the PKW_A seems to 

be in general the most efficient PKW per unit length of the two investigated geometries. From a ratio  

HTP–1 < 0.05 (equals a specific discharge 13.75 l(sm)–1 < q < 17.50 l(sm)–1) the PKW_A has larger Cd values 

than the PKW_AF what might indicate a higher efficiency. Whereas Figure 7 shows that the PKW_A has for 

specific discharge q > 40 l(sm)–1 approximately equal WSLs as the PKW_AF. This concludes, that the PKW_A 

and the PKW_AF might have the same efficiency for specific discharges q > 40 l(sm)–1 (equals an energy head  

HTP–1 ≈ 0.14). Consequently, the discharge coefficients Cd, calculated with using the total centerline crest length 

are not reasonable for useful PKW efficiency statements. 
 

 

(a) absolute values   

 

(b) direct comparison  

Figure 8.  Discharge coefficients Cd for PKW_A and PKW_AF geometries. 

 
Considering that the discharge coefficients Cd, calculated by using the total centerline crest length are not 

reasonable for useful PKW efficiency statements, it is necessary to provide a method for direct comparison. 

Indications of PKW efficiency are the upstream water surface levels on a specific measuring point or distance to 

the weir as shown in Figure 7. It is more accurate to determine the PKW efficiency by using a normalized 

discharge coefficient Cdw. The Cdw value allows analyzing and comparing PKW efficiency for PKWs with 

different centerline crest lengths. Therefore Equation 1 gets modified by replacing the total centerline crest 

lengths L with the fixed flume width W, as shown below: 

 

Q= 
2

3
Cdw W (2𝑔)0.5 HT

1.5      (2) 

    

with: Cdw = normalized discharge coefficient, W = fixed flume width = 0.8 m (for present investigation). If the 

purpose of the PKW is to produce a high efficiency, which equals a low upstream head the calculated Cd values, 

which includes the total centerline crest length L, does not allow a statement about the efficiency of the 

investigated weir geometry. Thus, the normalized Cdw value becomes necessary. Machiels et al. (2011) comes 

also to this conclusion. 

Figure 9 shows resulting normalized discharge coefficients Cdw for PKW_A and PKW_AF as absolute values 

(Figure 9 (a)) and relative comparison (Figure 9 (b)). Now the not matching results between Figure 7 and Figure 

6 are obvious. For low discharges HTP–1 < 0.05 the PKW_A has a lower efficiency. The PKW_AF has by far the 

highest efficiency even up to HTP–1 ≤ 0.10. With increasing discharges HTP–1 > 0.10 the efficiency of PKW_A 

and PKW_AF is similar. The large Cdw values of the PKW_AF for low discharges in comparison to the reference 

geometry might be a result of scale effects. Therefore, further investigations are necessary to examine data. 
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(a) absolute values   

 

(b) direct comparison  

Figure 9.  Normalized discharge coefficients Cdw for PKW_A and PKW_AF geometries. 

5. RESULT ANALYSIS 

The concept of the fractal PKW has a major positive influence on the discharge capacity for low energy 

heads. For the smallest tested discharge the PKW_AF has an up to over 70% increased efficiency. With 

increasing discharges the advantage gradually decreases and the PKW_AF has a similar efficiency as the 

tested reference geometry (PKW_A).  For most practical PKW Applications, increasing efficiency at very 

small heads is likely of limited benefit compared to the cost associated with adding fractals. 

In addition to this investigation larger scaled models, particularly of the fractal PKW is needed to 

determine scale effects. The PKW_AF will be influenced by scale effects especially for those low energy 

heads. It seems to be, that the surface tension has a negative influence on the results and the efficiency for 

small discharges might be even increased. Cicero et al. (2011) compares a 1/30 scaled physical model with 

a 1/60 scaled model to characterize the effect of surface tension for low energy heads for PKW structures. 

Therefore, the Weber number must be calculated by following equation: 

 

We = 
𝜌𝑔𝐻2

𝜎
        (3) 

 
with: ρ = water density, g = gravitation due to gravity, H = total energy head, σ = surface tension.  

The calculated and compared Cd values by Cicero et al. (2011) of both models show differences less than 8 %. 

This is lower than measurements uncertainties. Within low energy head the measurement uncertainties for the 

1/60 models get larger. For energy heads HTP–1 > 0.2 (equals HT = 1.5 cm or We = 30 for the 1/60 scaled model) 

the calculated results match relatively precise (Cicero et al. 2011). In Figure 10 the calculated Weber numbers 

for the investigated PKW_A and PKW_AF are shown. The peak of the Cd values for the PKW_A is HTP–1  0.08 

and for the PKW_AF HTP–1   0.03. A Weber number We  30 is equal to HTP–1   0.08. That means all tested 

discharges with an energy head HTP–1 > 0.08 have no influence by scale effects. The discharges with low energy 

heads HTP–1 < 0.08 must be reinvestigated with a larger scaled model to remove scale effects. 

Figure 11 shows PKW_A and PKW_AF as exemplary photographs for specific discharges of q = 13.75 l(sm)–1, 

q = 50.00 l(sm)–1  and q = 125.00 l(sm)–1.With increasing discharge the water amounts pass the weir more and 

more in longitudinal direction and with less 3D effects. So the total centerline crest length has for large 

discharges decreasing influence on the efficiency of the PKW.  

In this investigation the fractal elements were designed as configuration PKW type B. These fractal elements are 

placed orthogonal to the side crest of the weir. For improving this design further investigation with different 

fractal elemental set ups are needed. For example, to place the fractal units in an angle so the incident flow is 

improved. Also this might influence the hydraulic efficiency of the outlet cross section. As in Figure 12 is 

shown the fractal elements guide the water orthogonal into the outlet cross section. That leads to a longer flow 

length and the water remains longer in the outlet cross section. A backwater of the descendant water is the 

result. With placing the fractal elements at an angle this problem might be less relevant. Also it’s necessary not 

to reduce the outlet width by any fractal elements because that might influence the hydraulic efficiency as well.  
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Figure 10. calculated Weber numbers for PKW_A and PKW_AF. 

 

 

(aa) PKW_A, q = 13.75 l(sm)–1 

 

(ab) PKW_A, q = 50.00 l(sm)-1 

 

(ac) PKW_A, q = 125.00 l(sm)-1 

 

(ba) PKW_A, q = 50 l(sm)-1 

 

(bb) PKW_AF, q = 50.00 l(sm)-1 

 

(bc) PKW_AF, q = 125.00 l(sm)-1 

Figure 11. Detail Photograph of the inlet in centerline of the PKW_A and PKW_AF. 
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Figure 12.  Idealized flow direction in comparison of PKW_A and PKW_AF. 

6. CONCLUSIONS 

The present investigation is about PKWs with fractal elements and its structure efficiency, discharge coefficients 

and water surface profiles.  

The water surface profiles show flow acceleration right in front of the upstream face of the PKW structure and 

the WSL decreases rapidly. Over the PKW structure the velocity decreases erratically and the WSL increases to 

a wavy surface. Within the inlet cross section three-dimensional flow effects cannot be excluded. Further 

investigation is needed. 

Discharge coefficients resulting from the present investigation show a typical development with height Cd 

values for small discharges and with lower values for higher discharges. By increasing discharges the outlet 

cross section reduces its hydraulic efficiency and the discharge coefficients decrease. Also the effective total 

centerline crest length reduces with increasing discharges. 

Comparing determined Cd values with measured water surface profiles shows that the discharge coefficients 

provide no reasonable information about the PKW efficiency. To determine the PKW efficiency a normalized 

discharge coefficient Cdw is necessary. Within the Cd value included total crest length gets replaced by the total 

weir width. Due to this calculation method it is possible to compare the efficiency of PKW with different total 

centerline crest length. 

The PKW_AF shows a significant better efficiency for small discharges compared to reference geometry. The 

results for calculated Cd and Cdw values with an energy head HTP–1 < 0.08 are influenced by scale effects and 

further investigation with larger scaled physical model is necessary to exclusionary scale effects. Within larger 

discharges the PKW_AF efficiency equals the efficiency of the reference geometry.  
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ABSTRACT 

Understanding the pressure distribution on round crested weir can help to improve their design. In this frame, 

we propose a finite difference method for irrotational flows. Our method, based on a previous work, determines 

the free surface iteratively. For best results, the computation of the velocity at the free surface is done by a bi-

dimensional function fitting. Knowing the velocity, the elevation and a reference energy level, the pressure can 

be derived. The evolution path is determined by numerical derivatives of the pressure at the surface. The 

iterative method is tested on a subcritical flow. The pressure computation is compared to experimental 

measurements of the pressure on a spillway crest (trans-critical flow). Both results are very encouraging: the 

free surface moves smoothly to an equilibrium state and the pressure on the structure is very close to 

experiment. For this last point, the method is also able to faithfully reproduce pressure drops. 

Keywords: Finite difference, Spillway, free surface, potential flow 

1. INTRODUCTION

Spillways are important structures that should provide sufficient safety during flood events. Understanding their 

behavior for discharges higher than design ones is a key point for innovative design and safer structures. To do 

so, experimental and numerical investigations should be led in parallel for collecting specific information about 

these structures. This paper focuses on the implementation of a new numerical method that aims to determine 

quickly the free surface position, velocity and pressure fields for trans-critical flows. 

In hydraulics, the Finite Volumes Method (FVM) is traditionally used to simulate free-surface flows. However it 

doesn’t allow to compute directly the pressure on the structure due to the assumptions directly linked to this 

method. Numerical methods such as Finite Elements (FE) (Chatila & Tabbara 2004), Smoothed Particle 

Hydrodynamics (SPH) (Goffin 2013; Goffin et al. 2016; Lodomez 2014; Lodomez et al. 2014) and Particle 

Finite Elements (PFEM) (Larese et al. 2008) implemented in 3-D or 2-D vertical slices can handle flows over 

round crested weirs with information about the pressure on the structure. However they require a large amount 

of computing resources in order to handle accurately the flow pattern at the interface with the structure. For 

ordinary desktop computers, a computation for a single discharge may reach several hours. Thus, optimizing a 

weir profile would require too many time with such methods. 

A need for simpler and quicker methods is obvious. Castro-Orgaz (2013) solves the problem using a potential 

flow assumption. Equations are solved in the non-physical  ,x , where x is the horizontal direction and  the

stream function. A more natural way would be to express the problem in the physical spatial plane (x, z). The 

method presented in this paper enhances the one introduced in Goffin et al. (2014) where the potential flow is 

solved in a physical plane  ,x z . First, improvements from Goffin et al. (2014) method will be presented. Then,

test cases and practical examples are explained for a bump and a flow over a round crested weir. 

2. NUMERICAL METHOD

The method developed here is based on the assumption that the flow is irrotational. This was proved by 

Escande (1937) for flows over spillways. The Laplacian 
2  of the potential   or the stream function   

can be solved in such cases. The resulting field, once derived, yields to a velocity field. 



 

Thanks to the energy conservation principle, the pressure p at a given point can be deduced for a given energy 

level E : 
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where z is the altitude,   the density, g  the acceleration of gravity and u  the velocity vector. 

 

The domain is discretized by using the finite difference approach. Irregular nodes are created at boundaries in 

order to represent accurately their geometry. Irregular nodes result from the intersection between the boundary 

contour and the grid lines. Regular nodes are created at the intersection of grid lines for the inner domain. An 

example of discretization is depicted in Figure 1. 

 

 

Figure 1: Schematic discretization of the computation domain 

2.1. First approach and drawbacks 

In Goffin et al. (2014), the Laplacian solved was based on the potential : 

 

 
2 0    (2) 

 

This approach required to impose Neumann boundary conditions (BC), i.e. the value of a derivative is imposed 

at the boundary, for free surface and impervious boundaries. This was achieved by using the Green-Gauss 

theorem to compute derivatives at these boundaries. It led to a good approximation of the velocity at the 

boundary but some oscillations could be observed. 

 

Determining the free surface requires iterations on the position of free surface nodes. This was done thanks to an 

approach based on curvilinear coordinates developments (Stilmant et al. 2013). The evolution of the pressure 

with the water depth /dp dH  was linked to properties related to curvilinear cross sections and velocity profiles. 

The evolution of depth for each surface node H  was given by 

 

 1i ip p
z

dp

dH

  
    (3) 

 

with   a relaxation coefficient. The derivative at the denominator is close to zero in the region of the critical 

section. This led to some instabilities in that area. 

 

Main drawbacks of this method included: 

 Oscillations due the velocity evaluation at boundaries 

 Instabilities near the critical section 

 Pressure evaluation at the free surface could present oscillations due to the velocity evaluation 



 

2.2. New approach 

The new approach described in this section aims to reduce previous method problems. The first problem that 

was tackled is the evaluation of velocity at boundaries. To do so, The Laplacian is now solved for the stream 

function   : 
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Only Dirichlet BC are now required which avoids to use a Green-Gauss derivative evaluation (Goffin et al. 

2014) which led to approximations at the boundary. Velocities computed on the outer limits should be more 

accurate now using an imposed value for the unknown. 

 

The second derivative is discretized according to a finite difference scheme on an irregular grid (see Figure 2): 
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Where 
ka  are relative to horizontal distances and 

kb  are relative to vertical distances between nodes. 

 

 

Figure 2 : Discretization scheme for a horizontal second derivative 

 

When distances between nodes are equal, the discretization scheme has second order precision, while it is first 

order when nodes are not regularly spaced (Hirsch 2007). 

 

After the computation of a given state, the velocities are evaluated for the inner nodes as a derivative of the 

stream function: 
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  (6) 

 

These derivatives are evaluated thanks to centered finite differences. For the nodes located on the boundaries, 

velocities are computed thanks to an interpolation from inner nodes. For a given boundary node, inner neighbors 

within a radius r are considered. The value  
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is computed for each of these nodes. Then, a bi-dimensional function is fitted by least squares on this set of 

points: 
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When coefficients 
ic  are determined, the value f of equation (7) can be computed using (8) for the boundary 

node. This method avoids velocity discontinuities at boundaries. Then, the pressure can be determined by means 

of (1) and a reference energy level E. 



 

 

The approach adopted here for the free surface evolution is different from the previous paper. It is based on a 

Taylor development, second order accurate:  
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First, a classical Newton-Raphson approach (first order accurate) (Ypma 1995) is implemented by using only 

the first derivative:  

 

 1i ip p
z
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 
    (10) 

 

Obviously, it can lead to indeterminate solution if / 0dp dH  . This is the case at the critical section. Nodes 

close to it are subject to large displacements since the pressure derivative is close to 0. 

 

In order to avoid too large displacements of the free surface, a relaxing factor was used to limit displacements to 

a tenth of the discretization step. This relaxing factor was applied for the whole free surface. 

 

Compared to a classical Newton-Raphson iteration scheme, solving the quadratic function (9) avoids to have 

infinite z  since a second derivative is present. Equation (9) can be solved to find z  that should be applied to 

free surface nodes: 
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The first root (+) was found to be the solution for supercritical flows and the second root (-) was found to be the 

one for subcritical flows. 

 

In equations (10) and (11), first and second derivatives are evaluated numerically. Traditionally, this would 

require moving each node independently, leading to a large amount of intermediate computations. The method 

chosen in this approach is hybrid and consists in moving vertically the whole free surface by an increment  . 

Derivatives are computed by moving the free surface upward and downward: 
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For subcritical and supercritical flows, the energy level and the pressure to reach are given as parameters. When 

the flow is transcritical, the energy level is set by the critical section (Castro-Orgaz & Montes 2015). This 

critical section tends to minimize the specific energy of the flow. The critical section can be determined by 

spotting the section were / 0dp dH   and where the specific energy is minimized. Since the total energy of the 

flow is set by the user, the pressure at the critical section represents the target pressure that all nodes has to 

reach, which is 1ip   in (10) and (11). 

3. TEST CASE 

The test case in this section show first results of the currently implemented method for a subcritical flow on a 

bump. The bump has equation  20.3 1 x  in the range  1;1  m. In the range    5; 1 1;5    m, the bottom is 



 

flat and at the altitude 0 m. The domain is discretized with a fine 22 mm² grid in order to concentrate on the 

results of the iterative method and not on the effects linked to a rough discretization. 

 

The initial condition is a horizontal free surface set at 0.47 m. The target pressure is 0 m and the energy level is 

imposed at 0.4723 m. An analytical solution was computed. It considers a uniform vertical velocity profile and 

the energy is conserved on all free surface points. Given the energy conservation equation (1), a water level can 

be derived. The uniform vertical velocity profile assumption is not in total agreement with the model 

implemented here. Some differences may be noticed. The velocity and pressure on the free surface were 

computed according to the fit of function (8) and neighbors were taken in a radius 8r x  . The problem was 

solved with equation (10) leading to results given in Figure 3 where the initial condition as well as the final 

solution obtained by the model are depicted. 

 

It can be seen that the free surface resulting from the computation fits closely the analytical solution in shape 

and in values. However, this analytical solution is computed for a uniform velocity profile, which is not 

representative above the bump. This inconsistence can be noticed in the rightmost plot in Figure 3. 

 

These encouraging results show that this method is able to move a free surface. It should also be tested on 

different flow regimes. 

 

 

Figure 3: Free surface position for a subcritical flow over a bump 

4. PRESSURE PROFILE ON A ROUND CRESTED WEIR 

Once a free surface profile is determined, velocity fields and pressure fields can be computed. This section is 

focusing on the determination of the pressure on the structure with a free surface profile measured 

experimentally. 

 

An experimental campaign was led about pressure diagrams on WES (USACE 1987) round crested weir for 

high head ratios ( / dH H ), with a design head Hd = 15 cm. Numerical simulations were led for a domain 

spreading from the reservoir to the spillway itself. Results shown in Figure 4 were computed for 2/ dH H   

and are focusing only on the weir crest. Very good agreement between experimental measures and numerical 

results can be observed. This figure shows that the method implemented is able to faithfully reproduce the 

pressure on a weir crest. Even pressure drops can be reproduced with a high level of fidelity. 

 



 

 

Figure 4: Comparison between experimental measurements and numerical computation of the pressure on a 

WES weir crest 

5. CONCLUSIONS 

In this paper, we presented an original method which goal is to determine the free surface profile of irrotational 

flows. This work was based on first developments presented in Goffin et al. (2014). Improvements were 

presented in order to reduce drawbacks noticed in the previous approach. 

 

The Newton-Raphson scheme was successfully tested on a subcritical flow over a bump. A more advanced 

method was also proposed in order to deal with transcritical flows. 

 

With a given free surface, the method showed that it was able to faithfully reproduce the pressure diagram on a 

round crested weir. 

 

Further developments should focus on transcritical flows and the critical section issue. In this frame the second 

order method should bring benefits. 
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ABSTRACT 

The numerical modelling of free surface flows is important to understand their behaviour and predict undesired 

situations that may occur, as formation and location of hydraulic jump within irrigation channels. The Saint-

Venant equations are most commonly used for practical modelling of this type of flows. There are many methods 

and numerical schemes used for the solution of these equations. The extension TVD plays an important role in 

minimizing the oscillations of the flow in the channels. In our work we used MATLAB® as a programming tool 

to develop a model based on 1D Saint-Venant equations and the MacCormack finite difference method with 

TVD extension scheme and after its validation we used it to calculate flow depth, velocity and predict the 

location of the hydraulic jump which is formed in prismatic sloped channels with different sections, such as 

rectangular and triangular sections.  
Based on experimental trials at LARHYSS laboratory, University of Biskra, Algeria that allowed us to impose 

different upstream water depth and velocity (Froude number), downstream water depth as well as hydraulic 

jump locations, we were able to analyse the accuracy of the model to locate the hydraulic jump in triangular 

channels knowing the upstream and downstream depths. We present a matrix of flows ranging Froude numbers 

from 3 to 8, initial depth from 0.035 m to 0.05 m and velocities from 1.3 m/s to 4.5 m/s. Results of locations, as 

expected are better similar to experimental conditions for low slopes, the changing of slope and Froude number 

has an effect on its prediction uncertainty that can be estimated by a relation provided in this work. 

Keywords: Saint-Venant equations, hydraulic jump, triangular channels, MacCormack scheme, free surface 

flows 

1. INTRODUCTION

In irrigation systems several sills and gates are placed and measures of flow depth are fundamental to their 

management. Triangular channels allow the discharge prediction more accurately compared to rectangular 

channels, which are much more sensitive to water depth measurement.  

A hydraulic jump is formed whenever flow changes from supercritical to subcritical flow. In this transition, 

water surface rises abruptly, surface rollers are formed, intense mixing occurs, air is entrained, and energy is 

dissipated (Gharangik and Chaudhry 1991). The dissipation capacity of a hydraulic jump evolving in a 

triangular channel is larger than that of a hydraulic jump evolving in a rectangular or trapezoidal channel, 

(Hager and Wanoschek 1987). Several researchers studied the hydraulic jump properties and location in recent 

years in horizontal rectangular channels (Hager and Bretz 1987; Hager 1992; Ead and Rajaratnam 2002; 

Carvalho et al. 2008; Chanson, 2009; Chanson and Carvalho 2015), in horizontal triangular channels (Hager and 

Wanoschek 1987; Achour and Debabeche 2003; and Debabeche and Achour 2007) and in a sloped triangular 

channel (Debabeche et al. 2009). 

The hydraulic jump is formed at a location where the specific forces on both sides of the jump are equal. The 

hydraulic jump location and properties can be determined using continuity and momentum considerations. 

Chow (1959) computed the water surface profiles for supercritical flow in a channel, starting from the upstream 

end, and the subcritical flow starting from the downstream end. Mc-Corquodale and Khalifa (1983) used the 

strip-integral method to compute the jump length, water surface profile, and pressures at the bottom. To solve 

the Saint-Venant equation numerically, Abbott et al. (1969) used a finite-difference method and 

http://irc.univ-biskra.dz/en/lab/larghyde/
http://irc.univ-biskra.dz/en/lab/larghyde/


 

Katopodes (1984) used the finite-element method (Gharangik and Chaudhry 1991). Garcia-Navarro et al. (1992) 

applied high-resolution MacCormack scheme TVD Saint-Venant equations to simulate unsteady flows in 

several applications. However the simulation of the hydraulic jump was always in low slopes or when there was 

a sudden decrease in the bottom slope.  

The present study aims to analyse the location of a hydraulic jump predicted in a sloped triangular channel by 

the model based on 1D Saint-Venant equations for free surface flows. We used a high-resolution Mac Cormack 

scheme TVD to simulate hydraulic jumps location in channel up to slopes of 5 %.  The work comprised more 

than 90 experimental hydraulic jumps in the laboratory which were reproduced with numerical simulations.  

Every hydraulic jump in experimental conditions was formed on the apron by testing several different 

downstream water depths h2, setting specified sill height S, and adjust flow Q. (Figure 1a) shows the 

characteristics of hydraulic jump; h1 is the upstream water depth measured at the toe of hydraulic jump, h2 is the 

downstream water depth measured at the maximum surface level, α is the angle of inclination of the channel 

relative to the horizontal, Lj is the length of the hydraulic jump measured from the toe of the hydraulic jump to 

the section where maximum surface level occurs. The hydraulic jump is located at the upstream of the channel 

for the channel downstream depth h2. If the channel downstream depth h is less than h2, the hydraulic jump 

moves downstream (Figure 1b). However, the jump is pushed back as shown in (Figure 1c) if the channel 

downstream depth is higher than h2 (Chaudhry 2008). In experimental conditions position can be settled by 

adjusting flow. 

 

 
Figure 1. Location of hydraulic jump scheme 

 

Next section presents the description of the experimental tests in the laboratory, the governing equations and 

numerical scheme used to simulate the hydraulic jumps. Section 3 presents and discusses the results of the 

numerical simulations in rectangular and triangular channels for different slopes as it was founded that 

numerical simulation doesn’t predict accurately the hydraulic jump location for all hydraulic jump tests. The 

main conclusions are presented in Section 4. 
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2. METHODOLOGY 

2.1. Description of the experimental model and tests 

The experiments of hydraulic jump were made at the Research Laboratory in Subterranean and Surface 

Hydraulics (LARHYSS) of the Hydraulic Department of University of Biskra. The rectangular channel was 7 m 

long and 0.295 m wide (Debabeche 2003) and the triangular channel was symmetrical with 3 m long and a 

triangular cross section with the bottom angle of 90°. A circular pipe of 0.115 m diameter connected the channel 

with pressure box, on which was inserted a pressure convergent of triangular cross section opening directly into 

the channel. The role of the pressure convergent was to generate the flow at high velocity as shown in Figure 2. 

The Figure 3 shows a general view of the triangular channel and in Figure 4 an aspect of the hydraulic jump in 

the slopped triangular channel for (F1= 6.32 ; s = 0.22  m ; Lj = 1.22  m ; h2 = 0.1882 m, tang() = 0.05). 

 

 

Figure 2. Experimental model 

 

Figure 3. General view of the experimental channel 

 

Figure 4. Hydraulic jump in a sloped triangular channel 

The experimental study was conducted in three initial upstream water depth h1 = 0.035, 0.04 and 0.05 m. For 

each chosen upstream water depth, h1, there were six different slopes tested characterized by tang(α) = 0 %, 

1 %, 2 %, 3 %, 4 % and 5 %.  A large range of Froude number F1 from 3 to 8 was tested. 

The flow was measured by a rectangular weir, connected with the triangular channel with its downstream part 

described by the following equation: Q = 0.3794B(2g)0.5 (1+0.164962.0716)1.5h1.5, obtained by Hachemi (2006) 

where 𝐵 is the width of the channel and β is the form ratio coefficient. The water depth in the channel was 

measured by a level indicator (limnimeter). The water level measurement range can be set to ± 0.01 m. The 

Froude number is calculated from the following universal relation: F1
2 = 2𝑄2(gm2h1

5)1 valid for a symmetrical 

triangular channel, where m is the cotangent of the angle of inclination of the channel.  



 

2.2. Governing Equations and Numerical Scheme 

The Saint-Venant equations (1871) represented by the mass and the momentum conservation equations are used 

for modeling non-stationary flows in gradually and rapidly varied flow at free surface, (Maher 2009). The Saint-

Venant equations for one-dimensional flow can be written as follows: 

 
𝜕𝐴

𝜕𝑡
+

𝜕𝑄

𝜕𝑥
= 0   (1) 

𝜕𝑄

𝜕𝑡
+

𝜕

𝜕𝑥
(

𝑄2

𝐴
+ 𝑔𝐼1) = −𝑔𝐴𝑠 − 𝑔𝐴𝐽 + 𝑔𝐼2   (2) 

 

where x is the distance along the channel bed, t is the time, A is the flow area, Q is the flow in the x-direction, I1 

is the pressure force, I2 is the pressure forces due to longitudinal width variations, g is the gravitational 

acceleration, s is the channel bed slope and J is the friction slope. They are valid for horizontal and low slope, as 

the pressure distribution is considered hydrostatic, the fluid is incompressible, and the velocity is assumed 

constant in the section. 

The friction slope can be expressed using the Manning's equation as: 

 

𝐽 =
|𝑄|𝑄

𝐾𝑠
2𝐴2𝑅4 3⁄  (3) 

 

where  Ks is the Strickler's roughness coefficient; and R is the hydraulic radius. The MacCormack scheme is an 

explicit finite difference method which belongs to the class of methods called fractional step method. It resulted 

from changes in the methods of two steps based on the expansion of second order Taylor series, specifically in 

the method of Lax Wendroff, this scheme guarantees the approximation in second order in space and time 

(Carmo 2009). For the application of the MacCormack scheme, the Saint-Venant equations could be written as: 

 
∂U

∂t
+

∂F

𝜕𝑥
=S (4) 

with 

U = {𝐴
𝑄

}          F = {
𝑄

𝑄2

𝐴
+𝑔𝐼1

}           S = { 0
−𝑔𝐴𝑠−𝑔𝐴𝐽+𝑔𝐼2

} (5) 

 

The MacCormack scheme is explicit and applied with two-step: initially a calculation based on the values of 

variables in the previous time (predictor) and then a correction step based on the predicted values (corrector). 

The accuracy of the second order is guaranteed by the discretization in two symmetrical steps. 
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For the stability of The MacCormack scheme, as of other explicit methods, it is necessary to check the Courant-

Friedrichs-Lewy (CFL) condition: 

 

∆𝑡 = 𝐶𝑛
∆𝑥

𝑚𝑎𝑥(|𝑈|+√𝑔𝑦)
      (8) 

 

where Cn is Courant number and y is hydraulic depth. The resolution of Saint-Venant equations using 

MacCormack scheme can generate numerical oscillations. To reduce these oscillations, an extension of high-

resolution based on the theory of the Total Variation Diminishing TVD could be introduced into the 

MacCormack method, which leads to a more robust model. The TVD extension on the MacCormack method 

can be written as: 

 

𝑈𝑖
𝑛+1 = 𝑈𝑖
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+ (𝑅̃
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1
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1
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𝐷̃
𝑖−

1
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)      (9) 
 

where 𝑅̃ is the right-eigenvector matrix corresponding to the approximated Jacobian, and 𝐷̃ is a scheme 

dependent vector function. Details could be founded in (Garcia-Navarro et al. 1992) work who studied the role 

of TVD-MacCormack scheme for the reduction of oscillations resulting from the classical method of 



 

MacCormack. This study was done in rectangular and trapezoidal channels with slope and the presence of 

hydraulic jump, after a comparison between a classical scheme of MacCormack and extension TVD, the results 

showed an effectiveness to minimize the oscillations by TVD- MacCormack scheme. 

 

2.3. Model validation and application to study hydraulic jump characteristics 

MATLAB® Model was developed based on 1D Saint-Venant equations and the MacCormack finite difference 

scheme with TVD extension described above, was validated with literature data “benchmarkdata” (Mendes, 

2001) and was used to simulate a large range of hydraulic jumps tested in the laboratory. Figure 5 shows the 

numerical results of the flow Q = 0.18 m3/s in a rectangular channel of 25 m length with water depth h1 = 0.33 m 

over an obstacle which induce a subcritical-supercritical-subcritical regime (t = 100 s and ∆x = 0.1 m). The 

comparison of the analytical and numerical solutions shows that the results are similar. It is noticed an 

insignificant difference in the change of the super to sub-critical regime. 

 
Figure 5. Numerical simulation of flow over an obstacle 

 

The selected tested simulations are presented in Table1 for the rectangular channel and in Table 2 for the 

triangular channel. Tables 1 and 2 shows the main characteristics of the hydraulic jumps accordingly the 

experimental tests and the results of hydraulic jump location simulated with the presented model. The model 

allowed quantifying uncertainty of the simulation results reproducing hydraulic jumps. Courant number used in 

the simulations varied from 0.2 (F1 > 7) and 0.5 (F1 = 3). 

 

Table 1: Hydraulic jump in rectangular channel simulations 

 

Table 2: Hydraulic jump in triangular channel simulations 

 

mesh : dx = 0.1 m; time test : t = 60 s; Coefficient of roughness: Ks = 100 m1/3s-1 

results from experimental tests results from  

numerical model 

Experiment 

number 

Slope s Flow Q 

(m3/s) 

Froude 

number 

F1 

upstream 

water depth 

h1 (m) 

downstream 

water depth h2 

(m) 

sequentdepth

s ratio   

Y = h2/h1 

Location 

of h. jump 

Lc (m) 

Lc/L 

1 0.00 0.00278 3.92 0.040 0.1038 2.60 0.6 0.2069 

2 0.00 0.00227 4.48 0.035 0.1013 2.89 0.3 0.1034 

3 0.00 0.00327 6.44 0.035 0.1339 3.83 0.1 0.0345 

4 0.00 0.00868 7.01 0.050 0.2013 4.03 0.1 0.0345 

5 0.00 0.00991 8.00 0.050 0.2213 4.43 0.1 0.0345 
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Numerical solution

Analytical Solution

Bottom of the Channel

Slope: s = 0.00; mesh: dx = 0. 1 m; time test: t = 60 s; Coefficient of roughness:  Ks = 100 m1/3s-1 

results from experimental tests results from  

numerical model 

Experiment 

number 

Flow Q 

(m3/s) 

Froude 

number F1 

upstream 

water depth 

h1 (m) 

downstream 

water depth h2 

(m) 

sequentdepths 

ratio  Y = h2/h1 

Location of 

h.jumpLc (m) 

Lc/L 

1 0.02527 3.42 0.040 0.1859 4.65 0.1 0.014 

2 0.02737 5.70 0.030 0.2390 7.97 0.1 0.014 

3 0.01869 7.15 0.020 0.1914 9.57 0.1 0.014 



 

6 0.02 0.00342 2.76   0.05 0.1537 3.07 0.3 0.1034 

7 0.02 0.00457 3.69   0.05 0.1730 3.46 0.3 0.1034 

8 0.02 0.00311 4.39 0.04 0.1502 3.76 0.7 0.2414 

9 0.02 0.00390 5.50 0.04 0.1670 4.18 0.8 0.2759 

10 0.02 0.00281 5.53 0.035 0.1403 4.01 1.1 0.3793 

11 0.02 0.00378     7.45    0.035 0.1722 4.92 0.8 0.2759 

12 0.05 0.00373 3.01 0.05 0.1451 2.90 2.1 0.7241 

13 0.05 0.00469 3.78 0.05 0.1681 3.36 1.8 0.6207 

14 0.05 0.00292 4.12 0.04 0.1458 3.65 1.9 0.6552 

15 0.05 0.00581 4.69 0.05 0.2001 4.00 1.5 0.5172 

16 0.05 0.00726 5.87 0.05 0.2404 4.81 1.3 0.4483 

17 0.05 0.00424 5.98 0.04 0.1764 4.41 1.7 0.5862 

18 0.05 0.00337 6.65 0.035 0.1757 5.02 1.5 0.5172 

19 0.05 0.00581 8.20 0.04 0.2215 5.54 1.4 0.4828 

20 0.05 0.00433 8.52 0.035 0.2042 5.83 1.4 0.4828 

 

3. RESULTS AND DISCUSSION 

3.1. Location of hydraulic jump predicted through numerical simulations  

In this part the numerical simulation in rectangular and triangular horizontal channels is presented, and the 

location of the hydraulic jump in a triangular channel with different slopes is analyzed. Figures 6 and 7 illustrate 

the hydraulic jump profile obtained by the simulations of horizontal rectangular and triangular channels, 

respectively.  

 
Figure 6.  Hydraulic jump profile in a rectangular section channel predicted by numerical simulations (s = 0) 

 
Figure 7.  Hydraulic jump profile in a triangular section channel predicted by numerical simulations (s = 0) 
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F1 = 3.92, h1 = 0.040 m

F1 = 4.48, h1 = 0.035 m

F1 = 6.44, h1 = 0.035 m

F1 = 7.01, h1 = 0.050 m

F1 = 8.00, h1 = 0.050 m



 

Analysing these results, we can remark the following: 

- For the rectangular section the location of hydraulic jump is placed upstream as was observed in 

experimental tests. 

- For the triangular section and for high Froude number the location of the hydraulic jump is placed in 

upstream of channel; however for low Froude numbers, at the simulation 1 (F1 = 3.92, h1 = 0.04) and 2 

(F1 = 4.48, h1 = 0.035), the location of hydraulic jump is previewed slightly downstream. 

 

The prediction of the location of the hydraulic jump in a triangular channel with variable slope using Saint-

Venant equation are illustrated in Figures 8 and 9. In our numerical simulations we chosed the slope 0.02 and 

0.05. As initial conditions it was used the flow Q and the upstream water depth h1, and we imposed the 

boundary condition downstream water depth equal to h2. It was fixed two first points in the upstream and two 

last points in the downstream of the channel to give the model more rigidity, the time test t = 60 s and              

∆x = 0.1 m. 

 

 
Figure 8. Hydraulic jump profile in triangular section channel predicted by numerical simulation (s = 0.02) 

 
Figure 9. Hydraulic jump profile in triangular section channel predicted by numerical simulation (s = 0.05) 

 

It is noticed that the hydraulic jump takes different locations in the channel. In the horizontal slope most the 

locations of the hydraulic jump are in the upstream of the channel as settled in experimental conditions, as well 

as, for hydraulic jump with small Froude numbers with slope equal to 0.02. However for larger Froude numbers 

the hydraulic jump moves downstream. Whenever the slope increases the hydraulic jump moves more 

downstream. This can be returned to the validity of the Saint-Venant equations for low slopes and also to the 

measurement of the downstream water depth h2.  

It was observed in the experimental tests, for larger slopes and large Froude numbers, that was difficult to 

measure the downstream water depth h2 accurately, because the free surface flow is not constant and may 

increase slightly to downstream given underestimate downstream water depth, h2 (h2 measurements are ± 0.01 m 

accurately). We then increased downstream water depth h2 to settle the hydraulic jump in the upstream of the 

channel, as verified in experimental conditions, and  we studied the relation between the numerical simulation 
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imposed downstream water depth h2 (h2 simulated) which gives the hydraulic jump location in channel upstream 

extremity and other characteristics of the hydraulic jump. 

3.2. Relation between h2 and the location of hydraulic jump 

Figure 10 shows the variation of the sequent depths ratio simulated and experimental depending to Froude 

number F1 for slopes 0.02 and 0.05. Relations between the sequent depths ratio Ysim and Yexp with Froude 

number F1 and slope s were founded. The relations obtained are shown in the Figure 11 are following: Eq. (10) 

variation of the sequent depths ratio Ysim depending on Froude number F1 and slope, Eq. (11) variation of the 

sequent depths ratio Yexp depending on Froude number F1 and slope. 

 
ℎ2 𝑠𝑖𝑚

ℎ1

= 𝑎 + 𝑏𝐹1 + 𝑐𝐹1
2 +

𝑑

𝑡𝑔𝛼
                                                                                                                            (10) 

 

where a = 3.3622, b = 0.9703, c = 0.0582 and d = 0.0432; with r2 = 0.97 
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ℎ1

= 𝑎 + 𝑏𝐹1 + 𝑐𝐹1
2 +

𝑑

𝑡𝑔𝛼
                                                                                                                            (11) 

where a = 1.5254, b = 0.5869, c = 0.0078 and d = 0.0083; with r2 = 0.93 

 

These relations could give the difference between downstream water depth, the h2exp (observed in the laboratory) 

and h2sim (that lead to a hydraulic jump simulation located at upstream of the channel) in function on Froude and 

slope. 

 

 
Figure 10. Variation of the sequent depths ratio simulated/experimental depending to Froude number and slope  

 

Subtracting the equations (10) and (11), we reach to relation (12). 
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where a= 1.8368, b = 0.3834, c = 0.0504and d = 0.0349; with r2 = 0.93 
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Figure 11. Relation between conjugate depths, Froude number and slope from the equations (10) and (11)  

 

Through this last relation we can calculate the downstream water depth required to include in the downstream 

boundary condition in the simulation model for the hydraulic jump be located on upstream of the channel as 

verified in experimental conditions.  

3.3. Location of hydraulic jump 

In this part we study the relation between the location of the hydraulic jump and the difference between water 

depth hs = h2sim – h2exp, Figure 12 represents relations between Lc/h1, hs/h1 and slope s. 

 

 
Figure 12. Relation between Lc/h1and  hs /h1: (left) Lc/h1and hs/h1 and (right) Lc/h1, hs/h1 and slope s 

 

The results showed a linear relation between Lc/h1 and hs/h1 for both slopes 0.02 and 0.05. The general equation 

obtained for the variation of Lc/h1 depending with hs/h1 and slope s is: 
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where a = 49.55, b = 58.28 and c = 0.08; with r2 = 0.96 

 

 

4. CONCLUSION 

In this work a MATLAB® model based on Saint-Venant equations and the TVD MacCormack explicit scheme 

for different sections was developed. It was applied to simulate a large range of hydraulic jumps tested in the 

laboratory with rectangular and triangular channels for Froude numbers ranging from 3 to 8. The location of a 

hydraulic jump was studied in a slopped triangular channel previewed by the model as some differences in the 

hydraulic jump location prediction compared with experimental tests were found. These differences with 

hydraulic jump characteristics which allows to quantify uncertainty in measured h2 to reproduce hydraulic 

jumps location were related. 
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For using model based on Saint Venant equations to simulate flows on slopped triangular channels, care should 

be taken if a hydraulic jump forms in the channel as their location could be predicted slightly downstream if 

downstream water depth are not measured in a required distance from the jump. It is recommend to use (12) to 

predict location more accurately or using also (13) to know the uncertainty of Lc. 
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ABSTRACT 

Due to an increasing number of extreme rainfall events, the management of urban flooding requires new design 

approaches concerning the underground drainage system as well as the temporary surface water runoff. Latest 

developments on bidirectional coupled models, 1D-1D as well as 1D-2D models, are already employed in 

practice. Street inlets are the connecting elements between the surface and the underground system. Depending 

on the longitudinal and transversal slope of the street as well as the street inlet type, the hydraulic efficiency of 

grate inlets is hardly available. Thus, physical model test runs were done. With longitudinal slopes up to 10 % 

only supercritical flow conditions with flow depths up to 3 cm and flow velocities of approximately 1-2 m/s 

occur. In previous physical model test runs the overall grate capacity of selected grate inlets was measured. 

Depending on the street geometry up to 75 % of the approaching surface flow is captured by the inlet. The aim 

of the present paper is to investigate the inflow conditions in detail. By measuring the intercepted flow for 

defined parts of the grate openings separately the main inflow regions with their respective efficiency can be 

determined. A typical street inlet used in Germany is investigated exemplarily. The main inflow areas of the 

grate inlet are located in a typical triangular pattern on the curbside. The front half of the inlet intercepts nearly 

70 % up to 95 % of the total captured flow. Physical model results are compared to numerical results in order 

to calibrate and validate the numerical model. Within both models nearly the same inflow zones can be 

identified qualitatively. 

Keywords: street inlets, inlet capacity, supercritical flow, urban flooding 

1. INTRODUCTION

According to the Synthesis Report of the Intergovernmental Panel on Climate Change (IPCC) the number of 

heavy rainfall events and their intensity will increase in the future (IPCC 2014). Therefore, urban flood risk 

management becomes more important and requires new design approaches in urban drainage engineering. 

Digman et al. (2014) define four key events regarding the management of urban flooding: (1) everyday rainfall, 

(2) drainage design rainfall, (3) exceedance rainfall and (4) extreme rainfall. Usually, urban drainage systems

are designed for events one and two with return periods of 2-10 years (DIN EN 752 2008) and consist of

underground infrastructures. Street inlets capture the surface runoff and the connecting pipes then carry the

discharge to the underground-piped drainage system. It is not sustainable to enlarge the underground

infrastructures when designing for exceedance (key event 3). Drainage systems above the ground need to be

developed to manage surface flooding e.g. flood routes or temporary storage areas. Emergency plans must exist

for the case of key event four (Digman et al. 2014). According to Fratini et al. (2012) a “dual drainage” or

“major and minor systems” approach has not yet been prevailed in Europe whereas e.g. in Australia the runoff

after heavy rainfall events may be discharged above ground already. With bidirectional coupled numerical

models the interaction between the underground drainage system (minor system) as well as the surface runoff

using topography and streets (major system) can be calculated. Even extreme flow conditions can be represented

(Butler and Davies 2011). 1D-1D models (one-dimensional pipe flow model and one-dimensional surface flow

model) are applicable as long as the surface flow stays within the road cross-section. 1D-2D models (one-

dimensional pipe flow model and two-dimensional surface flow model) give results that are more realistic if the

surface flow exceeds the capacity of the street profile. Inundation areas with flow depths and velocities are

calculated. Most of the coupled numerical models use a weir or orifice equation to calculate the exchange

between both systems. Djordjevic et al. 2013 pointed out that uncertainties regarding the parameters exist and

the equations are not fully representative of the real flow conditions. More realistic information concerning the

hydraulic efficiency and flow conditions of existing street inlets is necessary to build up the bidirectional

coupled numerical models. Djordjevic et al. (2013) investigated the interaction between above and below

ground drainage systems with full-scale physical and three-dimensional numerical models. The authors



 

identified the need for a better understanding of the interaction process between above and below ground 

drainage systems. The authors’ CFD model was able to replicate qualitatively the observed complex flow 

conditions in the entire street inlet system.   

 

Street inlets exist in four types: (a) grate inlets, (b) curb-opening inlets (c) combination inlets and (d) slotted 

drain inlets (Brown et al. 2009), see Figure 1. The hydraulic efficiency of grate inlets depends primarily on the 

street’s geometry with longitudinal and transverse slope, the surface runoff (discharge) and the grate itself (type, 

geometry, opening area). Several investigations deal with the hydraulic efficiency of grate inlets, or more 

precisely, only with the grates efficiency neglecting the system below, e.g. Spaliviero et al. (2000), Despotovic 

et al. (2005), Gómez and Russo (2005) and Guo and MacKenzie (2012).   

 

Gómez and Russo (2007) and Gómez and Russo (2009) studied different inlet types like continuous transverse 

grates and macro grate inlets. Russo et al. (2013) tested methods to estimate the efficiency of non-tested 

continuous transverse grates. Lopes et al. (2016) investigated the ability of a volume of fluid (VOF) model to 

reproduce the efficiency of a continuous transverse grate inlet by comparing the results with experimental data. 

The authors recommend the use of a numerical model as a useful alternative to experiments to predict 

efficiencies of different types of inlet structures with grates, since similar results were obtained.  

 

 

Figure 1.  Street inlet types (Brown et al. 2009), modified. 

 

 

There is only less information about the inflow conditions of grate inlets in detail. Detecting the discharge 

through defined parts of the grate openings enables for instance the prediction of a reduced efficiency due to 

clogging effects. Furthermore, the geometry of the grate may be improved to increase the efficiency in future 

research work. The present paper focuses on the main inflow areas of a grate typically used in Germany and 

their corresponding efficiencies.   

 

In order to calibrate and validate a numerical model to calculate the capacity of grate inlets with an extended 

range of parameters, e.g. transverse slope or inlet geometry, the physical model results were compared to the 

numerical results.      

2. MODEL SETUP 

2.1. Physical Model 

The physical model consists of a flume made of acrylic glass with LFlume = 10.0 m in length and WFlume = 1.5 m in 

width where the slope is adjustable in longitudinal and transverse direction. The bottom roughness is 

approximately k = 1.5 mm (roofing paper). In an opening area of 500 mm x 500 mm the grate of real street 

inlets can be integrated (scale: 1:1). All of the presented investigations were done with the standardized grate 

inlet mostly used in Germany and described in DIN 19583 (2012). Water depths were measured with ultrasonic 

sensors upstream of the inlet where steady as well as uniform flow conditions were already reached. The 

resolution of the ultrasonic sensors is 0.18 mm with a reproducibility of ± 0.15 % (General Acoustics e.K.). The 

surface flow velocities were measured with a radar measuring device with an accuracy of ± 0.5 % ± 0.03 m/s 

and a measuring range of 0.15 m/s up to 9 m/s (FLOW-TRONIC S.A./N.V.). Both measurements were done 

over the whole cross section 1 m upstream of the inlet with steps of Δy = 6 cm. Using platform load cells, the 

volume of the water intercepted by the grate, flowing beside the grate and flowing over the grate was measured 

over time. Backwater effects caused by the underground drainage system were not considered within the 



 

presented investigations. Instead, a free outflow through the grate exists. Furthermore, only supercritical flow 

conditions occur for all investigated discharges and slopes and therefore no influence arises due to the physical 

outflow condition. In order to locate the main inflow areas of the grate, the grate was separated into eight parts 

(see Figure 2, right side). In addition to the described flows above, the discharge through each part was 

measured separately. The opening area of the grate in total is A0 = 910.00 cm². Parts one, four, five and eight 

each have an opening area of A1,4,5,8 = 97.50 cm² (10.71 % of A0) and parts two, three, six and seven each have 

an opening area of A2,3,6,7 = 130.00 cm² (14.3 % of A0), see Table 1.  

 

 

Figure 2.  Detail of the physical model (left) and definition of the opening parts (right) 

 

Table 1. Dimensions of the opening parts 

 

Part 

No. 

Width bi [cm] Opening Area  

Ai [cm²] 

Ratio Ai/ A0 

1 9.8 97.50 0.1071 

2 15.0 130.00 0.1429 

3 15.0 130.00 0.1429 

4 9.8 97.50 0.1071 

5 9.8 97.50 0.1071 

6 15.0 130.00 0.1429 

7 15.0 130.00 0.1429 

8 9.8 97.50 0.1071 

Total - A0 = 910.00 - 

 

The German guideline for designing street inlets recommends a connected catchment area of 400 m² for one 

inlet each (FGSV 2005). Therefore, based on KOSTRA-DWD-2000 (2000), the surface runoff approaching one 

inlet can be determined assuming 100 % runoff on the street. Table 2 gives the surface runoff for Wuppertal, a 

city in the western part of Germany with different return periods T [a] and durations D [min] as an example.        

 

Table 2. Surface runoff approaching one street inlet (FGSV (2005), KOSTRA-DWD-2000 (2000)) 

 

T [a] 0.5 1.0 2.0 5.0 10.0 20.0 50.0 100.0 

D [min] Q [l/s] Q [l/s] Q [l/s] Q [l/s] Q [l/s] Q [l/s] Q [l/s] Q [l/s] 

5 4.30 6.80 9.29 12.59 15.08 17.58 20.88 23.37 

10 3.84 5.46 7.07 9.21 10.82 12.44 14.58 16.20 

15 3.30 4.56 5.81 7.47 8.72 9.98 11.64 12.89 

 

Usually, drainage structures are designed for rainfall events with T = 2 a to 10 a. In order to consider exceedance 

rainfall events with return periods of more than T = 10 a, the discharge for the model test runs was varied 

between Q = 3 l/s up to Q = 21 l/s, which corresponds to a rainfall event with T = 100 a (see Table 2). The 

transverse slope was fixed to ST = 2.5 % and the longitudinal slope was varied between SL = 2.5 % and SL = 10.0 

% with ΔSL = 2.5 %. The present paper focuses on rainfall events with a resulting surface runoff of Q = 9 l/s 

(just reaching exceedance) and an intermediate longitudinal slope of SL = 5.0 % and SL = 7.5 %.     



 

2.2. Numerical Model 

The CFD Software FLOW-3D v.11.1 (Flow Science Inc.) was used for the numerical simulations. The model 

geometry was taken from the physical model, hence, no scaling effects occur. Surface tension is not calculated 

within the numerical model test runs. The grate inlet geometry is included using an STL (Stereo Lithography) 

file. The cross bar width of the grate is 32 mm and the opening width between two cross bars is 36 mm. Due to 

these small dimensions, the mesh size was set to dx = dy = 4 mm and dz = 3 mm in Mesh Block 2 (nested mesh 

block including the street inlet, see Figure 3). The mesh size of the basic mesh block 1 in z-direction 

corresponds to the respective parameter in mesh block 2 with dz = 3 mm. The mesh size in x-y direction lies 

between dx = dy = 12 – 8 mm. Previous investigations have proven the independence of the mesh. The mesh 

size was decreased as well as increased for dx, dy and dz. Convergence was reached with the resulting mesh 

size. The street inlet geometry was modeled precisely using the FAVORTM method (Fractional Area-Volume 

Obstacle Representation, Flow Science Inc. (2015)). The numerical model consists of approximately 26 million 

cells in total. The RNG turbulence model was used (Renormalized group, based on the k-ε turbulence model). 

The inflow boundary condition was set to Volume Flow Rate, the Outflow condition was set for the lower 

boundary as well as for the outflow of the street inlet (Zmin). The surface roughness of the flume is k = 1.5 mm, 

the roughness of the inlet kI = 0.3 mm. The discharge through each of the eight parts can be determined by 

defining eight plane Baffles as a flux surface (100 % porous, does not affect the flow) beneath the grate inlet. 

Furthermore Baffles were defined to measure the approaching flow as well as the water flowing beside and over 

the grate (see Figure 3).        

 

 

Figure 3.  Numerical model 

3. RESULTS AND DISCUSSION 

The approaching flow is characterized by a uniform triangular cross section area with transverse slope ST [m/m], 

water depth h [m] directly at the curb and water spread width W [m]. As investigated in previous test runs 

(Kemper and Schlenkhoff 2015) the discharge in a triangular channel can be calculated by a modified form of 

the Manning equation developed by Izzard (1946): 

 

Q = 0.376/n ST
5/3 W8/3 SL

1/2
 (1) 

 

where Q = street discharge [m³/s] (approaching flow), n = Manning’s roughness coefficient of the street surface 

[s/m1/3], SL = street longitudinal slope [m/m] and W = water spread width W [m] with W = h/ST. The measured 

water depths in the laboratory, the resulting water depths from the numerical model as well as the calculated 

water depths from Eq. (1) are compared in Figure 4 (left). The Manning’s roughness coefficient in Eq. (1) is set 

to n = 0.013 s/m1/3. With Eq. (1) the water depths h [m] can be calculated very well – a good approach is given. 

Also, the numerical model results fit to the physical model results with maximum deviations of ± 10 % (Figure 

4, right).  

 



 

 

Figure 4.  Water depths h (a) calculated with equation (1) compared to results from numerical model and 

laboratory and (b) corresponding comparison of water depths from numerical model and laboratory 

 

The flow velocity upstream of the inlet measured at several points transverse to the flow direction is given for 

SL = 5.0 % and ST = 2.5 % and an exemplary approaching discharge of Q = 9 l/s in Figure 5. The velocities 

calculated with the numerical model differ from the physical model results with maximum deviations of ± 15 %. 

Uncertainties appear in the laboratory results at the transition between dry and wet areas where small velocities 

occur which cannot be measured with the used technique. For all test runs supercritical flow conditions appear 

with water depths up to 3 cm and flow velocities of approximately 1-2 m/s.  

    

 

Figure 5.  Flow velocities v (a) along cross section from numerical and physical model and (b) corresponding 

comparison of velocities from numerical model and laboratory 

 

The grate capacity is defined as the quantity of the intercepted flow rate QI [l/s] whereas the hydraulic efficiency 

E of the grate inlet is described as a percentage of the approaching flow rate with: 

 

E = QI / Q (2) 

 

where QI [l/s] is the intercepted flow rate and Q [l/s] the approaching flow. The remaining discharge Q – QI is 

divided into the water flowing beside the inlet QB (bypass flow) and the water flowing over the inlet QO. 

 

In Figure 6 the physical model results for the overall grate capacity are given with a resulting dependency curve. 

The total intercepted flow QI depends on the approaching surface flow Q. With a constant transverse slope of 

ST = 2.5 % the intercepted flow rates vary between QI ≈ 2.95 l/s and QI ≈ 16.00 l/s for the investigated grate 

geometry, depending on the longitudinal slope and surface runoff. Therefore, the grate efficiency is minimum 

E = 75 %. It is expected that with increasing surface runoff the intercepted flow will converge to a maximum 



 

value (not tested yet). The influence of the longitudinal slope is very low (Figure 6). High longitudinal slopes 

such as SL = 10 % result in high flow velocities and small water spread widths on the street. The bypass flow QB 

decreases. However, the higher the flow velocities, the more water is flowing over the inlet, Qo increases. Both 

effects nearly cancel each other out, then, the total amount of the intercepted flow is nearly unaffected by the 

longitudinal slope.      

 

 

Figure 6.  Intercepted flow depending on approaching flow rate (physical model results) 

 

The efficiency of particular areas of the grate inlet can be calculated by:  

 

Ei = QIi / QI  (3) 

 

Depending on the approaching flow, the front half of the inlet captures nearly 70 % up to 95 % of the 

intercepted water QI. Dividing the grate into two parts longitudinal to the flow direction, the curbside half has an 

efficiency of approximately 60 % up to 80 %. Referring to the division into eight parts (Figure 2, right side), the 

roadside back parts five and six are nearly useless. To get more detailed information about the efficiency of 

particular parts, the intercepted flow rate QI is divided into eight parts – QIi [l/s] with i = 1, 2 … 8. Due to 

different opening areas A0,i of each part (Table 1), the specific discharge qi is calculated with regard to the width 

of the part perpendicular to the flow direction bi to achieve comparability:      

 

qi = QIi / bi  (4) 

 

Two main capacity zones can be identified in Figure 7, exemplarily for longitudinal slopes of SL = 5.0 % and 

SL = 7.5 %. The front half parts of the inlet (except part one) show nearly the same capacity curve progression, 

as well as the remaining parts one, five, six, seven and eight. The specific discharge in the front half part can be 

approximated with a less than linear shape curve whereas the capacity curve progression for the back half part 

depends nearly linearly on the approaching flow.  

 



 

 

Figure 7.  Specific inlet capacity (laboratory results) 

 

Figure 8 gives interpolated specific discharges over the inlet area. The left side shows the laboratory results, the 

right the results from the numerical model. Flow direction is from left to right with the curbside on the upper 

edge.  

 

In Table 3 the approaching flow Qapr,i for each transverse part is given, calculated with the measured water 

depths and flow velocities from both models. The corresponding intercepted flow through each part resulting 

from the model runs is presented in column 3. The influence of the transverse slope is recognizable since the 

discharge through the roadside parts is slightly higher than the approaching flow. This is caused by the 

additional lateral inflow from the street. Within both the laboratory and numerical model, nearly the same 

inflow zones can be identified qualitatively on the front curbside zone. However, the amount of the discharge 

still differs. Further research is necessary to investigate the ability of the used numerical model to calculate the 

intercepted flow rates.    

 

 

Figure 8.  Specific inlet capacity – laboratory (left) vs. numeric (right), flow direction: left to right 

 

Table 3.  Approaching flow Qapr,i for each part with corresponding intercepted flow QIi 

 (Q = 9 l/s, SL = 5.0 %, ST = 2.5 %) 

 

Part Qapr,i [l/s] 

(Lab / Num) 

QIi [l/s] 

(Lab / Num) 

4+8 2.82 / 2.51 2.61 / 2.26 

3+7 3.27 / 2.94 2.89 / 2.75 

2+6 1.86 / 1.86 2.19 / 1.91 

1+5 0.72 / 0.71 0.62 / 1.08 

 



 

4. CONCLUSION 

In order to develop new design approaches in urban drainage engineering several simulation runs were 

performed to improve planning tools, especially bidirectional coupled models which consider the interaction 

between the underground drainage system and the surface runoff. The connecting elements between both 

systems are street inlets which exist in different types and geometries. The present paper focuses on the 

hydraulic efficiency of a typical grate inlet used in Germany (500 mm x 500 mm) and its flow conditions in 

detail by locating and describing the main inflow areas of the grate and their corresponding efficiencies. In order 

to calibrate and validate a numerical model to calculate the efficiency of street inlets, physical model results 

were compared to three-dimensional numerical model results. With water depths up to 3 cm upstream of the 

inlet and flow velocities of 1-2 m/s only supercritical flow conditions occur due to steep longitudinal slopes up 

to SL = 10 %. Depending on the investigated longitudinal and transverse slopes of the street, approximately 75 % 

of the approaching surface flow is captured by the inlet. The front half of the inlet intercepts nearly 70 % up to 

95 % of the captured surface flow. The main inflow zone is on the front curbside zone which can be seen in both 

the physical and the numerical model. In order to validate the ability of the numerical model further research is 

necessary.         
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ABSTRACT 

Numerical modeling is being used with increasing frequency to analyze and design complex hydraulic 

structures. Especially structures where a standard design or an analytic calculation isn’t applicable, numerical 

investigations can provide important knowledge of flow parameters. During the past several decades, a number 

of research investigations have been conducted regarding fish passage structures. However, additional insights 

are still needed. Vertical Slot Fishways (VSF) have shown a range of applications that are well documented. In 

particular, these fish passage structures are well suited for slopes less than 5 %, which is needed for most fishes 

in Europe. Numerical modeling can provide a cost-effective tool to investigate flow on VSF. The present paper 

deals with an investigation on quality components of numerical 3D simulation of VSF. Four pools constructed 

as standard design are modeled and examined. A Large-eddy simulation, second order, with three various mesh 

resolutions was used. Comparison of flow depths showed that a mesh width of 4 cm is sufficient for practical 

use. The effect of mesh size on velocity distribution was more significant: with a mesh width of 2 cm no 

convergence could be reached. 

Keywords: Fish passage, vertical slot fishway, numerical modeling 

1. INTRODUCTION

Vertical slot fishways (VSF) are facilities to enable fish to migrate beyond (man built) obstructions such as 

dams or hydropower plants. VSF are rectangular channels separated into a sequence of pools by vertical walls. 

Vertical slots in these walls provide a migration corridor (Clay 1961; Rajaratnam et al. 1986). The sequence of 

pools subdivides the total hydraulic drop into a navigable series of smaller drops. Thereby, permissible 

velocities for fish species of interest are created. 

Currently, there is a need to consider site-specific conditions and develop optimal designs for vertical slot 

fishways. In Europe, this is in part due to the European Water Framework Directive (WFD 2000), which states 

that all water bodies have to be restored into a good morphological and ecological condition. Therein, a 

fundamental part is providing ecological bridges at barriers via fishways. In some instances, the design of 

fishways is mostly conducted via one-dimensional analytical calculations. But it is known that only standard 

designs using said methodologies based upon robust hydraulic modeling are consistent with chosen 

simplifications. The lack of an adequate but simple design method for site-optimized VSF repeatedly causes the 

need of adjustments or modifications to existing constructions. The design of VSF is based not only on the 

calculation of discharge capacity but also the corresponding water depths and flow velocities. Minimum flow 

depths and minimum as well as maximum velocities are limiting values due to fish capability. Consequently, the 

discharge capacity has to be calculated by the means of providing fish capability with: 

h2ghbCQ 00d  (1) 

where Q is the fishway discharge, Cd is the discharge coefficient, b0 is the slot width, h0 is the mean pool flow 

depth, g is the acceleration due to gravity, h is the head drop between two pools. Eq. 1 was first stated by Clay 

(1961) and was verified by e.g. Rajaratnam et al. (1986), Rajaratnam et al. (1992), Larinier (1992), 

Puertas et al. (2004), Wang et al. (2010). It gives a linear relationship between discharge and water depth, 

whereas the maximum velocity is solely dependent on the head drop: 

h2gv max (2)



 

where vmax is the maximum velocity in the fishway downstream the slot. Another calculation approach by 

Krüger et al. (2010) is applied in Germany, which is based on the Venturi principle (see also DWA-M 509 

2014): 

 
5,1

o0 hgbQ              (3) 

 

where μ = f(hu/ho) is the discharge coefficient, b0 is slot width, ho is depth upstream slot, hu is depth downstream 

slot, g is acceleration due to gravity. Both, Eq. 1 and Eq. 2 were developed based on physical, hydraulic models 

and are applied to nowadays fishway design. Though, the empiric discharge coefficients were mostly developed 

using slopes of more than 5 % while in Europe slopes less than 5 % required. These circumstances generate the 

need of investigations of VSF with slopes less than 5 %. Till now physical models are common to analyze 

fishway structures. Particularly, where standard designs whereupon the design equation Eq. 1 and Eq. 2 are 

based cannot be applied physical models displays the design tool in such cases. Certain variations can be caused 

by site specific demands. Furthermore, optimization of internal geometry of VSF is ongoing. While the pool 

length and width were investigated extensively (Wang et al. 2010; Tarrade et al. 2008; Rajaratnam et al. 1992), 

inner installations such as baffles that have a flow guiding purpose, are analyzed rarely (e.g. in Rajaratnam et al. 

1992, Puertas et al. 2004, Heimerl et al. 2008, Höger et al. 2014). Numerical investigations using computational 

fluid dynamics simulation (CFD) are being used more frequently by VSF design teams. CFD provides a cost- 

and time-effective way of analyzing diverse variations of VSF compared to physical models. One challenge is 

the number of models and solvers with limited well documented publications about model quality. A key step to 

developing a CFD model of quality is the influence of mesh size and simulation time properties. The present 

paper is a first approach on defining model qualities in respect to mesh size and simulation time properties. The 

aim is to find a reasonable mesh size to predict water depth and relevant velocities using CFD for design 

purposes as well as for further investigations concerning inner pool geometries. 

2. NUMERICAL MODEL 

2.1. General remarks 

The presented simulation is carried out using the commercial CFD solver FLOW-3D (V. 11.1) by Flow Science, 

Inc.. The numerical code is based on the finite volume method (FVM) and includes the Volume-of-Fluid 

method (VOF) and the Fractional Area Volume Obstacle Representation (FAVOR) method (FlowScience Inc. 

2016). The three-dimensional, one-fluid approach for free surface flows with second order accuracy was 

adopted in the current study. 

2.2. Numerical conditions 

The presence of turbulence in vertical slot fishways is widely known and of growing importance for design 

purposes (Puertas et al. 2004, Tarrade et al. 2008, Wang et al. 2010). Contemporary research attends to 

turbulence quantification in these hydraulic structures. In particular, the effect of turbulence on fishes 

corroborates the attempt to calculate and quantify turbulence in fishways. Numerous investigations deal with the 

effect of turbulence on fishes and confirm that highly turbulent zones are avoided by fish (e.g. Enders et al. 

2003, Tarrade et al., 2008, Smith et al. 2014). Hence, some quantification of turbulent zones for site-specific 

designs is essential for a successful fishway. Within current analytical design approaches there is no detailed 

assessment of turbulence. New tools, like numerical simulation, have to be investigated to identify easy design 

processes and to expand knowledge of turbulences in VSF. Turbulent flow is characterized by a fluid velocity 

field that varies significantly and irregularly in both position and time, with turbulent motions at numerous size 

scales (Pope 2011; Ferziger and Perić 2002). Large Eddy Simulation (LES) is a three-dimensional and time 

dependent scheme to predict turbulent flows where motions and vortices of the grid’s scale are computed 

directly while smaller scale motions are modelled (Ferziger and Perić 2002). For flows that involve unsteady 

separations and vortex shedding, LES provide important information about scales, kinematics and dynamics of 

turbulence yet represents a quite new tool to investigate small scale vortices in time and space (Adrian et al. 

2000). Numerous numerical investigations state that LES reproduces the hydraulics of vertical slot fishways in 

good agreement with physical and full-scale models (e.g. Musall et al. 2012, Höger et al. 2014, Musall et al. 

2015). 



 

2.3. Geometry and mesh 

VSF involve a large number of design parameters that each to some degree influence the flow structure. The 

present paper investigates a standard VSF design with geometry based on the German design guideline DWA-M 

509 (2014) (see also Klein and Oertel 2015). The numerical model geometry includes five complete pools and 

an inlet transition zone as well as an outlet transition pool. Figure 1 shows the geometry and all relevant 

parameters of the investigated vertical slot fishway. 

 

  
(a) Isometric view (b) horizontal and vertical projection 

Figure 1. VSF Geometry of numerical model (flow direction left to right) 

 

According to the simple design of a vertical slot pass, the discretized spatial domain consists of a rectangular 

channel with baffles. A structured mesh is applied to the model area. The advantage of a structured mesh can be 

found in a more accurate calculation than with unstructured mesh. Cubic meshes, as used herein, may yield a 

higher order of accuracy and can be computationally more efficient (Hirsch 2007). In Order to investigate the 

quality of simulation results in respect to numerical quality the mesh size is investigated in terms of a sensitivity 

analysis. The numerical CFD simulation is conducted using three mesh grids. Mesh cell sizes implied are: 8 cm, 

6 cm and 4 cm for x = y = z. The refinement factor r (according to Celik 2008) is 1.33 and 1.50, exceeding 

the recommended value of 1.3. Furthermore, the total simulation time and the time step for result output are 

varied (see Table 1). The time step was increased with increasing total simulation time due to reduce the file 

size which corresponds to saved time steps. In total 6 model runs are presented. 

 

Table 1. Description of simulation cases 

Model 

run 

Mesh-

resolution m 

Simulation 

time frame T 
Time step t 

 [cm] [sec] [sec] 

L02a 4       5   0.02 

L03a 6       5   0.02 

L04a 8       5   0.02 

L02b 4     30   0.05 

L03b 6     30   0.05 

L04b 8     30   0.05 

2.4. Hydraulic boundary conditions 

The hydraulic dimensioning followed the German design guideline DWA-M 509 (2014). The design process 

results in a discharge of Q = 0.46 m³/s which should yield to a mean pool flow depth of about h0 = 0.9 m. The 

discharge was applied at the boundary of the transition pool as single inlet boundary condition. The outlet 

boundary condition was set to a forced fluid elevation which corresponds to the discharge. Within the present 

study the wall roughness has been neglected, because the general numerical behavior is of main interest. Further 

investigations will deal also with wall roughness effects. Generally, the development of flow characteristics 

takes place while the flow follows the structure’s geometry. Result analysis will focus on pool No. 3 (see 

Figure 1a). 

1 
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3. RESULTS 

3.1. General 

For each investigated numerical simulation the flow pattern as defined in Wu et al. (1999) can be allocated to 

FP 1 (see Figure 4 and Figure 2). However, the recirculation zone on the right side of the jet is really small. 

Figure 4 shows the time averaged velocity magnitude for all simulations at the middle of the vertical water 

column (0.5ho). The time-averaging conducted herein can be formulated as: 

 

       (4) 

 

       (5) 

 

where vmean is the arithmetic mean velocity magnitude , vi is the velocity magnitude at time step i, hmean is the 

arithmetic mean flow depth, hi is the flow depth at time step i, and n = T/t as number of time steps calculated.  

In Figure 4 it seems that finer meshes produce the more curved flow structures. With increased mesh resolution 

also the eddy on the left side (also referred to as resting area) increases in size. Expectedly, with finer mesh grid 

resolutions the flow pattern can be described in more details. But the general flow structure can be reproduced 

for all investigated mesh resolutions. However, major differences can be observed for the absolute velocity 

magnitude (see Section 3.2). As a result differences in regard to the FAVOR-rendered geometry cannot be 

neglected. As it can be seen in Figure 4, the slot width and the width of baffles are dependent on the mesh 

resolution and can thereby majorly influence simulation results. In general, the calculated 0.9 m flow depth 

(specified by the design guideline) was not reached. The applied design approach could not be confirmed by the 

numerical results. The flow depth is non-uniform and raises from its minimum just downstream the slot towards 

the downstream baffle wall (see Figure 4). Contemporaneously, the largest velocities can be observed just 

downstream the slot. Figure 3 gives an exemplary flow depth distribution for model run L03a. Besides 

numerical errors, the rendered geometry might be responsible for errors. If the baffles are not rendered properly, 

the slot width, which influences the flow depth (see Eq. 1 and Eq. 2), will vary. 

 

  

Figure 2. Sketch of flow pattern Figure 3. Time-averaged flow depth in [m], model run 

L03a (T = 5 sec, m = 6 cm) 

3.2. Time dependency 

Hydraulics in vertical slot fishways are majorly time depended (see exemplarily Figure 6). Recent findings lead 

to assume that some fish species use the time depended fluctuations in flow to save swimming capacity (Gebler 

2015). Therefore, time dependence and frequencies are of main interest. On the other hand, engineers need 

parameters and values which guarantee a simple, yet practical application. Thus, mean values as stated above 

are still demanded. Therefore, it is fundamental to define a simulation time frame and a time step that generates 

reliable time averaged values. To evaluate which simulation time frame is needed to get reliable statements on 

velocities and flow depths standard deviations in each point are calculated. The standard deviation can provide 

information about fluctuations in the pool and indicate the grade of turbulence. 
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The standard deviation of flow depth does not vary majorly between all simulations. A dependence on time 

frame or time step cannot be identified. Figure 5 shows the standard deviation of the depth-averaged velocity for 

each model run at the middle of the vertical water column (0.5ho). It can be seen that the highest deviation is 

located in the jet flowing from one slot to the next one. With decreasing mesh size detachment zones with high 

standard deviation can at the edges of the baffle wall and the right baffle be identified. This indicates high grade 

of turbulences in these zones. Within the resting area, the formed eddy shows standard deviations of less 0.08 

m/s. Thus, turbulences in resting areas are, as expected, lower. Comparing model runs a (Figure 5a-c) and model 

runs b (Figure 5d-f), the results are clearly dependent on simulation time frame and time step. With an equal 

mesh width, areas of high standard deviation (above 0.15 m/s; red) increase as well as at most cells absolute 

standard deviation increases with longer simulation time frame or larger time steps. Figure 6 shows a velocity 

duration curve of two exemplary points in the fishway for each investigated simulation – one in the middle of 

the eddy (resting area) and one in the slot; both at 2/3ho. A fluctuating flow field can be obtained at different 

VSF in operation (Gebler 2015). The numerical simulation should reproduce the fluctuations because fishes, 

which use fluctuations to ascent the fishway, were observed (Gebler 2015). For model runs a (Figure 6a/c) no 

reoccurring frequency is obvious. This statement can be confirmed by a conducted Fast-Fourier-Transformation 

(FFT), which couldn’t identify any frequency. Model runs b (Figure 6b/d) on the other hand enfolds a 

simulation time frame of 30 seconds but a time step of 0.05 seconds. The FFT showed a high amplitude at 

0.5 Hz (2 s). However, to get reliable statements of the frequency more simulations, preferential with same time 

step and rising time frame, are needed. 

 

Concluding, comparison of model runs a and model runs b results in a clear time dependency. Reason of the 

divergence can be found either in simulation time frame or time step. The variation of time interval might lead 

to the loss of extrema with consequence of error in time/averaged values. The simulation’s time frames might be 

insufficient to identify fluctuations and frequencies. Besides, the stated time dependency the investigation of 

standard deviation reveals distinctions in the occurrence of turbulence due to mesh resolution. A trend of 

improvement with a decreasing mesh size cannot be found without defining a sufficient simulation time. 

 

   
(a) L02a, T = 5 sec, m = 4 cm (b) L03a, T = 5 sec, m = 6 cm (c) L04a, T = 5 sec, m = 8 cm 

   
(d) L02b, T = 30 sec, m = 4 cm (e) L03b, T = 30 sec, m = 6 cm (f) L04b, T = 30 sec, m = 8 cm 

Figure 4. Time-averaged velocity magnitude for basin No. 3 at 0.5ho 



 

   
(a) L02a, T = 5 sec, m = 4 cm (b) L03a, T = 5 sec, m = 6 cm (c) L04a, T = 5 sec, m = 8 cm 

   
(d) L02b, T = 30 sec, m = 4 cm (e) L03b, T = 30 sec, m = 6 cm (f) L04b, T = 30 sec, m = 8 cm 

Figure 5. Standard deviation of depth averaged velocity at 0.5ho, top: T = 5 sec, bottom: T = 30 sec 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. Velocity duration curve, (a) slot, T = 5 sec, Δt = 0.02 sec, (b) slot, T = 30 sec, Δt = 0.05 sec, (c) eddy, 

T = 5 sec, Δt = 0.02 sec, (d) eddy, T = 30 sec, Δt = 0.05 sec 



 

3.3. Deviation of results concerning mesh resolution 

To evaluate the influence of the mesh resolution, simulation results for all investigated mesh sizes were 

interpolated on the finest mesh resolution to fit an identical grid. This procedure provides a possibility to 

conduct a sensitivity analysis and calculate the deviation of two simulations at each point and to compare their 

results. Due to numerous time steps, a time-averaged value was used for comparison. As stated in Section 3.2, a 

clear time dependency of the results was identified. Thus, only simulation runs a (T = 5 sec, t = 0.02 sec) are 

examined. Simulation runs b show similar appearance. In the present investigation time-averaged flow depths 

and depth- and time-averaged velocities were proved, herein.  

 

Figure 7 shows the time-averaged flow depth deviation for two simulations for pool No. 3. It can be shown that 

deviation in general will be increased with an increasing mesh width (compare Figure 7). Deviations in flow 

depths between L02a and L03a does not exceed 6 % overall (see Figure 7a). This value is located at wall 

domains and can be caused by calculation or numerical errors. Without wall domains the highest deviation is 

located just downstream the slot with a maximum of ±5 %. At the detachment areas downstream the right baffle 

the deviation does not exceed 2 %. Within the resting area deviation of 3 % can be observed. The highest 

deviation between L03a and L04a can be found with +14 % and is located close to the wall domain at the right 

baffle’s detachment zone. Figure 7b clearly displays only a positive deviation. The maximum divergence in the 

resting area (pool middle) is +10 % compared to +6 % in the slot. Improvement between mesh resolutions of 6 

cm to 4 cm is minute. Accordingly, the numerical simulation of vertical slot fishways with a mesh resolution of 

6 cm in prototype scale provides sufficient results to calculate flow depths. Errors of less than 1 cm compared to 

a mesh resolution of 4 cm can be expected. 

  
(a) L02a-L03a (b) L03a-L04a 

Figure 7. Time-averaged flow depth deviation in [%] for pool No. 3 

Subsequently, the deviation of two model run’s depth-averaged velocities are examined (see Figure 8). Highest 

deviations of L02a and L03a are at the detachment zone downstream the baffle wall with values exceeding -

100 %. Furthermore deviations of ±40 % are located downstream the right baffle (see Figure 8a). The deviation 

of the jet, guided from one slot to the next, is mostly +40 % (mean 15 %). Shear zones show a deviation close to 

0 %, which generates a mean deviation of 13 % considering the absolute deviation. On the other hand, the 

deviation between L03a vs. L04b is reversed and shear zones are displayed less distinct. The location and value 

of the highest deviation corresponds to L02–L03: model runs a show a deviation of more than 100 %, whereas 

the deviation increases to approx. 45 % at the detachment zone downstream the wall baffle with rising time 

frame. The detachment area at the right baffle is less distinct than for L02 vs. L03 but shows deviation values of 

more than –100 %. 

 

Comparing the deviations of depth-averaged velocities show that even with refining the mesh resolution from 

6 cm to 4 cm the velocity distribution diversifies strongly in zones with low as well as high velocities. 

Exclusively in shedding zones, all simulation results show little (near 0 %) divergence in depth averaged 

velocity. Concluding, a mesh resolution of 4 cm for numerical simulation of vertical slot fishways can provide 

good convergence in respect to simulated flow depths in prototype scale with an error of maximum 2 cm. For 

design purposes concerning reaching flow depth a mesh size of 4 cm can be evaluated as sufficient. On the other 

hand, the velocity distribution varies hardly in respect to mesh resolution. Especially velocities at near slot zones 

are important for positive fish migration. These zones are not sufficient simulated having deviation of up to 

100 %. Furthermore, decreasing cell sizes should be investigated in future research applications to verify an 

improvement of flow velocity deviation with increasing cell sizes. 



 

  
(a) L02a-L03a (b) L03a-L04a 

Figure 8. Depth averaged velocity deviation in [%] for pool No. 3 

3.4. Grid Convergence Index 

Due to the lack of convergence concerning the velocity distribution a sensitivity analysis suggested by Celik et 

al. (2008) was performed calculating the Grind Convergence Index (GCI) for flow depths and flow velocity 

magnitude. Therefore, a seventh simulation with grid refinement to 2 cm quadratic cells at the pool of interest 

has been carried out (L01). The sensitivity analysis was performed using the simulation results of: 

- L01: mesh resolution m = 2 cm, simulation time frame T = 5 sec, time step t = 0.02 sec 

- L02: mesh resolution m = 4 cm, simulation time frame T = 5 sec, time step t = 0.02 sec 

- L03: mesh resolution m = 6 cm, simulation time frame T = 5 sec, time step t = 0.02 sec 

Figure 9a-c compares the results of the simulated water depth with (a) the calculated GCI of L01 and L02 

GCI21,depth and (b) and (c) longitudinal profiles of the investigated simulation runs. The sensitivity analysis using 

GCI confirms previous findings: with a mesh size of 2 cm a good convergence is given except at points with 

high gradients. The overall mean GCI21,depth of the third pool is 3,9 %. 97 % of all points in the pool reach a 

GCI21,depth < 10 %. With GCI21,depth beneath 10 % it can be assumed that the dependency of numerical results on 

the mesh resolution has been reduced and the solution is reaching towards the grid independent solution. 

Compared to GCI32,depth (GCI of L02 and L03) a significant improvement can be found: 64 % of all points in the 

pool reach a to GCI32,depth < 10 %. GCI21,depth < 10 % can only be found at high gradients as seen in Figure 9b at 

Y ≈ 11.5 m and Y ≈ 11.9 m which is just upstream and downstream the slot. Though, the solution is reaching 

towards the grid independent solution. 

Table 2. Results of grid convergence study via GCI 

 depth averaged 

GCI21,veloc 

% of GCI21,veloc < 10% 

 [%] [%] 

P1   77 29 

P2 154   2 

P3   10 74 

P4   26 45 

P5   16 58 

P6 300   0 

 

Calculating the GCI for the velocity magnitude of L01 and L02 (GCI21,veloc) 41 % of the points in one pool reach 

a GCI21,veloc < 10 %. Compared to GCI32,veloc (L02 and L03) there is a significant improvement: 

GCI32,veloc < 10 % are reached in 27 % of all points in one pool. In Figure 9d-f the calculated GCI for the 

velocity magnitude at six points as well as two axial velocity profiles are shown to represent the whole pool. P3-

P5 (see Table 2, Figure 9d) show in general low GCI32,veloc, which indicates that the dependency of numerical 

results on the mesh resolution has been reduced and the solution is reaching towards the grid independent 

solution. High GCI21,veloc can be found near the water surface and near the bed which indicates that the grid 

convergence is highly important for shear zones. The axial velocity in Figure 9e is located in the middle of the 

slot. The differences in velocity are at maximum 0.1 m/s which can be evaluated as sufficient taking fish 

migration into account. On the other hand P1, P2 and P6 result in high GCI21,veloc of more than 77 % depth 

averaged and a little rate of values under 10 %. The axial velocity profile shown in Figure 9f is located at a near 



 

wall domain. The possible error of 0.3 m/s is too high taking fish migration into account. As a possible reason it 

can be assumed that refinement of the mesh can result in shifting of the vortexes (as also seen in Figure 4) which 

can result in a high GCI. Also oscillating convergence can lead to high GCI. 

In Figure 9d it can be seen that in general there is a good agreement with GCI < 10 % over most of the water 

column. High differences are located at the water surface and circa 0.3 m above ground, except for point 6 

(X = −0.9 m; Y = 11.51 m, see also Figure 9f). This possible error is too high taking fish migration into account. 

The refinement of the mesh can result in shifting of the vortexes (as also seen in Figure 4) which can result in a 

high GCI. 

   
(a) GCI of flow depth at two 

longitudinal profiles 

(b) Longitudinal water depth profile 

through slot 

(c) Longitudinal water depth profile 

trough middle of resting zone 

 
  

(d) GCI of axial velocity magnitude 

at six points 

(e) Axial Velocity magnitude 

Profile at the slot 

(f) Axial Velocity magnitude near 

wall domain 

Figure 9. Results of flow depth (a-c) and velocity magnitude (d-f) 

4. CONCLUSIONS 

The present investigation on mesh quality parameters can be considered as a first step for mesh quality 

recommendations. Basic parameters like time properties and mesh sizes were evaluated. The findings presented 

herein show, as expected, that mesh size and grid convergence are essential to guarantee sufficient numerical 

quality and to produce reliable numerical results. 

 

While general flow patterns can be reproduced sufficiently in large mesh resolutions like m = 8 cm, the 

absolute velocity magnitude require a finer mesh resolution to generate sufficient results. Comparing the depth-

averaged velocities of different mesh resolutions high divergences can be identified. With deviations of locally 

more than 100 % between two mesh resolutions it can be concluded that a mesh size of 4 cm does not provide 

reliable flow velocities to evaluate fish capability. The sensitivity analysis using GCI shows still lacking 

convergence with mesh width m = 2 cm in respect to the velocity magnitude. The alteration of the position of 

vortexes contributes to the high velocity distribution comparing certain points. On the other hand a 2 cm mesh 

provides a sufficient simulated flow depth with deviations of less than 2 cm and is rarely dependent on 

simulation time properties. 

 

Considering time dependency and turbulences analog assumptions due to mesh resolution can be made. The 

location of zones with high resp. low grade of turbulence can be identified using a coarse mesh resolution, short 

simulation time and large time step. Though, their dimension majorly depends on the mesh size as well as on 

simulation time properties. However, the present simulations couldn’t provide a recommendation for simulation 

time properties since more varying simulation runs have to be performed. Furthermore, fluctuations of flow in 

VSF could be reproduced but are not yet reliable. More numerical simulations need to be conducted with 

differing simulation time frames, too. 



 

 

Finally, the present paper discusses mesh quality aspects, but without comparing results with those from 

experimental hydraulic models. Consequently, also further experimental model runs are necessary to confirm 

numerical model results.  Therefore, extensive hydraulic experiments are planned at the Luebeck University of 

Applied Sciences’ Hydraulic Laboratory. 
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ABSTRACT 

Under relatively low-head discharges, the occurrence of nappe oscillation, otherwise known as nappe vibration, 

may be observed on hydraulic structures with a free overfall, such as weirs, crest gates and fountains. This 

phenomenon, which has been early identified as undesirable and potentially dangerous on gates, is 

characterized by oscillations in the thin flow nappe cascading downstream of the crest. In addition, these 

oscillations produce a significant level of noise and acoustic pressure waves that increase the environmental 

and societal impacts of the structure. A review of the scientific literature shows a lack of consensus regarding 

the causes and source of the oscillations development. In this context of relatively poor understanding of the 

dominant processes, a detailed investigation has been undertaken to identify and quantify the nappe vibration 

mechanism. The research is being performed with a prototype-scale linear weir located at the Engineering 

Hydraulics laboratory of the University of Liège. The study employs high-speed cameras and audio equipment 

to characterize the nappe vibration. This paper presents first characteristics of the nappe vibrations gained 

from images and sound analysis, especially in terms of vibration frequency, for a quarter round and a half 

round weir crest. This study shows that frequencies measured by sound and image analyses are identical and 

depend on the crest shape, the fall height and the unit discharge. 

Keywords: Spillway, nappe vibration, nappe oscillations, physical modelling, flow characterization 

1. INTRODUCTION

When water falls in the form of thin sheet from a weir, a gate or a fountain, nappe vibration may occur 

(Casperson 1993; Naudascher and Rockwell 1994). These nappe vibrations are known to produce excessive 

noise that can be heard far away from the source and may cause problems such as vibrations in doors or 

windowpanes in buildings nearby such as reported in the case of Linville Land Harbor Dam rehabilitation 

(Crookston et al. 2014). 

As regards to gates, the occurrence of nappe vibration has been attributed in part to the interaction between the 

flow and the air pocket between the gate and the nappe (Naudascher and Rockwell 1994). In fact, spoilers 

attached at the gate crest to divide the nappe and aerate the air pocket have proven to be an effective mitigation 

technique (Naudascher and Rockwell 1994; Sumi and Nakajima 1990; USBR 1964). However, vented nappe 

does not prevent the vibration occurrence in the case of free surface weir (Binnie 1972; Crookston et al. 2014; 

Crookston and Tullis 2012; Falvey 1980). Effective mitigation techniques have been proposed to prevent the 

development of nappe vibration on free surface weirs. Anderson (2014) and  (“Investigation into spillway 

discharge noise at Avon Dam” 1980) reports the effectiveness of crest roughness modification. Lodomez et al. 

(2016) asses and optimizes practical geometric countermeasures (crest modifications) which do not modify the 

weir hydraulic efficiency. 

Several studies have been conducted on nappe vibration mechanism. Schwartz (1966) investigated the influence 

of boundary layer conditions. Squire (1953) attributes nappe instabilities to shear forces that occur at the 

interface between the falling water and air, in a  Kelvin-Helmholtz mechanism (Helmholtz (1868)). Casperson 

(1996) studied oscillation occurring on curved crest while Chanson (1996) suggested a pressure discontinuity at 

the weir crest as the cause of the phenomenon,  with an origin of the vibrations at the crest. Casperson (1993) 

investigated the feedback mechanism played by the confined air chamber behind the nappe. Following the 

nappe vibration problems experienced after the rehabilitation of the Linville Land Harbor Dam, new 

investigations have been undertaken recently at the Utah Water Research Laboratory (Utah State University) 

(Anderson 2014; Crookston et al. 2014). They suggest that the nappe instability most likely arises at the weir 

crest. Indeed, the horizontal bandings on the nappe created by the oscillations are observed directly after the 



 

flow separation from the weir crest. These recent observations with some conflicting results from previous 

analysis confirm the complexity of the studied hydraulic mechanism.  

 

The present experimental study has been initiated on large-scale models to come up with generic scientific 

conclusions as well as a deeper systematic analysis of scale effects. This paper provides an overview of the 

preliminary results regarding the characterization of the nappe vibration. 

2. EXPERIMENTAL SETUP 

Figure 1 shows the experimental apparatus used and installed at the Engineering Hydraulics laboratory of the 

University de Liège. The prototype-scale linear weir is an elevated box divided in two identical weirs with a 

3.50-m long crest. The air cavity behind the nappe can be confined or vented to the atmosphere. Indeed the weir 

located on the left bank is confined between two lateral walls and a back wall, one lateral confinement wall 

being transparent (Plexiglas) and others black multiplex panels. The other model is vented except on the shared 

lateral side. The models are used independently by obstructing with multiplex panels the unwanted crest. The 

fall is adaptable with a maximum value of 3.00-m. 

 

 

Figure 1. Experimental apparatus. 

 

Two weir crest geometries have been tested, a quarter round crest (15-cm radius and 15-cm long flat element) 

and a half round crest (15-cm radius), which are modelled with typical prototype dimensions of reinforced 

concrete weir (Figure 2).  

 

 

Figure 2. Crest shapes tested– dimensions in cm. 

Water is supplied to the model by means of two pipes connected to two regulated pumps. Butterfly valves help 

in controlling very low discharges. Water enters the reservoir through perforated pipes parallel to the crest and 

located on the bottom of the reservoir. As illustrated in Figure 3, a baffle wall of synthetic membranes has been 

inserted in the reservoir to ensure uniform velocity conditions upstream of the crest. The discharge is measured 



 

with an electromagnetic flow meter installed on the supply piping, with an accuracy of 0.5% FS. The maximum 

unit discharge is 7.22×10-2 m²/s (250 l/s in the model). 

 

 

Figure 3. Upstream view of the facility: reservoir, water supply pipes and baffle wall upstream of the right side 

crest. 

The first nappe vibration characterization has been achieved by means of a free-field microphone (MCE 212) 

with a frequency range between 6 Hz and 20 kHz placed in front of the falling nappe (2 m downstream of the 

crest and at 2 m high to avoid water projection). Based on acoustic measurements, audio spectra analysis, 

carried out by means of the SYMPHONIE software suite, provides the dominant sound frequencies and their 

associated intensity (Lodomez et al. 2016). A second mean of characterization is a high-speed video camera 

(Go-Pro Hero 4 - acquisition frequency of 240 Hz) to capture images of the falling water. Image analysis 

enables to quantify the nappe oscillation frequency by the detection of horizontal bands in the falling water, 

assuming that these horizontal bands arise from the lighting on the undulating surface. Indeed, the use of 

spotlights lighting up from downstream the falling nappe allow to visualize these bands on images shot from 2 

m downstream of the crest. 

 

In this paper, the characteristics of the nappe vibrations, especially of the phenomenon frequency gained from 

image and sound analysis, are presented and discussed for four model configurations with varied crest shape and 

fall height. The main parameters of these configurations are listed in Table 1.  

 

Table 1.  Main parameters of the discussed configurations.  

 

Configurations A B C D 

Crest length (m) 3.50 

Crest shape Quarter round Half round 

Fall (m) 3.00 3.00 1.00 0.50 

Discharge range (m²/s) 0.015-0.07 0.01-0.06 

Confinement Confined 

3. RESULTS AND DISCUSSION 

3.1. Sound analysis 

As already mentioned, the first quantitative results have been obtained by acoustic measurements. These 

measurements have been performed to characterize the flow rate range for which the nappe vibration 

phenomenon appears. For various flow rates between 0.01 m²/s and 0.07 m²/s, an audio recording of 4 minutes 

has been made and processed to highlight the dominant frequencies in the audio spectrum.  

For a common range of unit discharges, audio spectra of sound recordings are illustrated in Figure 4 for the four 

configurations studied. They clearly show for configurations A and C a local frequency peak up to a unit 

discharge of 0.045 m²/s. For configuration D, the local peak is visible for unit discharge of 0.015 m²/s and 0.03 



 

m²/s and disappears for higher discharges while for configuration B, no local frequency peak is visible in the 

discharge range.   

In Figure 5 the maximum intensity of the spectrum and its corresponding frequency (illustrated in Figure 4 by 

red circles) are reported as a function of the unit discharge. If the frequency is a local frequency peak, this 

frequency may be considered as the frequency of nappe vibrations. Therefore, the detection of local frequency 

peak and the bell-shaped evolution of the maximum intensity with the discharge in Figure 5 allow defining the 

nappe vibration flow range. 

For configuration A, it can be noticed that the frequency of vibrations varies between 30.75 Hz and 35.5 Hz, for 

unit discharges between 0.015 m²/s and 0.07 m²/s. For configuration B, no local peak being detected, for all unit 

discharge tested, the maximum sound level and it corresponding frequency are therefore meaningless regarding 

nappe vibration phenomenon. Indeed, nappe vibrations do not appear for this configuration. Sound 

measurements will be confirmed by the flow visualization. For configuration C, the nappe vibration can be 

detected between 0.015 m²/s and 0.045 m²/s when a local frequency peak exists. Indeed, in some periods of 

tests, despite a slight buzzing sound, no vibration was heard, while at other times the vibrations could be clearly 

heard and viewed. If vibrations exist, the frequency of the peak is however variable with the discharge. Between 

0.015 m²/s and 0.03 m²/s, dominant frequency is between 44 Hz and 44.5 Hz although a frequency of 51 Hz has 

also been detected for 0.02 m²/s. For 0.04 m²/s and 0.045 m²/s dominant frequency is equal to 41.25 Hz. This 

value corresponds to the frequency of the maximum intensity of the spectrum when nappe slightly buzzes 

between 0.015 m²/s and 0.03 m²/s. This finding leads to the conclusion that the nappe may vibrate preferentially 

between 41.5 Hz and 44 Hz in the range of 0.015m²/s to 0.045 m²/s. Finally, Configuration D shows vibrations 

for unit discharge between 0.01m²/s and 0.04 m²/s. In this unit discharge range, there are three types of 

vibrations: a first one around 36.75 Hz between 0.01 m²/s and 0.02 m²/s, a second one around 40.75 Hz between 

0.02m²/s and 0.03 m²/s and a third one around 34.5 Hz between 0.03 m²/s and 0.04 m²/s . 

 

 

 

 
 

 

 
 

Figure 4. Audio spectrum of sound recording for A, B, C and D configurations, unit discharge between 

0.015 m²/s and 0.06 m²/s.  



 

 

Figure 5. Summary of sound measurements for configuration A, B, C and D.  

3.2. Image analysis 

Horizontal bands are the visible characteristics of the nappe oscillation phenomenon. For various flow rates and 

all model configurations, flow visualization has been conducted. Figure 6 shows the images obtained for the 

configuration A and B. For the quarter round crest, horizontal bands are clearly visible for unit discharges lower 

than 0.06 m²/s, which is in agreement with sound measurements. In fact, the flow visualization shows nappe 

vibrations for the same flow ranges as those derived from the sound analysis. In contrast, for the configuration B 

no horizontal band is visible excepted for 0.015 m²/s. This is consistent with sound measurements as a dominant 

frequency peak could only be identified in configuration B for low unit discharge. However, in that 

configuration the nappe is impacting the back wall. For higher discharge, nappe breaks up. This creates small 

aerated nappes, which do not vibrate. In Configuration C and D with smaller chutes (1.00-m and 0.50-m, 

respectively), horizontal bands can be detected on the whole crest width (Figure 7(a)) or by zone, depending of 

the lighting (Figure 7(b)).  

 

(a)        
 

(b)        
 



 

(c)        
 

(d)        

Figure 6. Nappe vibration visualization for (a) 0.015 m²/s, (b) 0.03 m²/s, (c) 0.045 m²/s and (d) 0.06 m²/s for the 

configuration A on the left column and the configuration B on the right column. 

 

(a)  
 

(b)  

Figure 7. Nappe vibration visualization for (a) 0.01 m²/s - Configuration C and (b) 0.02 m²/s - Configuration D  

 

Assuming that the horizontal bands are due to the lighting on the undulating surface, the frequency of the 

horizontal bands has been determined by the extraction of information carried by a fixed set of pixels on a 

succession of images. The method is conceptually sketched in Figure 8. The undulating nappe surface, 

represented at three successive time steps, shows horizontal bands (lit or unlit bands) that move according to the 

flow direction. Then, for a fixed image frame, a chosen line of pixel carries information which varies depending 

on whether the pixels are on the saturated zone of the oscillation or not. This information is translated on each 

pixel of the line into a numerical value between 0 and 255 (images encoded in 8 bits). Then, the vibration 

frequency is calculated by means a Fast Fourier Transform of the fluctuation of this mean value of the line of 

pixels. The image analysis on 100 images (recorded at 240 Hz) is illustrated for the configuration D and a unit 

discharge of 0.02 m²/s in Figure 9. This figure illustrates (1) the chosen line of pixel, (2) the mean value of this 

line and (3) the FFT of the fluctuation of this mean value. Repetitive bands are clearly visible even if for the 

instantaneous image (Figure 7(b)) these bands are hard to see. Moreover, this pattern corresponds to an 

oscillating mean value of the pixel line. And, the dominant frequency is 36 Hz, corresponding to 15 bands 

passing through 100 images recorded every 1/240 second.  

 

 



 

 

Figure 8. Conceptual representation of image analysis. 

 

 

Figure 9. Image analysis on 100 images for Configuration D, a unit discharge of 0.02 m²/s. 

The resolution of the image frequency calculation depends of the ratio between the acquisition frequency and 

the number of images frames. For an acquisition frequency of 240 Hz, a minimum of 480 frames have to be 

used to ensure a resolution of 0.5 Hz. For configuration A, C and D, the image analysis has been applied to unit 

discharges for which horizontal stripes can be observed. Indeed, for configuration B and a unit discharge of 0.03 

m²/s and for configuration D and a unit discharge of 0.05 m²/s, the image analysis respectively in Figure 10 and 

Figure 11 provides no information regarding the nappe vibration phenomenon. Potential peaks are very low 

amplitudes and represent the noise of the signal. The number of chosen pixels lines (100 pixels per line) is at 

least 3 for each set of images. The number of sets of analyzed images is between 3 and 5 per unit discharge. The 

results are shown in Figure 12 and compared to relevant dominant frequencies detected by sound measurements. 

The frequencies derived from image analysis are identical to those resulting from sound measurements and do 

not depend on the considered pixels and images sets, excepted for configuration C, unit discharge of 0.01m²/s. 

The vibrations for the Configuration C do not appear systematically. Image analysis is thus reducing to few unit 

discharges. However, the derived frequency corresponds to the sound frequency measured at the same time.  

As a consequence of this finding, it appears that the noise is linked to the oscillations in the falling nappe but, it 

cannot be explained by the impact of the nappe on the ground. Indeed assuming that the cause of noise is due to 

the impact, the sound frequency should be twice the visual frequency since the impact varies between two 

opposite particle of the cyclical nappe waves. Finally, the various behaviors observed for the 4 configurations 

suggest that the vibrations depend on the crest shape, the fall height and the unit discharge.  



 

 

Figure 10. Image analysis on 480 images for Configuration B, a unit discharge of 0.03 m²/s. 

 

Figure 11. Image analysis on 480 images for Configuration D, a unit discharge of 0.045 m²/s. 

 
 

Figure 12. Results of sound and image analysis in terms of frequencies. 



 

4. CONCLUSIONS 

The research conducted on a prototype-scale linear weir model enables to describe the nappe vibration 

phenomenon, especially in terms of frequencies, by means of image and sound analysis. The main result is the 

obvious link between the frequency of the sound and the frequency of horizontal stripes in the thin flow nappes. 

For a prototype-scale linear weir with a 3.46-m long crest, a 3.04-m high chute and a quarter round crest, theses 

frequencies are in the range of 31 Hz to 37 Hz. In contrast, for a vibrating half round crest configuration and a 

limited fall, the dominant frequencies vary with the unit discharge, in the range of 34.5 Hz to 44.5 Hz.  

 

The tests made on half round crest clearly show that this type of crest shape is less likely to induce nappe 

vibrations. A possible explanation could be the variability of the detachment point of the nappe along the crest 

length which disrupts the oscillations alignment. The study is still ongoing with additional tests to determine 

potential parameters that characterize the initiation of nappe vibration. 
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ABSTRACT 

The Arctic region has experienced rapid changes in the last few decades. The Arctic coasts in times of 

progressing global warming are exceptionally vulnerable to erosion. Arctic sea-ice extent is decreasing 

dramatically leaving coasts exposed to destructive action of waves. The lack of sea ice causes a dramatic 

increase of wave energy reaching coastline. In order to provide insight into coastal changes in Arctic areas, 

field measurements were carried out in the area of Calypsobyen, Bellsund, west Spitsbergen. Data of free-

surface elevation, wave orbital velocities, water currents and bathymetry were collected during expedition in 

the western Spitsbergen. In the frame of this study a detailed analysis of wave field were performed. The 

collected database constitute unique and valuable source of information on Arctic wave climate.  

Keywords: Field measurements, Arctic, water waves, database. 

1. INTRODUCTION

The Arctic region is very intensively explored in the last few decades and coastal settlements are exposed to 

great risk. Coastal changes in the Arctic are affected by many environmental factors such as sea-level and sea-

ice extend variations, wind, waves and storminess. Also the geology and morphometry of the coastline, 

permafrost concentration and its ground-ice content have an impact on coastal changes (Zagórski 2011). As a 

result of costal processes such as sediment transport due to waves and currents and degradation of permafrost, 

the erosion or accretion occurs affecting biological and human systems (Rachold et al. 2005). The Arctic coasts 

in times of progressing global warming are exceptionally vulnerable to erosion. The Arctic sea-ice extent is 

decreasing dramatically. According to the newest studies, sea ice extent in Arctic is decreasing 3.8% i.e. about 

400,000 km2 per decade. The situation is more dramatic when we consider the average winter ice thickness, 

which decreases about 16 % per decade (Comiso and Hall 2014). Disappearing of natural barrier in the form of 

sea ice, leaves the coasts exposed to destructive action of waves (Reda et al. 2015, Paprota et al. 2016, Sulisz et 

al. 2015). 

Figure 1. Measurements site at the southern part of Bellsund, Spitsbergen. Red line – coastline position, black 

line – bathymetry survey tracks, yellow dots – bathymetry survey with CTD probe.  



 

 

The main objective of this study is to create a database of wave field characteristics in Arctic regions which will 

be constantly updated. The database will include other parameters useful in the estimation of coastal erosion 

rates such as bathymetry of nearshore zone, coastline position, and topographic profiles of the beach. This 

database is going to be used to verify numerical model of marine scour in Arctic conditions. Further work 

includes the estimation of Arctic coasts vulnerability to wave-induced erosion. In order to estimate wave energy 

reaching the shoreline, water wave measurements were carried out in the area of Calypsobyen, Bellsund, West 

Spitsbergen. Field campaign was conducted by the team of researchers from the Institute of Hydro-Engineering 

and Maria Curie-Skłodowska University (UMCS) during the summer season of 2015 in the vicinity of Polish 

Polar Station in Calypsobyen (Figure 1). Although measurements of currents, salinity, etc. were conducted in 

Svalbard archipelago, very little attention has been given to surface waves in that area (Mędrek et al. 2015). The 

database will also contribute to other fields of science. To provide full insight in the process of coastal erosion, 

wave measurements were supported by complementary bathymetry surveys and shoreline position tracking. 

Authors are going to perform second expedition to the Calypsobyen in the summer season of 2016 and 

supplement the database with new measurements. It will allow to estimate seasonal change of coastal erosion 

rate in Bellsund. This paper presents analysis of raw measurement of wind waves, currents and bathymetry. 

2. FIELD MEASUREMENTS 

In the Arctic conditions, a higher possibility of drifting ice and iceberg appearance, makes the use of 

conventional methods of surface wave measurements impossible. The floating buoy such as WaveRider is likely 

to be carried away or completely damaged by floating ice. Therefore, the Acoustic Wave and Current (AWAC) 

measuring system was chosen to be deployed. The advantage of the AWAC system is its sea floor deployment, 

which makes the system less vulnerable to weather conditions. The system also offers the possibility of current 

velocity and direction measurements. Taking into account the logistic issues regarding the expedition and 

morphological characteristic of the Svalbard archipelago (Zagórski 2011), authors decided to choose 

Calypsobyen, Bellsund, west Spitsbergen as the study area. Desirable place had to be an intermediate or shallow 

water area, i.e. the ratio of water depth to wavelength is less than 0.5 and the waves are already refracted and 

tend to propagate perpendicularly to the shoreline. The measurements were conducted from 10.06.2016 to 

03.09.2016. The area of planned deployment of AWAC system was initially probed with YSI 600XL-B-M CTD 

device equipped with the pressure sensor. These measurements are presented as yellow dots in Figure 1. As a 

result, the position of the system was determined by the distance of 1 km from the coastline and is marked by a 

red dot in Figure 1. The water depth ranged from 8 to 10 m depending on the tide level.  The device was fixed at 

the bottom on a tripod stand with the head of the device 0.8 m above the bottom. The AWAC was programmed 

to record free-surface oscillations with the highest available frequency of 4 Hz. One wave record lasted for 

1,200 seconds which resulted in 4,800 points per wave record. The interval between wave records was 1,320 s. 

The gap between wave records lasted only 120 s and was used to register water current profile. The profiles 

were recorded in 18 vertical cells, every 1,320 seconds for 55 seconds and then the results were averaged. The 

cell vertical size was 0.5 m and the number of cells was chosen to reach the surface at the highest water level. 

 

 

Figure 2.  Time schedule of AWAC measurements.  

Wave measurements were supported by bathymetry surveys and coastline position tracking. Bathymetry 

measurements were made from a boat by applying Garmin echoMAP DV50 echo sounder. The black line in 

fig. 1 depicts the path of depth measurements. The speed of the boat was kept constant to avoid the noise 

appearance in the bathymetry record. Moreover, archival digital bathymetry that consists of interpolated point 

data in the array of 10 m by 10 m was available. The position of the shoreline was measured with the Leica GPS 

System 500 at a known sea level. The track of coastline position is marked by red line in Figure 1. The second 

record of the coastline position is planned to be performed in the frame of the next expedition and will allow to 

determine interannual variability. Additionally, meteorological parameters such as temperature, atmospheric 

pressure, wind speed and wind direction were recorded by four automatic weather stations located in the western 

Spitsbergen. 



 

3. RESULTS AND DISCUSSION 

3.1. Waves 

 

Figure 3. Normalized directional wave energy density spectrum. 

 
Wave measurements collected using AWAC system resulted in more than 5300 wave records. The directional 

wave energy spectrum 𝑆(, 𝑓), where   is a wave direction and 𝑓 is a wave frequency, were calculated for each 

20 minutes wave record. The directional spectra were calculated by applying a directional Fourier series 

approach which is commonly used in a wave field analysis (Boukhanovsky et al. 2007). The method was 

originally developed by Longuet-Higgins et al. (1963) and consists of counting first five coefficients of the 

directional Fourier series expansion 𝑎0, 𝑎1, 𝑎2, 𝑏1, 𝑏2 of the directional wave spectrum 𝑆(, 𝑓). The spectrum is 

given by: 

 

𝑆(𝜃, 𝑓) =
𝑎0

2
+ 𝑎1 cos(𝜃) + 𝑏1 sin(𝜃) + 𝑎2 cos(2𝜃) + 𝑏2 sin(2𝜃)    (1) 

 

The detailed procedure can be found in Longuet-Higgins et al. (1963) or in Earle et al. (1999). The directional 

spectrum for the whole period of measurements is shown in fig. 3. It can be seen that the majority of wave 

energy is focused around 0.2 to 0.4 Hz. The significant wave height 𝐻𝑠 was derived with the zero up-crossing 

method and was compared to its spectral counterpart 𝐻𝑚0
 to check the results. Differences were less than 2 %. 

𝐻𝑚0
 is the wave height derived on the basis of zeroth-order spectral moment from the following formula: 

 

𝐻𝑠 = 4√𝑚0      (2) 

 

The significant wave height 𝐻𝑠 is plotted in Figure 4. One can distinguish some periods of stormy weather when 

the significant wave height grew rapidly. The most spectacular storm occurred around 28th of July when the 

significant wave height grew to over 1 m. The growth in 𝐻𝑠 can be also seen on days 06/12, 07/15, 08/18, 08/25. 

The topography of Bellsund area enforce less wave energy which causes that the significant wave height is 

lower than in open waters of North-East Atlantic (Vikebø et al. 2003). Peak periods, and dominant wave 

directions were calculated on the basis of spectral parameters and are also plotted in Figure 4. The distributions 

of peak periods and wave directions are uneven when the water surface is relatively calm. With increasing 𝐻𝑠, 

when the storm is developing, the peak periods and dominant wave directions are more stable in time. The 

directional distribution of dominant wave directions is shown in Figure 5. The dominant wave direction 

coincides with North-East direction, which is with some deviation, perpendicular to the shoreline in the vicinity 

of Calypsostranda. Wave directions are in reasonable agreement with wind directions (Figure 6). Wavelengths 

were calculated according to the linear dispersion relation. Wavelengths corresponding to significant wave 

height are presented in Figure 7.  

 



 

    

Figure 4. Time distribution of peak period, significant wave heights and dominant wave direction. 

 

                       

Figure 5. Wave peak directions. Zero degree is N.   Figure 6. Wind Directions. Zero degree is N. 

     

Figure 7. Time distribution of wavelengths and significant wave heights. 

 



 

3.2. Currents 

The current speeds and directions recorded during expedition are shown in Figure 8. Angels on right plot 

correspond to the real north shown in Figure 1. The plots show that during strong storms, when significant wave 

height is increased, the current becomes more homogenous over depth and its magnitude increases, as expected. 

This is especially seen on day 07/28 on both plots in Figure 8. Similar situation can be observed also around 

days 06/12, 06/28, 08/10, 08/18, 08/25. When the significant wave height decrease and the storms become 

weak, the upper and bottom layers of the water column move southward, which is consistent with wave 

directions. The middle layer of water column moves northward, creating a certain circulation pattern. For weak 

storms the current usually decreases with water depth.  

 

   

Figure 8. Current speed and current direction profiles.  

3.3. Bathymetry 

The bathymetry measured during the expedition and the archive data are presented in Figure 9. The archive data 

were collected by Norwegian Hydrographic Service (NHS) and consist of interpolated data in the grid of 10 m 

by 10 meters. The comparison of the historical data with the bathymetry recorded in the course of this study 

showed that the NHS bathymetry is very general and misses many details related to underwater land forms. This 

can be seen on the chosen profiles taken from both databases (Figure 10). In Figure 10, the profiles were set to 

be perpendicular to the shoreline and to pass through the AWAC position. Due to large uncertainty in historical 

bathymetry data, the analysis of changes in depth over time led to unreliable results. Nevertheless, archival 

bathymetry can be useful as a supplement data collected in the course of this study. Analysis of the bathymetry 

showed that the coastal zone of Recherche Fjord is composed of two steep slopes and the 1.5 km long relatively 

flat section between the slopes. The toe of the first steep slope is located at the depth of 10 m, while the second 

one is located at the depth of 80 m.  

 

 

Figure 9. Bathymetry surveys and archival bathymetry data. 



 

 

Figure 10. Depth profiles from bathymetry data. 

4. CONCLUSIONS 

The results of the present work constitute a unique and valuable database of Arctic wave climate parameters. 

Particularly, wave records of frequency 4 Hz are very rare. Data of free-surface oscillations and wave peak 

direction are in good correlation with wind directions and show the maximum variance of 50 degrees. 

Significant wave height is lower than in open waters of North-East Atlantic, which limits wave-induced erosion. 

Current directions are parallel to the shoreline with some discrepancies during storms. The authors were unable 

to estimate time dependent bathymetry changes due to inaccuracy of archival data. A detailed analysis will be 

performed on the basis of measurements collected during presented and future expedition, which is planned to 

be carried out in the summer season of 2016. Accordingly, an estimation of coast vulnerability to wave-induced 

erosion will be performed when the data of seasonal changes of the coastline position will be available.  
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ABSTRACT 

In the present work, a numerical model based upon the Large Eddy Simulation approach has been set up for 

predicting the three-dimensional flow around a cylindrical pier, mounted on a flat and fixed bed, a generic case 

that is relevant for the study of flow and scour around bridge piers. This turbulent flow configuration was 

studied experimentally by Nogueira et al. (2008) with Particle Image Velocimetry (PIV). The main goal of this 

paper is a first validation of the numerical model, based upon the available data. The numerical tool is capable 

to qualitatively reproduce the characteristic flow features around the pier, like e.g. the horseshoe vortex system 

and the vortex shedding in the wake. The predicted extent of the initial scour hole, based upon the bed shear 

stress magnitudes, agrees well with the observations at the onset of the souring process during the lab 

experiments. Further quantitative validation of the numerical model will benefit from additional measurement 

efforts in the experiments.  

Keywords: CFD, LES, Ansys Fluent, cylindrical pier 

1. INTRODUCTION

The flow past a circular cylinder is of practical relevance for many engineering fields, with regards to the flow 

around e.g. towers, chimneys, cables or bridge piers, with the latter being the subject of this work.  

The flow disturbance caused by piers on riverbeds usually induces scour around those structures. The principal 

features of the corresponding flow pattern are shown in Figure 1. As the flow approaches the pier, its velocity 

decreases down to the point where the flow is halted at the upstream face of the obstacle. As a consequence of 

the change of the pressure field, an increment on the level of the free surface on the upstream side of the pier 

occurs, forming the so-called surface roller. Accordingly, the approach velocity is higher near the water surface 

than near the bed, as well as the pressure. Therefore, this pressure gradient results in a downflow that impinges 

on the bed and it is partially deflected upstream. Simultaneously, the boundary layer of the approaching flow 

undergoes a three-dimensional separation due to the adverse pressure gradient induced by the pier. The resulting 

horseshoe vortex is subsequently advected along both sides of the pier base. The aforementioned phenomena 

tend to scour the pier’s foundation, both upstream and at the sides of the pier.  

Scour around obstacles in rivers occurs after the formation of a scour cavity of sufficiently large dimensions to 

stabilize the large-scale oscillations of the horseshoe vortex (Kirkil and Constantinescu 2010). The latter 

dissipates itself downstream the pier, having an important role in the bed scour due to the bed material trailing 

(Melville and Coleman 2000).  

At the lee side of the pier, the shedding of wake vortices can be seen. While the horseshoe vortex causes 

essentially the entrainment of the bed material, the wake vortices pluck the particles with a suction effect, 

transporting them then in suspension (Melville and Coleman 2000).  

In summary, turbulent structures over a wide range of scales are present around the cylinder, controlling the 

entrainment and transport of sediment from the scour hole. Hence, to understand how the flow induces scour on 

the bed, it is necessary to properly account for the structure of the large-scale eddies around the cylinder.  



 

 

Figure 1. Flow pattern around a circular pier (Hammil 1999) 

The flow around a circular cylinder has been extensively studied in fluid mechanics. For many years, due to the 

complexity of the flow structures involved, the study of this issue has been mostly experimental. Nevertheless, 

in the last decades, the numerical modeling of the flow around piers has been a growing field.  

Thwaites (1960) reviewed the previous aerodynamic experimental studies about the flow around cylindrical 

structures. One of the earliest computational studies about flow around circular cylinders was conducted by 

Beaudan and Moin (1994). Nakamura et al. (1996) studied the vortex shedding from a rectangular pier both 

numerically and experimentally. Yulistiyanto et al. (1998) focused on the modeling of the flow over cylinder on 

shallow-water. Large Eddy Simulation (LES) was initially introduced for simulating atmospheric flows in the 

1960s (Smagorinsky 1963) and has become one of the most successful methodologies for eddy-resolved 

modeling of turbulent flows (Zhiyin 2014). Researchers’ attention has turned to the application of this model to 

flow around bluff bodies (e.g. Sakamoto et al. 1993, Yang et al. 1993, Murakami and Mochida 1995, Rodi et al. 

1997, Franke and Frank 2002, Lisenko et al. 2012). Breuer (1998) studied the numerical and modeling 

influences on Large Eddy simulations for the flow past a circular cylinder. Catalano (2003) performed LES 

simulations of the flow around a circular cylinder at high Reynolds numbers.  Kuroda et al. (2007) studied the 

flow around a rectangular cylinder (applying LES) and then compared the results with particle image 

velocimetry (PIV) data. Zhao and Huhe (2006) presented a 3D LES of the flow around a cylindrical pier.  

Reviews of advances in the use of LES to study flow around bodies can be found in Zhiyn (2014), Majeed et al. 

(2015) and Schanderl and Manhart (2016), with the latter focused on the bed shear stress around a cylinder.   

The hydrodynamic studies are important to understand and minimize the result of the deflection of the flow 

caused by the obstacle: scour. To understand scour around piers quantitative and qualitative data of the flow 

field are required. Although this subject has been extensively studied, some features of the flow are not fully 

understood. The body geometry is quite simple, but the flow structures around the body can be very complex, 

including separation with no fixed separation point, transition to turbulence in the thin shear layers, which are 

separating, and shedding of large scale vortices (Zdravkovich 1997). Nogueira et al. (2008) studied the flow 

around a cylindrical pier by means of PIV, showing the presence of the downflow and horseshoe vortex system 

upstream the cylindrical pier (schematized in Figure 1).  

Although the main interest of the authors is scour around bridge piers, the primary goal of this paper is to assess 

the quality of an eddy-resolving numerical model based upon the LES approach for the flow field around a 

cylindrical pier in a flat fixed bed, representative for the initial phase of the scour process. More specifically, the 

objective is to simulate the flat bed lab experiments of Nogueira et al. (2008), allowing a partial validation of the 

numerical predictions. Additionally, validation data from literature will be used. This validation exercise is a 

first step towards numerical simulation of the scouring process and countermeasures (of cylindrical and even 

more complex bridge pier geometries). 

Note that the use of the LES approach allows to reveal the dynamics of large-scale eddies in the flow around a 

circular pier, enabling the study of the influence of the flow structures on the bed shear stresses (which are 

difficult to measure in laboratory experiments) and on the cylinder itself. The bed shear stress values are useful 

to identify where and how scour will start to occur.  

The outline of the paper is as follows. In section 2, the characteristics of the studied flow configuration will be 

described. Section 3 presents the numerical model set-up and verification criteria. Results on the instantaneous 

velocity fields, drag coefficient and bed shear stress are presented and discussed in section 4. Conclusions are 

drawn in section 5. 

https://www.researchgate.net/profile/Bambang_Yulistiyanto


 

 

2. FLOW CONFIGURATION  

As stated before, the reference case used for the numerical simulation is the experimental work of Nogueira et 

al. (2008), namely the configuration with a flat and fixed bed (Figure 2 and Table 1). The laboratory work was 

performed in a long water flume with 0.7 m width (B) and 8 m length. A PVC cylinder with 0.048 m diameter 

(D) was positioned and founded in the channel bed. The bed material consisted of quartz sand with a median 

diameter (d50) equal to 0.837 mm with a coefficient of gradation (σD) equal to 1.48.  

 
Figure 2. Experimental installation (from Nogueira et al. 2008) 

 

Nogueira et al. (2008) also aimed at the study of the scour around the pier, measuring the scour cavity after 

5 minutes (corresponding to 45 % of the equilibrium scour depth). The maximum depth of local scour is 

obtained for flow conditions near the critical condition (U ≈ Uc), i.e. the mean flow velocity corresponds to the 

initiation of the particles’ motion (Melville and Coleman 2000). Thus, the flow rate supplied (Q) was 20 l/s and 

the flow depth (h) equal to 0.10 m, resulting in a mean flow velocity of 0.286 m/s, a value which lies between 

the critical velocities suggested by Goncharov and Neil equations (Nogueira et al. 2008). The water temperature 

was kept around 20°C. Taking in consideration the features provided, the Reynolds number of the flow 

calculated based on the pier diameter is given by ReD = 1.37×104. The contraction and wall effects were 

negligible to the scouring process, since ratios of B/D ≥ 10 and B/h ≥ 5 (Moreno et al. 2012, Ramos et al. 2015) 

were guaranteed (see Table 1).  

In accordance with the Shields diagram (Shields 1936), the critical shear stress of the bed particles is 

approximately 0.48 Pa. This parameter will be useful to compare with the bed shear stress values obtained in the 

numerical simulations. 

Table 1. Characteristic parameters of experiment by Nogueira et al. 2008 

d50 B D B/D h B/h Q U ReD 

(mm) (m) (m) (-) (m) (-) (m3/s) (m/s) (-) 

0.837 0.7 0.048 14.58 0.10 7.00 0.20 0.286 1.37×104 

 

No measured data for the drag force on the pier are available in the data set of Nogueira et al. (2008). Therefore, 

use is made of information in the literature. The drag force on the pier depends on the Reynolds number. If the 

approaching flow were to be uniform over the flow depth, which is not the case in the experiment, the drag 

coefficient, CD, is expected to oscillate around the mean value of 0.683 for ReD = 1.37×104 (Figure 5.3 of White 

2006).  

The oscillations of the drag force may (in principle) also be important to the pier’s structural design, but this is 

beyond the scope of this paper. To quantify the shedding frequency of the wake vortices, no use can be made of 

measured velocities in the lee side of the pier, since they are absent in the data set of Nogueira et al. (2008). 

Therefore, again information in the literature will be relied upon. For a given main frequency, f, of the vortex 

shedding, the corresponding dimensionless Strouhal number, St (White 2006) is: 

U

Df
St

.
   (1) 

where D is the diameter of the pier. For the present case, the Strouhal number according to literature (Figure 3) 

assumes a value of about 0.20. This yields a vortex shedding frequency of 1.19 Hz, hence a period (T) of 0.84 s. 



 

 

Figure 3. Relationship between Strouhal number and Reynolds number for circular cylinders, after Techet 

(2005), data from Lienhard (1966) and from Roshko (1955) 

3. NUMERICAL MODEL 

3.1. Computational mesh 

A 3-D finite-volume incompressible Navier-Stokes model, applying the Large Eddy Simulation approach, is set 

up and run by means of the Ansys Fluent software. The mesh used for the simulations is a parallelepiped (0.7 m 

wide and 0.1 m high), representing the fluid domain, with a cylindrical cavity, with a diameter of 0.048 m, 

representing the pier (Figure 4). The geometric model is not very complex, allowing the adoption of a block-

structured mesh with an O-grid mesh with a radius of 6D around the cylinder. The pier’s zone was subjected to a 

further refinement (Figure 5 and Figure 6), as well as the cells next to the walls and bed. Note however, that the 

wall boundary layers are not fully resolved. In order to limit the computational time, a so-called wall model will 

be relied upon. In Figure 4, the sub-zones of the mesh are indicated. The grey arrows indicate the cell size 

gradient direction (from the smallest to the biggest cell). Note the smaller cells are next to the cylindrical pier 

and walls (Table 2). Also, a size cell gradient in the z-direction was applied (with the finer cells near the bed). 

Note that the presented mesh is the final result of some (iterative) mesh optimization efforts, aiming at mesh 

independency of the solution as well as respecting some quality criteria (see also 3.5). 

 

 

Figure 4. Computational domain with indication of the zones of the mesh and direction of the cell size grading 

(not to scale) 

 

Figure 5. Partial plan view of the mesh (mesh is symmetric with respect to the 𝑥 axis shown in Figure 4) 



 

 

Table 2. Number of cells in each zone of the mesh  

Zone of 

the mesh 

x-direction y-direction z-direction 

Size of first 

cell (mm) 

Number 

of Cells 

Size of first 

cell  (mm) 

Number 

of Cells 

Size of first 

cell  (mm) 

Number of 

Cells 

1 0.005 200 0.0025 100 0.015 80 

2, 3 0.010 30 0.010 50 0.015 80 

4 3.000 400 3.000 80 0.015 80 

5, 6 0.010 400 0.010 60 0.015 80 

7 3.000 300 3.000 80 0.015 80 

8, 9 0.010 300 0.010 30 0.015 80 

 

 

Figure 6. Detailed view of the mesh next to the pier  

3.2. Boundary conditions  

Taking advantage of the available PIV data regarding the approaching flow, the inlet boundary condition was 

defined by three velocity profiles at y = 0.175 m, y = 0 m (symmetry axis) and y = 0.086 m, respectively (i.e. 

points A, B and C of Figure 7), corresponding to the total discharge (Q = 20 l/s). According to the literature, the 

inlet distance from the pier (72D) is sufficient for the turbulence to be developed (Ferziger and Peric 2002). The 

standard wall model from Fluent (Launder and Spalding 1974) was used to model the flow near the walls, bed 

and pier. In the outlet, the outflow condition from Fluent was applied, meaning a zero diffusion flux for all flow 

variables (the conditions of the outflow plane are extrapolated from within the domain and have no impact on 

the upstream flow) and an overall mass balance correction. 

 

 

Figure 7. Schematic description of the domain (plan view) and its boundary-conditions (not to scale).  

The upper boundary condition (water surface) was modelled by means of a rigid lid without any friction. As 

mentioned before (Section 1) and shown in Figure 8, in reality an elevation of the water level occurs upstream 

of the pier, a phenomenon which is accompanied by a surface roller.  



 

 
Figure 8. Schematic description of free-surface upstream the pier (Roulound et al. 2005). 

 

The free surface elevation upstream the pier is a phenomenon mostly influenced by the Froude number of the 

flow (Roulund et al. 2005). The higher the Froude number, the bigger is the described effect. For relatively 

small Froude numbers, Δh (i.e. the difference between the water level immediately upstream the pier and the 

lowest point of the water surface close to the pier) is given by Equation 2 (Roulund et al. 2005). 

2

2Fr

h

h
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(2) 

 

In the present case, the Froude number is 0.29. Thus, Δh is expected to be about 4.2 mm, i.e. about 4 % of the 

flow depth. Since this value is relatively small (Roulund et al. 2005), the rigid lid approximation seems to be 

acceptable.  

3.3. Sub-grid scale model 

When using LES, the time-dependent, three-dimensional, spatially-averaged Navier-Stokes equations are 

solved. In this method, the largest scales are resolved numerically on the mesh, while the unresolved scales must 

be modeled with a sub-grid scale model. This study adopts the most widely used sub-grid scale model, being the 

standard Smagorinsky model with a Smagorinsky constant Cs=0.1 (Smagorinsky, 1963).   

3.4. Numerical solution 

The PISO solver was used, since it is the most suitable one for turbulent flows of incompressible fluids (Singh 

2004). Both skewness and neighbor correction values were set to 1. Discretization in space and time are second 

order accurate. A constant time step Δt = 1×103 s was chosen (regarding Δt/T << 1 and after conducting several 

sensitive analysis). The maximum number of iterations per time-step was 20.  

Simulations were carried out on the supercomputer platform of Ghent University. The residual values were 

controlled and kept below the recommended values for convergence (Kulkarni and Moeykens 2005). After a 

period of 100T, a quasi-steady vortex shedding was established.  

3.5. Model verification 

During the simulations, the residuals value were recorded and kept under the values recommended by Ansys 

Fluent Theory Guide. After trying several meshes and model parameters, the model described above was found 

to (largely) fulfill two important criteria. The first criterion is related to the use of the standard wall function and 

requires the dimensionless wall distance y+ of the first cells near solid walls to be within the range of 

30 ≤ y+ ≤ 500 (Keylock et al. 2012). This condition was verified in several locations of the computation domain, 

with a special look to the cells near the pier and the bed.  

The second criterion requires a LES simulation to have at least 80 % of the turbulent kinetic energy being 

resolved by the mesh (Pope 2004). Not all parts of the mesh meet this criterion (see Figure 9, obtained by the 

approach described in Coussement et al. 2012). In the region around the pier, however, the second criterion is 

largely met. 



 

 

Figure 9. Percentage of turbulent kinetic energy resolved on the mesh 

4. RESULTS AND DISCUSSION 

4.1. Drag force on the pier 

Figure 10 presents the variation in time of the drag coefficient for the entire pier during a period of 60T. 

Note that the drag coefficient is calculated automatically by Fluent by integrating the instantaneous pressures 

and shear stresses on the entire pier surface. The drag coefficient is found to oscillate around a mean value 

(0.602). The irregularities observed in the behavior of the drag coefficient, and thus the drag force, might be 

explained by the unstable three-dimensional breakup of the vortices, as other studies report (Lysenko et al. 

2012).  Note that the time-averaged value of the drag coefficient (0.602) is somewhat lower than the value 

according to the literature (0.683), which was derived in Section 2. The latter value, however, assumes an 

infinitely long cylinder (with a uniform approaching flow over the depth). 

 
 

Figure 10. Time evolution of numerically predicted drag coefficient for the entire pier 

 

To quantify the vortex shedding frequency – which is half the value of the drag coefficient oscillations (Blevins 

1999) – a Fourier analysis was carried out, resulting in a main frequency of approximately 2.20 Hz (Figure 11). 

Therefore, the vortices detach themselves from the pier at a frequency of 1.10 Hz. This corresponds to a 

Strouhal number (Equation 1) of 0.19, a value relatively close to the one expected from the literature (0.20, see 

Section 2).  



 

 

Figure 11. Spectrum of frequencies of the numerically predicted drag coefficient 

of the entire pier (FFT analysis) 

4.2. Velocity fields around the cylindrical pier 

The turbulent flow features around a cylinder are vastly documented in the literature. To validate the numerical 

model results, however, first the available experimental data for this particular flow configuration, will be used. 

In Figure 12, the velocity profiles 10D upstream of the cylindrical pier in the symmetry plane (i.e. point E in 

Figure 7) are compared (R2=0.89). 

Note that the PIV data of the approaching flow are used as inlet boundary condition. Around 3 meters (62D) 

downstream of the inlet, i.e. at point E, the numerical and experimental profiles still match reasonably well, with 

some discrepancies near the bed (specifying inlet boundary conditions in a LES model is particularly difficult 

(Zhiyin 2014). Moreover, it seems that the rigid lid approach does not affect the velocity profile too much, near 

the upper boundary. 

 

Figure 12. Comparison of measured and numerically predicted approaching velocity profiles 

in point E of Figure 7 (10D upstream of the cylinder in symmetry plane)  

A map of an instantaneous velocity field is presented in Figure 13, for the zone near the bed, upstream of the 

cylinder. The presence of the horseshoe vortex system and the downflow is evident and the qualitative 

comparison with the PIV results is satisfactory (see Figure 11 of Nogueira et al. 2008). 

  



 

 

Figure 13. Numerically predicted instantaneous velocity field (near the bed, upstream of the pier) 

with vectors with colours according to the magnitude (m/s) 

In plan view, numerically predicted instantaneous velocity magnitudes around the pier are shown in Figure 14 

(at z/h = 0.5) and in Figure 15 (at z/h = 0.01). In both figures there is a clear influence of the vortex shedding, 

since the velocities occur asymmetrically in the two distinct instants in time and the individual vortices are 

perceptible.  

 

  

Figure 14. Numerically predicted instantaneous velocity magnitudes in plane z/h = 0.5 

at two instances in time: t/T = 150 (left panel) and t/T = 155 (right panel) 

 



 

  

Figure 15. Numerically predicted instantaneous velocity magnitudes in plane z/h = 0. 

at two instances in time: t/T = 150 (left panel) and t/T = 155 (right panel) 

 

In Figure 16 the velocity in point 1 is presented for a duration of 2T. The chosen (small) window of time is 

intended to be able to illustrate the effect of alternating vortices (higher amplitudes) as well as the effect of the 

smaller turbulence scales (minor variations). However, there is no clear dominant frequency, perhaps due to the 

location of the chosen point.  

 

Figure 16. Numerically predicted velocity magnitude at half-height in point 1 (marked in Figure 17) 

 

 

Figure 17. Schematic description (plan view) of the discrete points used to investigate time series of velocity 

magnitude and bed shear stress. Points 1, 2 and 3 are at z/h = 0.5 (half-height), z/h = 0 (bed) 

and z/h = 0.1 (near bed), respectively. 



 

Analysis of the velocity magnitude time series in a near-bed point upstream of the pier (point 3 of Figure 17) 

does not reveal a distinct dominant frequency, suggesting that the horseshoe vortex system has a complex 

dynamic behaviour.  

4.3. Bed shear stress  

The flow deflected by the pier induces increased bed shear stresses, capable of moving bed particles, with the 

higher values in the side close to the pier. Figure 18 shows the temporal evolution of the bed shear stress in 

point 2 (at the side of the pier, see Figure 17), demonstrating that the critical shear stress for the median 

diameter of the bed material in the experiments (0.48 Pa, based on the Shields diagram) is often exceeded.  

 

Figure 18. Numerically predicted bed shear stress in point 2 (marked in Figure 17) 

Figure 19 shows the shear stress distribution in the vicinity of the pier, highlighting the fact that the highest 

values are localized on the sides (such as point 2) and in the wake of the pier, possibly associated with the 

inception of scour.  

Nogueira et al. (2008) did not only study the flow around a pier mounted on a flat, non-movable bed (i.e. the 

flow configuration that is simulated in the present paper), but they also studied the scour around the pier 

mounted in a movable bed. In Figure 20, the bed after 5 minutes of scour is presented. Note the similarities 

between the bed shear stress as predicted by the present numerical model and the scour pattern found in the lab 

experiments.  

As literature suggests (Majeed et al. 2015; Guney and Turkben 2015; Ramos et al. 2015), the maximum scour 

depth during the initial scouring phase in a flume test of this type is not upstream of the pier (i.e. where the 

equilibrium scour depth is located), but rather at the lateral sides of the cylinder. Note that the bed shear stress 

patterns predicted in the simulation (which is representative for the initial phase of the scouring process) indeed 

are in accordance with the observations reported in literature.  

 

 

Figure 19. Numerically predicted instantaneous bed shear stress (Pa) around the cylindrical pier 



 

       

Figure 20. Scoured bed after 5 minutes of flow in movable bed experiments (Nogueira et al. 2008) and contour 

lines of the corresponding bed level (obtained by P.X. Ramos by means of photogrammetry) 

5. CONCLUSIONS 

In the present work, an eddy-resolving numerical model based upon the Large Eddy Simulation approach has 

been set up for predicting the three-dimensional flow around a cylindrical pier, mounted on a flat and fixed bed. 

This turbulent flow (ReD = 1.37×104) configuration was studied earlier experimentally by Nogueira et al. 

(2008), allowing a partial validation of the numerical results. Since no PIV data are available in the lee side of 

the cylinder, other validation data from the literature were used as well.  

The numerical simulation has confirmed the presence and complex dynamics of the horseshoe vortex system at 

the upstream side of the cylinder, as was measured by Nogueira et al. (2008). Similarly, the numerical model 

predicted the vortex shedding in the wake of the cylinder, with a main frequency (and corresponding Strouhal 

number 0.19) that is very close to value (0.20) in the literature. The mean drag coefficient for the entire pier 

(0.602) is somewhat lower than the value (0.683) derived from the literature on infinitely long cylinders (i.e. 

flow configurations with an approaching flow that is uniform over the flow depth). The numerical model 

confirms the instantaneous drag coefficient (of the entire pier) to oscillate around the mean value, as was 

reported in the literature. 

Since no PIV data are available close to the downstream half of the pier surface, neither in the wake of the pier, 

no further direct validation of the numerically predictions is possible based upon the data set of Nogueira et al. 

(2008). An indirect validation of the numerical model is, however, possible based upon the predicted bed shear 

stresses around the pier. The latter turn out to be higher than the critical value according to the Shields diagram 

for the bed material used in the experiments, in agreement with the fact that scour was initiated in the 

experiments. Moreover, the predicted extent of the zone in which the bed shear stress exceeds the critical value, 

agrees well with the extent of the scour hole observed in the initial phase of the scouring process during the 

experiments. 

Based on this first validation exercise, which is constrained by the limitations of the available data set, it can be 

concluded that the numerical model is capable of predicting the flow structures well, at least in a qualitative 

way. However, to enable a further (quantitative) validation of the numerical model, it is advocated to extend the 

experimental data set. These efforts are needed before the numerical tool is adapted to study the further phases 

of the scouring process around a cylindrical (or even a geometrically more complex) bridge pier. Currently, both 

in Ghent University and University of Porto, research on this topic is being carried out, namely regarding 

complex piers (structure with group of cylinders, a cap and a column) and efforts are being made to implement 

VoF (Volum of Fluid) in the present numerical model, enabling the study of the phenomena at higher Froude 

numbers.  
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ABSTRACT 

Urban flash floods and their hydronumerical coupled modelling are influenced by various parameters and 

assumptions for model setup and implementation. Hence, the present paper deals with coupling details of 1D-

sewer and 2D-surface models. Considered hydraulic parameters will be analyzed concerning their impact on 

computed results for flood levels and the discharge rate (bi-directional) between both, 1D and 2D, model 

approaches. Additionally, flood durations will be investigated. Considered parameters are the inlet area, the 

limitation of the discharge capacity according to standards of the legislation and the discharge coefficient, 

which has only minor impacts on the discharge rates in this configuration. Comparisons of limited and unlimited 

numerical computation for discharge capacity at the coupled nodes show that the flood duration will be 

influenced more than flood levels. The quantitative exchange at each node is calculated by applying the 

Torricelli approach and by including variable parameters. Analyzing flash floods with coupled numerical 

models allows the implementation of measures and their evaluation regarding flooding depth and thus provides 

security against flooding. Exemplary improvements will be shown. Additionally, the model is primarily evaluated 

by comparing its results with measurements in the sewer system.  

Keywords: gullies, flash flood, coupled numerical modeling, parameter study, discharge coefficient, inlet 

capacity. 

1. INTRODUCTION

The present investigation is part of the “RainAhead” project, which is funded by the Federal Ministry for the 

Environment, Nature Conservation, Building and Nuclear Safety (BMUB). The main aim of the project is to 

develop an integrated planning and warning tool for heavy rain events and their resulting flash flood in urban 

areas. Heavy rain events and possible resulting flash floods occur locally or regionally as a result of convective 

precipitation of high intensity (e.g. Maniak 2010). These events can mostly be observed during the summer 

period (Hatzfeld et al. 2008). The analysis of an event data-base regarding flash floods (within the project 

URBAS) shows that flash floods arise with an occurrence of 72 % between March and September (Oertel 2012). 

Intensities of heavy rains can vary considerably regarding their precipitation quantity as well as their duration. 

Consequently, the German Meteorological Service defines three warning intensities (GDV 2015). DIN-4049-3 

(1994) also describes heavy rain events by comparing their duration and intensity. IPCC (2014) expects an 

increase of intensive rain events and with it an increase of urban flash floods. The number of extreme events has 

increased significantly since 1980 according to MunichRE (2015). Additionally, with an increase of surface 

sealing, negative effects can be assumed regarding heavy rainfalls. Infiltration (g), evapo-transpiration (v) and 

runoff will change the water cycle in urbanized regions compared to natural conditions (Figure 1).  



 

 

Figure 1. Increase of runoff (a) due to surface sealing and decrease of infiltration (g) and evapo-transpiration (v) 

in urban areas (Kruse et al. 2014) 

Urban drainage systems are designed for defined water amounts and rainfall return periods within a particular 

catchment area. Hatzfeld et al. (2008) mentioned a variation of design boundary conditions for various 

catchment areas. Generally, the design return period for urban drainage facilities is defined in DWA-A 118 

(2006). With residential areas, as an example, the typical design frequency (or return period) is n = 0.2 to 0.5 (or 

T = 5a to 2a respectively). DIN EN 752 requests a proof of the return period for the investigated catchment area 

depending on the usage (DIN EN 752 2008).  

 

Numerical flash flood analyses usually use 2D surface runoff simulations to describe resulting flood situations. 

Other methods are based on Geographic Information Systems (GIS) with integrated flow-path analyses (e.g. 

Koch et al. 2015 and Chen et al. 2009) or coupled 1D-1D models (Maksimovic et al. 2009). Additionally, 

experimental models are used to describe detail processes like inlet capacities of gullies and to compare these 

with in-situ measurements (Kemper et al. 2015) as well as with 3D numerical models only for gullies or other 

details of the drainage system (Djordjevic et al. 2013). Results can also be used for validating and calibrating 

numerical models. The present paper focuses on coupling processes of drainage systems with surface runoff by 

means of analyzing the coupling process of independent numerical hydrodynamic models. Thereby, the 

parameters considered within applied analytical solutions are in the main focus of interest. In contrast to other 

research projects and national handling rules for urban flash floods, a coupled hydrodynamic numerical 1D-2D 

model allows a more detailed analysis of occurring flow paths and pipe capacity utilization. It represents an 

expensive method regarding time consumption (Ghostine et al. 2015), data input, data accuracy, simulation 

duration and expert knowledge (see Henonin et al. 2013 and DWA-T1 2013). Nevertheless, coupled 1D-2D 

models are often used in urban areas (Hunter at al. 2008; Vojinovic and Tutulic 2009; Leandro et al. 2009). 

Additionally, measures to avoid flash flood damage (e.g. retention areas or barrier removal, see e.g. Hoppe et al. 

2011) can be adopted and investigated accurately. Forecasting of storm events can also be used to manage flash 

floods (Einfalt et al. 2009). 

2. INVESTIGATOIN AREA AND HYDRODYNAMIC NUMERICAL MODEL 

The investigation area is located in the northern part of Germany within the city of Lübeck. The district St. 

Lorenz Süd is located close to the city center at the river Trave (Figure 2). The catchment area is A = 2.4 km². 

Within the current investigation the commercial numerical models DHI MIKE21 (2D) and MOUSE (1D) are 

used. The 1D model allows a time-dependent simulation of the sewage system. The 2D model is a surface runoff 

model with a mesh resolution of 1 m in x- and y-direction and 5.1 Mio. cells in total (Table 1). Both models are 

coupled via connecting nodes. These nodes represent gullies and manholes in the sewage system, allowing a bi-

directional mass transfer. The governing equations are the Saint-Venant-Equations complying with the principles 

of the conservation of mass and momentum. A detailed description can be found in DHI (2015). Details of the 

coupling process, as implemented here, are shown in Figure 3.  
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Figure 2. Overview of the investigation area (St. Lorenz Süd), left: exemplary flooding results for a once in 100 

years rain event, right: exemplary investigation point within the catchment area 

 

Table 1. List of control points within the catchment area, coordinates and nearest manhole ID in Mike Urban 

Point no.  Location  Type  x [m]  y [m]  Manhole [MUID] 

1 Stettinerstr. low point 281 602 7480001 

2 Hansestr. elevated point 392 1004 7170014 

3 Moislinger Allee elevated point 501 501 7370309 

4 Lachswehr Allee close to low point 729 729 7280101 

5 Lindenstr. low point 613 1145 7310022 

 

Table 2. Types and number of the 1D sewer model MOUSE of nodes, links and catchments, and 2D overland 

model  

Type Amount / length 

Catchments (roofs) 4216 

Nodes (total) 2572 

Manholes 1031 

Gullies 1513 

Basin 1 

Inlets 3 

Outlets 24 

Coupled nodes 2549 

Links (pipes) 2580 

total length of links 73.9 km 

Weirs 6 

Area 2D 2.4 km² 

Number of cells 2D (1m) 5.1 Mio 

Number of cells 2D (2m) 2.8 Mio 

 

 

 



 

 

Figure 3. Schematic overview of coupling process for 1D and 2D numerical model (according to Kühnel 2015) 

 

The input data is rainfall data provided by the German Meteorological Service (DWD), which is also used by 

local authorities to calculate drainage facilities. A precipitation runoff model computes the runoff from the 

house’s roof areas; these areas are directly connected to the 1D sewage model. The same precipitation data set is 

used for the 2D surface runoff computation.  Both models are connected via nodes so that an exchange of water 

can be calculated by an implemented analytical approach. Details of the coupling process are shown in Figure 4. 

Table 2 gives additional information about the models used in the present investigation.  

Other connective configurations of the catchment areas with the 1D-sewer model are described and applied 

during different investigations. Runoff computation without a separate precipitation runoff model can be applied. 

The rainfall boundary is thus applied to the bathymetry (2D) only. Therefore, the roughness values for the 

buildings should be lowered allowing the flow time towards the coupled nodes to be shortened (Babister and 

Barton 2012). The direct connection of runoff into the sewer system is not possible in this way.  

Figure 4 illustrates two varying flow directions for the coupled nodes: (1) surcharge and (2) inflow. The 

mathematical description is implemented in the numerical model via the analytical Torricelli approach (DHI 

2015): 

hgCAQ D  2  (1) 

 

where Q is the total gully discharge, A is the inlet area, CD is the discharge coefficient, g is the acceleration due 

to gravity and h is the flow depth above the coupled node. The principle is the exchange of energy between the 

potential energy at the surface and the kinetic energy at the opening. Q is also defined as the inlet capacity, 

which can be limited to a maximum allowed value within the numerical model according to standards like Ras-

Ew (see e.g. Kemper et al. 2015) out of FGSV (2005). 

 

 

Figure 4. Schematic plot of coupled nodes (manholes and gullies) with bi-directional exchange of water between 

1D-2D model, left (1): surcharge, right (2): inflow from 2D overland (DHI, 2015) 

 

h h 



 

Default values for maximum gully discharges and their discharge coefficients within the numerical software are 

Q = 0.1 m3/s and CD = 0.98. The gully’s flow area A is computed with geometric specification of each node (the 

same is valid for manholes), g is constant and the flow or flooding depth h is computed during the simulation 

process because of the time-dependent flow development.   

Within the present paper above mentioned parameters will be studied concerning their influence on resulting 

sewage and surface discharges. Therefore, particular DIN regulations or maximum inlet capacities for gullies 

and manholes are used. As an example, Figure 5 shows two established gully dimensions in Germany especially 

chosen, as they are located in the analyzed catchment area. Within the investigated numerical model, various 

pre-defined inlet areas will be set as a constant.  

  

Figure 5. Exemplary gully geometries, left: 300 mm x 500 mm, A = 0.0515 m², middle: 500 mm x 500 mm, 

A = 0.0815 m², right: example of a manhole with an inlet area A = 0.025 m² (DIN-19583-1, DIN-19594-1, DIN-

19584-1) 

 

The conducted simulation runs with different set- ups and different variations of applied parameters of the 

coupling process are listed below. The boundary condition for the rainfall intensity is the once in 100 years storm 

event with a rainfall duration of D = 10 min. for each model run. For variations of the inlet area a duration of  

D = 30 min. was chosen with the same return period of once in 100 years and its correlating intensity of rainfall. 

3. RESULT ANALYSIS 

3.1. General remarks 

Results will be analyzed concerning the influence of parameter variation within the analytical coupling approach 

(see Eq. 1) on flooding processes, like e.g. flooding depth, flood duration and exchange rate between both 

models. This exchange rate is called discharge MOUSE to MIKE21. Therefore, it is positive for a surcharge 

flowing from the 1D-sewage model into the 2D surface model. Furthermore, it is negative for an inflow running 

from the 2D model into the 1D model. Generally, a surcharge can be observed with early time steps, which is 

characteristic for the investigated catchment area. After a defined time, the exchange turns into an inflow 

discharge into the gully. (The boundary condition of the rainfall time series starts after 10 min. of the simulation 

period for both models). 

 

Following model variations will be investigated: 

 

(1) Influence of implemented measures (simulation period 2 h, grid resolution 2 m, 2D and 1D-2D) 

(2) Comparison between 2D and 1D-2D model (simulation period 2 h, grid resolution 1 m)  

(3) Influence of inlet area and inlet capacity variation (simulation period 2 h, grid resolution 2 m 

(4) Influence of discharge coefficient variation (simulation period 2 h, grid resolution 2 m) 

(5) Comparison of 1D sewage model with in-situ measurements (simulation period 8 h) 

 

For all parameter variations, a once in 100 years rainfall event is used, with an intensity of rainfall of  

r(15,1) = 106 l/(s ha)1 which corresponds with an investigation of the DWD of rainfall data analysis of Lübeck 

                                                           
1 In this case D = 15 [min]. and n = [1/a] with D: duration and n: frequency of rain event per year and T = [a] 

annuity 



 

from 1973. For data analysis, an exemplary control node was selected (point nr. 1) to identify flooding variations 

and changing exchange rates. The chosen node is a low point with a nearby manhole (see Figure 2 and Table 1). 

In this case, only point 1 is referred to in the results. It is located on the street and is a low point where flooding 

depth usually increases significantly during storm events (See Figure 2). 

 

The coupling process will be analyzed by investigating both the separated 2D surface model and the coupled 1D-

2D sewage-surface model. Figure 6 gives exemplary results. It shows that the flooding depth and its time-

dependent development vary significantly. With the 2D surface model, a continuous increase of resulting flow 

depths can be observed. As opposed to this, the coupled model shows a major increase just after the beginning of 

the rainfall event for the first 25 min. until a peak flow depth is reached. Finally, the sewage system will be 

involved in the discharge process and subsequently a decrease of inundation can be observed. It should be noted 

that the flooding process occurs with greater intensity within a shorter time period due to the effects of involved 

underground pipe systems. In this regard, Johnson (2013) refers to the Direct Rainfall Method (DRM), which 

cuts the flood peak due to losses especially in cases of low intensities with separated 2D overland computation 

(trough losses due to the bathymetry). This phenomenon is presented in Figure 6. The DRM takes only trough 

and depression losses of the bathymetry into account, but no evaporation and infiltration.  

 

The influence of the 1D sewage system can be claimed to contribute to defined and fast flood levels on the one 

hand and to drain the surface floods on the other hand. Whereas the 2D computation results in an accumulation 

of flood level during the simulation as there is no drainage capacity available and no infiltration or evaporation 

implemented in the model. The results show reasonable differences between the two model configurations and 

leads to the statement that the coupling is implemented correctly, because the peak of the flooding depth is not 

shifted towards the end of the simulation period as in the 2D computation. Correctness can also be verified 

according to the above-mentioned correlations.  

 

    

Figure 6. Comparison of exemplary model results (flooding depth) for the simple 2D surface model (2D) and the 

coupled sewage-surface model (1D-2D), left: T= 5a, right: (b) T = 100a of D = 30 min. (according to Kühnel 

2015) 

3.2. Inlet area and inlet capacity 

The inlet area was varied for manholes only between the aerated area and the completely open manhole without 

the lid. With gullies the areas are bound to the known values according to their dimensions (see Figure 5) 

Investigated gullies have their particular area as described previously. The inlet area has a direct impact on the 

exchange rate between the two models (discharge MOUSE to MIKE21). The effect is comparable to a limitation 

of the inlet capacity itself (Figure 7 and Figure 8).  

 

It can be found that the discharge for the fully opened manhole is Q = 280 l/s. In comparison with resulting gully 

discharges, which are mainly responsible for surface drainage, these values are much too high compared to those 

of gullies defined in Ras-Ew corresponding with Thiele (1983). Consequently, a limitation of the area is 

recommended to be set as A = 0.025 m² (see Figure 7).  

When limiting the capacity to a certain threshold value, the resulting influence on exchange discharges is 

comparable to an area limitation. Since limiting values for manholes are not established, they have been set as 

default values within the numerical model (Figure 8) which means to Q = 100 l/s for the manholes, as they are 

not defined in Ras-Ew.  



 

 

The gullies’  inlet capacity has been limited due to their area and according to Ras-Ew FGSV (2005) to 

Q = 2.5 l/s and 5.0 l/s respectively (according to their area shown in Figure 5) for a longitudinal slope of 2.5 % 

and a lateral slope of 1 % to 2 %, according to Ras-Ew FGSV (2005).  

 

 

    

Figure 7. Comparison of manhole inlet area variation (A = 0.025 m² = aerated area and A = 0.283 m² = manhole 

fully opened), left: influence on flooding depth and flood duration, right: influence on exchange rate (discharge 

MOUSE to MIKE21) T = 100a and D = 30 min. 

 

   

Figure 8. Comparison of limited and unlimited inlet capacity of gullies, left: influence on flooding depth and 

flood duration, right: influence on exchange rate (discharge MOUSE to MIKE21), T = 100a and D = 10 min. 

3.3. Discharge coefficient 

Another investigated parameter is the discharge coefficient CD. Therefore, default values of CD = 0.98 will be 

decreased in steps of 1/3 and 2/3 of the default value (CD = 0.98; 0.65; 0.32). It can be found, that there is only a 

minor influence on resulting flooding depths and exchange discharges compared to the variations of the area  

(A = 0.283 m² and 0.025 m²) and the inlet capacity (Figure 9), limited according to the geometry of gullies  

(Q = 5 l/s or 2.5 l/s) or unlimited capacity. The variation of CD seems to have minor influence on the flooding 

depth and the discharge. Similar behavior was observed when changing the area for the manholes. For small 

variations, no changes were observed. Only for changes of a factor of 10, the different discharges are visible, as 

shown in Figure 7. Thus, CD could well be lowered further in order to see a clear impact on the discharge. The 

implementation of the coefficient is not well documented in the software and needs to be investigated further as 

the results are not reasonable.  

 



 

 

Figure 9. Comparison of discharge coefficient variation, left: influence on flooding depth and flood duration, 

right: influence on exchange rate (discharge MOUSE to MIKE21), T = 100a and D = 10 min 

 

A reduction of CD of 1/3 or 2/3 should also result in a reduction for Q in the same order of magnitude. Instead, a 

change of Q is observed only by appr. 15 to 20%.  

3.4. Model verification 

The model results have been compared to measured data so far in one spot that drains an area with a separated 

sewer system. The parameters compared are the water depth in the sewer pipes and the flow velocity 

respectively. The precipitation data gathered and defined as boundary condition in the model was radar data from 

the HydroNet-SCOUT portal of hydro & meteo GmbH. The rain intensity was relatively low (6 mm/6h) and did 

not cause a surcharge given off by the sewer system. Nevertheless, the hydrographs measured and simulated 

correspond to each other and are in the same order of magnitude (see Figure 10).  

 

 

Figure 10. Comparison of measured water depth and flow velocity and simulated results for these parameters 

with the 1D model, duration from 8 a.m. until 4 p.m. at the 15th of April 2016 

 

Velocity is simulated to a greater extent than it is measured. This can rely on the fact that ground water was 

infiltrated into the pipes and this caused an algae layer on the surface, which increased the roughness compared 

to the roughness implemented in the model matching the material of the specific pipe. If no measured data are 

available, recorded damages and fire brigade data can be used to validate the model (Velasco et al., 2016) by 

comparing these data with the results of the inundation computation. Both methods where applied here and 

helped to trust the results.  

The model can be used for implementing possible measures at the flooded areas. The comparison of the change 

of the flood levels can lead to a judgement about the efficiency of different measures.  



 

Figure 11gives an exemplary result of the comparison of implemented measures in the coupled model and of the 

comparison with a simple 2D model approach. 

 

 

Figure 11. Exemplary results for the comparison of implemented measures at two points within the modelled 

catchment area for a simple 2D surface model and 1D-2D coupled model, left: a low point on the street, without 

and with retention basin as measure, right: a low point in front of a house without and with gully as measure,  

T = 100a and D = 10 min 

3.5. Parameter value choice and recommendations for coupled numerical 1D-2D 

simulations 

According to the parameter analysis, the variables can be adopted and changed different from their default state. 

In terms of manholes the area is set to the aerated area A = 0.025 m². The areas gullies require are set to  

(A = 0.0515 and 0.0815 m²) the inlet capacity is limited for the gullies in reference to the Ras-Ew (Q = 2.5 and 

5.0 l/s). The discharge coefficient with a value of CD = 0,6 is defined due to sharp-edged openings found in 

literature (Schneider et al. 2010). The limitation for the inlet capacity of manholes cannot be defined, 

nevertheless the limitation is implemented by the aerated area because the capacity of manholes is not defined in 

any regulation or standard as they are no drainage facilities like gullies. Despite of this, manholes do influence 

the situation in case of completely flooded streets by draining the water.  

 

4. CONCLUSIONS 

The different parameter variations have a relatively minor impact on the flooding depth concerning its 

maximum. The flood duration is clearly influenced. The limitation of the inlet capacity has the greatest impact 

on the exchange rate between the two models apart from the area limitation of manholes. The default values in 

the model are not adopted to the situation in urban sewer systems. The values computed due to the default 

settings do not relate to the values found in the Ras-Ew (FGSV, 2005).  

The differences between Ras-Ew and the computed values as well as in in respect to other surveys might be 

bound to the fact that there is a certain safety factor implemented and that  gullies are usually blocked by leaves 

and sand and are not maintained or cleaned regularly.  

Concluding it can be stated that hydro numerical coupled modelling for urban flash flood analysis is an 

appropriate tool for the identification of areas susceptible of flooding and to implement appropriate measures. 

The model shows reasonable changes of the flooding depth and duration as well as the exchange rate by the 

parameters that were varied. The comparison between the results of the only use of a 2D overland computation 

and the coupled results can also be explained and show that the coupled method is the most accurate analysis in 

urban areas.  

Further events need to be captured, different spots need to be measured and their results need to be compared to 

the simulated results. Especially storm events with high intensities need to be surveyed in order to prove the 

parameter settings for the coupling details. For the discharge coefficient, more variations need to be conducted 

and the implementation needs to be investigated.  

To analyze suitable  measures and to evaluate the improvement of flooding depth the coupled numerical model is 

an appropriate tool and should be preferred to the 2D overland modelling as these results show only limited 

validity. 
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ABSTRACT 

The Hydraulic Pressure Machine (HPM) is an energy converter to exploit head differences between 0.5 and 

2.5 m in small streams and irrigation canals. The HPM looks similar to a classic breast shot water wheel but 

has a smaller number of blades, a relatively large central hub and the wheel runs at variable speeds (2 to 12 

min-1). Preliminary results show that the HPM is an economically and ecologically viable technology for small 

hydropower generation. The clearance gap between the blade tip and the shroud at the bottom of the wheel is 

very important regarding power losses. A theoretical approach has been developed which considers a 

stationary wheel to quantify the leakage losses. However, no validation of this theory has been done. The goals 

of this research are to quantify the leakage at operating condition and to improve the HPM blade design to 

further reduce gap losses. Thus a large scale physical model is tested at laboratory conditions. The HPM model 

is 1.1 m in diameter, 0.8 m wide and has 12 flat blades. Variable blade tips machined from steel and EPDM 

rubber are investigated with gap sizes of 1, 5 and 10 mm. The physical model results show that the flow rate 

passing the wheel during operation is approximately one third of the flow rate calculated by the theoretical 

approach. The variation of gap sizes reveal the importance of small clearance gaps to reach high efficiencies. 

Keywords: Small Hydropower, Gap Loss, Hydraulic Pressure Machine 

1. INTRODUCTION

The history of water wheels goes back to antiquity. Scoop wheels are known for irrigation purpose at the 

Euphrates in Mesopotamia since 1200 B.C. (Wölfel 1987). Also at the Huáng Hé in China and Nile in Egypt, 

large wheels were used for water conveyance and to grind grain (Mosonyi 1963). Subsequently, water wheels 

were distributed widely and were optimized for a variety of purposes (e.g. mills, mines, metal working). The 

19th century was the time of prosperity for the technology and it was significantly improved by several 

technological enhancements.  

During this time the Swiss engineer Walter Zuppinger developed two types of water wheels: The well-known 

Zuppinger wheel, which is a special type of an undershot water wheel, and a different wheel with a closed hub 

(Delabar and Dingler 1867). To the authors’ knowledge Figure 1 from the 1860s is the first illustration showing 

a water wheel with a closed hub. In the following text, these kinds of wheels are called Hydraulic Pressure 

Machines (HPM). 

The HPM looks similar to a typical breast shot water wheel but has some significant differences. Special 

features of the technology are the fewer number of blades (around 12 to 24 – unlike traditional water wheels 

with around 36 to 48 blades) and a relatively large central and closed hub (measuring 1/3 of the outer diameter) 

to dam the upstream water level (see Figure 1 and Figure 2). For optimal power extraction the upstream water 

level is kept at the top of the hub. Therefore, the wheel runs at variable speeds in response to naturally changing 

flow. 

The technology developed by Zuppinger was ignored completely during industrialization and was never applied 

for a real installation. But the technology was rediscovered in the beginning of the 21st century and investigated 

in detail by the University of Southampton (UK), the Darmstadt University of Technology (DE) and the 

University of Architecture, Civil Engineering and Geodesy in Sofia (BG) (Brinnich 2001, Senior et al. 2010, 

Bozhinova et al. 2012, Müller et al. 2012). 



 

 

Figure 1.  Hydraulic Pressure Machine (Delabar and Dingler 1867) 

 

The HPM is run by the hydraulic pressure difference between upstream and downstream water levels (Senior 

2009). Experimental results indicate that the technology is suitable for power extraction in sites with small head 

differences (0.5 to 2.5 m) (Senior et al. 2007). Furthermore, it was found that one of the main benefits of the 

HPM compared to other hydraulic machines like traditional water wheels and turbines, is that the wheel allows 

for good continuity for aquatic life (e.g. fish) and bed load (Senior et al. 2010). This advantage is due to the slow 

rotational speed (2 to 12min
-1

) and the small number of blades, which creates a relatively large space between 

two blades. Efficiency rates from 60 to up to 80 % were achieved (Delabar and Dingler 1867, Senior et al. 2010, 

Müller et al. 2012, Paudel et al. 2013).  

 

The research conducted to date revealed that gap losses are of high importance for the HPM technology due to 

the large proportion of the total energy losses within the converter (Linton 2013). Gap losses can be described as 

the flow rate passing the wheel between the side of blade and the housing or the blade tip and the shroud (see 

Figure 2). In literature, gap losses are given from 2 to 12 % of the total flow rate (Brinnich 2001, Müller et al. 

2012). To further investigate the quantity of gap losses, a theory was developed and different bottom clearance 

gap sizes are investigated within a physical model in this study. The main goal is to compare measured data 

from a physical model with results from the previously developed theory. 

 

 

Figure 2.  Functional principle of a Hydraulic Pressure Machine 

2. THEORETICAL APPROACH 

To quantify the gap loss flow rate (Q
L
) a theoretical approach was developed (Senior 2009). The theory 

considers the pressure difference or rather the velocity by reason of the pressure difference at the gap, the 



 

corresponding flow area of the gap (width of the gap and length or height of the blade) and an empirically 

determined flow coefficient (μ) that depends on the geometry of the blade tip or the blade tip material. 

 

Q
L
=flow velocity in the gap x gap area x flow coefficient (1) 

 

To simplify calculations of the gap losses the surrounding gaps of the blade are divided into three characteristic 

sections as follows (see also Figure 3): 

 Q
L1

: Leakage loss between blade tip and shroud with the bottom gap size g
b
 and the blade width 𝑊 

 Q
L2

: Leakage loss between blade side and housing below h2 with gap size on the side g
s
 

 Q
L3

: Leakage loss between blade side and housing above h2 with gap size on the side g
s
 

 

Figure 3.  Gap losses sections  

 

Based on Eq. (1) for the three sections three simplified calculation formulas can be derived as follows: 
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The total gap losses can be described as follows: 

 

Q
L
=Q

L1
+2(Q

L2
+Q

L3
) (5) 

 

This theoretical approach to calculate the gap losses was initially developed for middle shot water wheels and 

was transferred to HPM technology (Senior 2009). Regarding the applicable flow coefficient (𝜇b, 𝜇s) the 

literature on HPM quotes values ranged between 0.6 to 1.0 (Schneider 2016, Senior 2009). 

 

Eq. 2 to Eq. 5 employed to calculate the gap losses are based on basic hydromechanics. The theory takes into 

consideration flow through a small orifice. The validation of this theory was done to date by measuring the flow 

rate passing the wheel while the wheel is standing still (Linton 2013). A validation of the previously developed 

theory on an operating wheel has, to the authors’ knowledge, not been conducted. 

3. EXPERIMENTAL PROGRAM 

The objective of the experimental program is (1) to evaluate the efficiency and power output of the wheel and 

(2) to measure the flow rate passing the wheel without doing any work under operating conditions. A large scale 

physical model of a HPM was built and tested under laboratory condition to investigate these two main 

questions. The model scale corresponds roughly 1:2.5 to a real installation in Bulgaria (Bozhinova et al. 2012). 



 

3.1. Test rig 

The model of the HPM wheel was installed in a 20 m long and 3 m wide concrete flume in the hydraulic 

laboratory of the University of Applied Sciences Darmstadt (D). Figure 4 shows the flume with the tested HPM 

on the right and parts of a slot fish pass on the left.  

 

The wheel itself has an outer diameter (D) of 1.1 m, a hub diameter (d) of 0.4 m and a width (W) of 0.8 m. 12 

flat, 2 mm thick blades from stainless steel are diagonally mounted at the circumference of the hub. The blades 

are set at an angel of 15° to the shaft of the wheel. The hub is machined from polyethylene. The shaft and load 

bearing disks (mounted on the shaft) are made of stainless steel. The blades are bolted to the three load bearing 

disks at the sides and middle of the hub. The wheel is placed over a curved concrete shroud following the outer 

diameter of the wheel. The inlet and outlet channels are 1.2 m wide (W1, W2). Table 1 summarizes the main 

geometrical details of the tested wheel while Figure 5 shows the wheel in detail. The model itself is designed for 

maximum flexibility in order to allow further modification of blade geometry, blade number etc. The blade 

border at the tip and the sides of the blade are exchangeable. This enables tests of different blade tip versions 

and the variation of the clearance gap (up to 20 mm).  

 

Table 1  Model parameter summary 

Parameter  Dimension 

Outer Diameter D  1.1 m  

Hub Diameter d  0.4 m  

Machine Width W  0.8 m  

Width In- and Outlet W1, W2 1.2 m  

Number of blades N 12  

Blade angle (to shaft) β 15°  

 

  

Figure 4.  Photo of test rig from down- to upstream Figure 5.  Wheel in detailed view 

3.2. Measurement technique 

To determine the power output and efficiency of the converter values for water levels up- and downstream (h1, 

h2), flow rate (Q), torque (M) and speed of the wheel (n) were measured. It is important for the operational 

characteristics of a HPM to keep the upstream water level constant. Thus, a control system is mandatory.  

 

The HPM test setup is electronically braked by a coupled magnetic powder brake FRAT 2002 from Mobac 

Gmbh. The torque (M) is logged by torquemeter TRS 200 by Liedtke, the rotation (n) by shaft encoder ITD 01 

A 4 1024 H NX KR1 S6 by Thalheim and the water levels up and downstream of the wheel (h1, h2) by 

ultrasonic sensor BUS R06K1-XA-12/070-S75G by Balluff. The water levels are measured from above to the 

water surface. A V notch weir is used for flow rate (Q) measurement (see Figure 4 left, background). Table 2 

summarizes the measuring devices used for data acquisition and the corresponding accuracy. The head over the 

weir is measured via ultrasonic sensor (same make as for the water levels). As a control system for the brake and 

for data acquisition purpose, a LabVIEW based software in combination with a CompactRIO-9074 from 

National Instruments is used. A measurement period of 30 s and sampling rate of 30 Hz applies for all collected 

data.  



 

 

Table 2  Data acquisition system 

 

Parameter  Make Model Accuracy 

Water level h1, h2 Balluff BUS R06K1-XA-12/070-S75G ±0.15 %  

Flow rate Q  Unknown V notch weir ±0.8 %  

Speed n  Thalheim ITD 01 A 4 1024 H NX KR1 S6 ±0.23 %* 

Torque M  Liedtke TRS 200 ±1 Nm  

* speed dependent (example for 8 min
-1

) 

3.3. Analysis 

Data analysis is done in accordance with IEC 60193 Hydraulic turbines, storage pumps and pump-turbines -- 

Model acceptance tests. The most important parameter for comparison with other converters is the hydraulic 

efficiency (η
Hy

). It is the quotient of the measured mechanical power (PMe) at the output shaft of the wheel and 

the energy in the flowing water called hydraulic power (PHy). 

 

The energy in the flowing water can be described by the product of the total energy head difference (H) in 𝑚, 

the flow rate (Q) in m3s-1, the density of the water (ρ = 1000 kgm-3) and the acceleration of gravity 

(g = 9.81 ms-2). 

 

PHy=H Q ρ g (6) 

 

with 

 

H= h1+
v1

2

2g
- (h2+

v2
2

2g
) =

v1
2-v2

2

2g
+h1- h2 (7) 

 

The flow velocity up- and downstream of the wheel (v1, v2) in ms-2 is calculated according to the law of 

continuity and not measured. The values therefore represent the mean velocity, with bed elevation upstream 

(hSo) and channel width (W1, W2) upstream and downstream of the wheel (see Figure 2). 

 

v1=
Q

W 1 (h1-hSo)
       v2=

Q

W2 h2
   (8) 

 

The mechanical power measured at the shaft of the wheel is described as the product of torque (M) in Nm and 

the speed of the wheel (n) in s-1. 

 

PMe=2 π M n (9) 

The hydraulic efficiency is the quotient of mechanical power and hydraulic power. 

 

η
Hy

= 
PMe

PHy
=

2 π M n

H Q ρ g
  (10) 

 

The uncertainty involved in the derived quantities is calculated according to the constant odd combination 

method (Moffat 1988). Experimental data contains random (statistical) and bias (systematic or fixed) error. 

Random error is calculated based on standard deviation of the mean of multiple measurements taken at the same 

condition (IEC 1999). Fixed error is calculated based on the specification given by the producer of the used 

measurement equipment. Table 2 summarizes the accuracy of all measurement equipment used. The overall 

uncertainty for each measured value is calculated as the root sum square of the fixed error and random error 

(IEC 1999). To calculate the uncertainty of computed values, namely mechanical power output (PMe) and 

hydraulic efficiency (η
Hy

), the method of uncertainty propagation is used (Moffat 1988). The overall uncertainty 

for power output is summarized in Eq. (11) and for the hydraulic efficiency in Eq. (12). 

 



 

 

δPMe

PMe
= ±√(

δM

M
)

2
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δn

n
)
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  (11) 

 

δηHy

ηHy

= ±√(
√δh1

2
-δh2

2

h1-h2
)

2

+ (
δQ

Q
)

2

+ (
δM

M
)

2

+ (
δn

n
)

2

  (12) 

3.4. Test procedure 

Two different blade tip materials were chosen for comparison. The interchangeable blade tip spans the entire 

width of the blade and is approx. 60 mm long. First, a steel blade tip (2 mm thick), representing a conventional 

blade design as a reference case is analyzed (see Figure 6). Secondly, a combination of EPDM rubber 

(EPDM/SBR Shore hardness of 80 ±5°, 2 mm thick) and steel (stainless steel, 0.8 mm thick) is tested (see 

Figure 7). The two materials are layered (rubber, steel, rubber) and glued with adhesive. The blade tip itself is 

divided into 10 cm wide sections which are partly flexible. Each individual section is reinforced by a middle 

steel sheet and therefore is sufficiently rigid to resist the hydraulic forces that arise during regular operation. 

Three sides of each section are flexible enough to allow the blade edge to be flexible against a foreign object 

(e.g. fish). The main goal of this alternative blade design is to reduce damage to fish passing through the wheel.  

 

To assess the influence of the size of the bottom clearance gap (between blade and shroud) on the efficiency and 

mechanical power output, three different bottom gap sizes (1, 5 and 10 mm) were investigated. Gap sizes for the 

two different blade tips, in order to register possible interdependency between blade material and gap size were 

analyzed. 

 

For all tests the water level upstream is kept at the top of the hub (h1 = 750 mm) and the downstream water level 

is kept at the bottom of the hub (h2 = 350 mm). Earlier research showed that this water level combination (h1 at 

the top of the hub and h2 at the bottom of the hub) results in optimal energy extraction of these machines (Senior 

2009). All experiments are conducted with a side gap size of 1 mm and flow rates between 30 and 180 ls-1 in 5 

and 10 ls-1 increments. The variation of flow is done to evaluate whether the properties of these blades and 

especially of the EPDM blade tip remain constant over the whole band of operation. 

 

  

Figure 6.  Steel blade tip Figure 7.  EPDM blade tip 

4. RESULTS 

4.1. Power output and efficiency 

Figure 8 shows the power output of two different blade tips and bottom gap sizes of 1 and 10 mm in 

comparison. For better clarity, values for 5 mm gap size and error bars are suppressed in the diagram. The 



 

curves indicate that there is no significant difference in mechanical power output between the two blade tip 

versions. It can be concluded that no disadvantages regarding power extraction can be noticed by using 

alternative EPDM blade tips.  

 

The diagram further demonstrates that with larger gaps the curve shifts on the x axis into higher flow rates. 

Detailed analysis of the efficiency shows that the efficiency for 1 mm clearance gap with Steel and EPDM blade 

tips reaches 57.8±1.7%  and 57.2±1.6% respectively and for 10 mm clearance gap 49.7±1.4% and 50.6±1.4% 

respectively. This supports the above made conclusion that there are no disadvantages for EPDM in comparison 

to metal blade tips regarding power extraction. However these results clearly show that the efficiency of the 

wheel decreases with larger gap sizes. This is due to the higher gap losses. 

 

 

Figure 8.  Results of different gap sizes and different blade tip materials on power output 

4.2. Gap losses 

To determine the gap losses under operation conditions, the values for the speed of the wheel (n) and the flow 

rate (Q) taken for 1 and 10 mm are displayed in one diagram (see Figure 9). The difference in y-axis intercept of 

the two displayed linear regression lines represents the difference in bottom gap losses between 1 and 10 mm 

bottom gap. This approach is only valid due to the fact that at the HPM, the cells between two blades are, in 

contrast to e.g. water wheels, completely filled up with water during operation. 

 

Based on the parallelism of the two regression lines it can be confirmed that the gap losses are mainly dependent 

on the gap size (g
b
, g

s
) and the water levels up- and downstream (h1, h2) and independent on the speed of the 

wheel (n) as described in  theory (see Eq. 2 to Eq. 5). 

 



 

 

Figure 9.  Results of different gap sizes on flow rate and speed of the wheel 

 

Based on the difference in y-axis intercept between the two lines, a difference in gap losses of 7.0 ls-1 can be 

determined. Based on this value, Eq. 2 to Eq. 5 and the geometric details of the wheel, the coefficient for the 

bottom gap (μ
b
) can be calculated by rearranging the equations or the use of a goal seek function. For the 

specific wheel tested the flow coefficient for the bottom gap is approx. μ
b
 = 0.33. This value is far below the 

anticipation based on the literature quoting values between 0.6 and 1.0. The physical model results show that the 

flow rate passing the wheel during operation is approx. one third to half of the flow rate calculated by the 

theoretical approach taking a standstill wheel into account. This leads to the conclusion that gap losses are 

responsible for a much smaller proportion of the total energy losses within the converter than expected. That 

means other effects (inflow, turbulences etc.) have a bigger proportion than expected to date. 

5. CONCLUSION 

To determine the gap losses between the blade tip and the shroud of a HPM under operating condition, different 

gap sizes have been investigated in this study. Therefore, a conventional blade design (steel edge) and EPDM 

rubber as a sandwich construction were investigated. For analysis and comparison, a large scale physical model 

was built. Both materials reached with 1 mm gap size approx. 58 % hydraulic efficiency and a maximum 

mechanical power of approx. 220 W. Regarding power extraction and machine behaviour in general, no 

differences between the two analyzed blade tip materials were found. Results regarding the variation of the 

bottom gap size showed differences in efficiency of approx. 8 % between 1 and 10 mm. This underlines the 

importance of minimal gap sizes for high efficiency rates and optimal power extraction. To determine the gap 

losses (flow rate passing the wheel) a theory based on basic hydromechanics was developed in the past. This 

theory takes the flow through an orifice into account. The analysis of the results taken from the described 

physical model showed that the measured gap losses are approx. one third to a half of the flow rate calculated by 

the theory. This means gap losses have been overestimated and other losses (e.g. inflow, turbulences) 

underestimated in the past. 
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ABSTRACT 

Ripples at a sandy seabed are the consequence of the oscillatory movement of water particles. The ripples are 

the reason for the increase of the bed roughness of the bottom becoming an important factor in the sediment 

transport process. Better understanding of the processes taking place in the near-bottom flow field will allow an 

accurate description of the mechanism of the sediment transport. An experimental investigation of the velocity 

field over rippled sand bottom has been carried out in a wave flume of the Institute of Hydro-Engineering of the 

Polish Academy of Sciences in Gdansk. Measurements were performed using the technique of Particle Image 

Velocimetry. The velocity fields of the sandy sediment were measured in the region immediately over the flume 

bottom coated by sand ripples. The results obtained describe the instantaneous velocity fields of sediment 

particles along vertical and horizontal profiles at different spatial locations and at different phases of the 

oscillatory flow induced by free-surface water wave propagation. It has been demonstrated that the Particle 

Image Velocimetry technique of measuring the movement of sediment particles at the bottom proximity has 

proven as a reliable and sufficiently accurate method. The experimental data obtained will enable the validation 

of a numerical model which is currently developed.  

Keywords: Sediment movement, sand ripples, velocity field, PIV method 

1. INTRODUCTION

The study of the velocity field over rippled sand bed is fundamentally important for understanding sediment 

transport processes. The roughness of the bed increases as the ripples develop, which affects the near-bed water 

flows. Near-bed velocities of water particles depend on various factors, such a surface wave height, wave period 

or wave length. Consequently, the morphology of the seabed depends on the hydrodynamics of both water and 

sediment. The velocity fields can be calculated from theory or by numerical modelling, but obviously these 

methods should be based on the results from experiments and in situ observations.  

In the literature on the subject there are descriptions of many experiments that have been carried out on water 

wave-generated sand ripples. One of the first was that conducted by Bagnold (1946), in which trays of sediment 

were oscillated in still water. Bagnold studied the variability of the geometry of sand ripples, and observed that 

the length of the ripples depends on the magnitude of the oscillation amplitude of water particles in close 

proximity to the bottom. The first important field research concerning ripples geometry was presented by Inman 

and Bowen (1962). Further extensive research on ripples geometry was conducted by Mogridge and Kamphuis 

(1972), Sleath (1975), Pruszak (1978) and Miller and Komar (1980). Boundary roughness of sandy beds was 

studied by Grant and Madsen (1982). These authors found that the bed roughness parameter is a function of the 

shear stress at the boundary. Sato, Mimura and Watanabe (1984) investigated experimentally the characteristics 

of the oscillatory boundary layer flow above rippled beds. These authors concluded that the velocity of the 

oscillatory boundary layer above the rippled bed is strongly influenced by vortices formed near the slopes of 

ripples. A very thorough experimental investigation of the mechanism of vortex generation and ejection from 

the ripple surfaces was carried out by van der Werf et al. (2007). They made detailed measurements of sediment 

particle velocities near bottom ripples in a series of experiments carried out in an oscillatory flow tunnel. Their 

results showed that the geometry of sand ripples gives rise to the formation of convective cells in the near-bed 

flows, resulting in a significant increase in the sediment particle velocities compared to those in free stream 

flows over flat beds. These authors also gave detailed insights into the mechanism of sand particle pick-up and 

the process of sediment transport in oscillatory flows.   

The above experimental results by van der Werf et al. (2007) have been obtained by making use of a PIV 

(Particle Image Velocimetry) technique. This technique is based on the analysis of images of tracer particles 

seeded in water and observed within a thin sheet of fluid lit by laser light (Willert and Gharib 1991). The PIV 
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method, commonly used for over two decades for making measurements in one-phase fluid flows, can still be 

treated as a relatively new experimental tool for two-phase fluid flows, such as the flows of sediments 

suspended in water. This situation is due to some technical difficulties encountered in the implementation of the 

PIV technique in the case of two-phase flows, and due to problems with proper interpretation of measurement 

results. One of the first successful attempts to use the PIV method in experiments involving the motion of sandy 

sediments caused by water wave propagation belongs to Ahmed and Sato (2001). These authors investigated the 

dynamics of the bottom boundary layer and used the PIV technique to measure the volume flux of sand 

transported in sheet flow under asymmetric oscillations. Based on the measured velocity and sand concentration, 

the net volume flux was calculated. In another paper by Van der Werf et al. (2008) two different sediment 

models were tested and validated against the PIV velocity and sediment concentration measurements above full 

scale-ripples in regular oscillatory flow. Yang, Wang and Liu (2011) presented a method which enables 

simultaneous determination of the velocity fields of both phases in sediment transport problems by using the 

PIV with fluorescent tracer particles. Umeyama (2012), in turn, focused on surface waves propagating in water 

of finite depth and used the PIV technique to measure the water particle velocities and trajectories.  

 

From among the above papers reporting the use of the PIV method for measuring sediment particle motion in 

water, only two (Ahmed and Sato 2001 and Umeyama 2012) were concerned with flows induced by free-surface 

gravitational waves propagating over a sandy bed. Hence, there is a need of further experimental investigation 

of the sediment transport phenomena in water due to surface wave propagation in order to enhance our 

understanding of fundamental mechanisms involved. The present work is an attempt in this direction. Another 

motivation of this work was to gather detailed experimental data sets that could be used to validate a numerical 

model (based on the Smoothed Particle Hydrodynamics method) which is currently developed by the authors.  

The paper focuses on the measurements of instantaneous velocity fields of both sandy sediment particles near a 

rippled bed, and of water particles higher above the bed. In Section 2 experiments conducted in a wave flume 

with the use of the PIV technique are described. In Section 3 the results obtained and the data analysis are 

presented. Section 4 is devoted to the calculations of the thickness of the bottom boundary layer, based on the 

PIV data. Finally, in Section 5 some conclusions are presented.  

2. EXPERIMENTAL SETUP AND DATA POST-PROCESSING 

Experiments were carried out in a wave flume of the Institute of Hydro-Engineering of the Polish Academy of 

Sciences (IBW PAN) in Gdansk, Poland. The wave flume is 64 m long, 0.6 m wide and 1.4 m deep. Water 

waves were generated by a programmable piston-type wave maker. For the purpose of the experiments 

described here, part of the wave flume (of a length 6.07 m) was isolated from the rest of the flume. In this 

selected flume section, a container (cuvette) with sand was placed at 2 m downstream of the wave paddle (see 

Fig. 1).The sand was taken from a beach at a village of Sobieszewo (part of the Gdansk agglomeration). The 

median diameter of the sand grains was determined during a sieve analysis and was established to be equal to 

d50 = 0.257 mm.  

 
Fig. 1. Experimental setup.  

 

The average water depth during the measurements was h = 0.3 m. Changes in the water free surface elevation 

were measured by a system of three wave gauges placed in the middle of the measurement area. The 

measurements were recorded with a sampling frequency of 100 Hz. In order to measure sand and water particle 



 

velocities, a PIV system was applied. The PIV technique evaluates the instantaneous velocities through 

recording and analysing, at successive instances of time, positions of small tracer particles that are suspended in 

the fluid.  

 

The main objective of the experiments was to determine the instantaneous velocity field in the near-bottom 

region. The main point of interest was to identify the velocity and direction of sand particles moving over 

rippled sandy bottom. During the PIV measurements, the laser light sheet was emitted from above the free 

surface of water in the flume. For recording successive images of sediment particle distributions, a high-

definition digital video camera was used. The PIV system was supplied by Dantec Dynamic, and a FlowSense 

EO 4M camera was used during the measurements. In this system, the inter-frame time is 200 ns, and the sensor 

resolution is 2048 px  2048 px. In our first experiments the water in the flume was seeded with glass hollow 

spheres. However, it turned out that the suspended sand grains in near-bed region acted as the seeding agent. 

The PIV post-processing was carried out by using the PIVlab1.4 software (Thielicke and Stamhuis 2014). 

  

In the measurements, surface waves with a period of T = 1.5 s and a height of H = 0.1 m were used. Before 

starting the PIV measurements, water waves were generated for approximately 30 min, so as to achieve a state 

of equilibrium of bed forms. The resulting ripples had a height of approximately 1.7 cm and a length of 

approximately 7 cm. 
 

 
 

Fig. 2. Typical PIV image. 

 

By analysing images (Fig. 2) recorded by the PIV camera, plots showing the instantaneous velocity field of sand 

particles were generated. The analysis of these data allowed the determination of the vertical and horizontal 

velocity profiles of the sand particles in the near-bed region.  

3. VERTICAL AND HORIZONTAL VELOCITY PROFILES ABOVE THE 

RIPPLES 

From the PIV experimental data, both the vertical and horizontal instantaneous velocity profiles were 

determined. Vertical velocity profiles were measured above the crest and trough of the representative bed form 

(Fig. 3a). A horizontal velocity profile was measured at a location just above the ripple crests (Fig. 3b), with the 

x-axis origin at the left border of the image and its direction to the right. The analysis of the vertical velocity 

distributions has been carried out for two cases: under the free-surface water wave crest, or under the water 

wave trough; that is, for two extreme cases of the water velocity magnitudes near the bed. 



 

Fig. 3. Vertical (a) and horizontal (b) profiles above the rippled bed. 

 

Figure 4 present the horizontal (u) component of the particle velocity. Fig 4a shows the vertical profile located 

in the ripple crest, and Fig 4b the vertical profile located in the ripple trough. The left plot in each figure shows 

the u-velocity profile measured with a surface wave crest directly overhead; the u-velocities profile on the right 

corresponds to surface wave trough directly overhead of the profile location. 

Figure 4a shows that the near-bed extremum horizontal velocities are similar in magnitude in both situations and 

their maximum values vary within the range ±0.24÷0.23 m/s. Slightly higher are the velocities occurring during 

the transition of the wave trough. Above the region of the sediment moving layer, in a region of the free stream 

velocity, the horizontal velocity component is significantly smaller and has a value of approximately 

0.16 m/s under the wave trough, and 0.12 m/s under the wave crest. Moreover, it was found that the sediment 

moving layer located in the near-bed region has a thickness 0.01 m at the time of the surface water wave trough 

transition, and 0.008 m at the time of the water wave crest transition.  
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Fig. 4. Instantaneous horizontal velocity component distributions along the vertical profiles above the ripple 

crest (a) and above the ripple trough (b). For both locations shown are the velocity profiles under the surface 

water wave trough (left plot in each figure) and under the water wave crest (right plot). 

 

Similarly, Figure 4b shows the vertical velocity profiles of the horizontal velocity component (u), but this time 

located at the ripple trough. Such a way of presenting the vertical profiles helps to determine the elevation above 



 

the ripple trough at which the sediment movement under the action of surface wave begins. It was estimated that 

the thickness of this layer was 0.01m in case of the surface wave trough transition, and was 0.005 m in case of 

the wave crest transition. This finding is consistent with the results discussed above for the profile situated at the 

ripple crest (Fig. 4a). The wave-bottom boundary layer started at 0.01 m above the ripple trough surface at the 

time of the water wave crest transition, and at about 0.014 m at the time of the water wave trough transition. 

Moreover, it is seen that the near-bed extremum horizontal velocities, for the situation under the surface water 

wave trough, reach about 0.19 m/s (the left plot in Fig. 4b), and in the situation under the wave crest (the right 

plot in Fig. 4b) they are equal to about 0.2 m/s. It may seem a little surprising that the near-bed velocities are 

higher than those in the free flow field. This phenomenon, though, was already observed earlier by van der Werf 

et al. (2007), and results from the mechanism of the vortex generation and shedding off the sand ripple slopes, 

which considerably influences the flow within a region of about 1.5 ripple heights over the line of ripple crests.  

 

The next step was to determine the vertical profiles of the vertical component (v) of the near-bed velocity. For 

this purpose, the same vertical profiles (Fig. 3a) as those described above were used. Figure 5 presents the 

vertical velocity distribution along a vertical profile located above the ripple crest. What is most characteristic 

for the two situations considered (the water wave crest and the wave trough transition) is the distinctive increase 

of the vertical velocity component in a near-bed region compared to the velocities occurring at higher locations 

in the free stream flow region. Under the water wave trough (Fig. 5a), the maximum vertical velocities in the 

near-bed layer of the moving sediment are 0.045 m/s, whereas under the wave crest (Fig. 5b) these velocities 

reach 0.05 m/s. The thickness of this wave-bottom layer was estimated as 0.008 m in the situation in the Fig. 5a, 

and 0.01 m in the situation in the Fig. 5b.  
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Fig. 5. Instantaneous vertical velocity component distributions along the vertical profile above the sand ripple 

crest: (a) under the water wave trough, (b) under the water wave crest. 

 

From the vertical profiles located at the sand ripple trough (Fig. 6) some additional information about the 

vertical velocities of sand particles in the sediment moving layer was inferred. The thickness of the wave-bottom 

boundary layer under the surface wave trough (Fig. 6a) is about 0.03 m, and under the wave crest (Fig. 6b) it is 

about 0.02 m. The magnitudes of the vertical velocities in the moving sediment layer in both situations (under 

the surface wave trough and the wave crest) were similar and equal to about 0.05 m/s, which is compatible with 

the results  plotted in Fig 5.  
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Fig. 6. Instantaneous vertical velocity component distributions along the vertical profile above the sand ripple 

trough: (a) under the water wave trough, (b) under the water wave crest. 

 

Fig. 7 presents the vertical distributions of both sediment velocity components. Fig. 7a shows the distributions 

of the horizontal components (u), and Fig. 7b of the vertical components (v), at four different phases of a single 

free-surface water wave period T (t = 0 corresponds to the beginning of the flow period).   
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Fig. 7. Vertical profiles of instantaneous velocity distributions: (a) horizontal component (u), (b) vertical 

component (v), at four characteristic phases of a single free-surface water wave period. 

 

The next stage of the PIV results analysis concerns the horizontal profile, which was located directly over the 

ripple crests (see Fig. 3b). The distribution of the horizontal velocity component (u) along that profile is 

presented in Fig. 8. It can be noted that the velocities u are clearly larger above the sand ripple crests than those 

over the ripple troughs. For instance, the mean values of u are 0.23 m/s over the ripple crests, compared to 

0.08 m/s over the troughs. Moreover, both at the wave trough transition (Fig. 8a) and the crest transition 

(Fig. 8b), the values of the velocity components are comparable in magnitude along the horizontal profile. 
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Fig. 8. Horizontal velocity component distributions along the horizontal profile: (a) under the water wave 

trough, (b) under the water wave crest. 

 

Finally, the horizontal profiles of the vertical (v) velocity components are presented in Fig. 9. Also in this case, 

both during the free-surface water wave trough and the water wave crest transitions, the extremal measured 

values are quite similar in magnitude. Above the ripple troughs the vertical velocities are positive and vary from 

about 0.04 m/s to about 0.08 m/s. For comparison, over the ripple crests, the corresponding values are negative 

and change from 0.04 m/s to almost 0.08 m/s. 
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Fig. 9. Vertical velocity component distributions along the horizontal profile: (a) under the water wave trough, 

(b) under the water wave crest. 

4. THICKNESS OF THE WAVE-BOTTOM BOUNDARY LAYER 

The important part of the flow is the bottom boundary layer. The latter is meant as the layer inside which the 

flow is significantly influenced by the bed. The thinner the bottom boundary layer is, the larger shear stress is at 

a given flow velocity (Nielsen 1992). In this study, laboratory observations of the near-bed velocity are used to 

evaluate the thickness of the wave-bottom boundary layer (Fig. 10). As already noted, in a layer immediately 

above a rippled bed, the sand dynamics is dominated by the mechanism of vortex formation and shedding above 

the ripple slopes (van der Werf et al. 2007).  



 

 

 
 

Fig. 10. Near-bed region with wave-bottom boundary layer. 

 

In order to determine the thickness of the wave-bottom boundary layer, a formula proposed by Nielsen (1992) is 

used, which is exact for the case of simple time-harmonic flows:  

 

𝛿 =
1

2

𝑢

𝜔
𝑓𝑤           (1) 

where δ denotes the layer thickness, u is the horizontal velocity amplitude of the fluid occurring just above the 

boundary layer, ω is a wave angular frequency, and fw is a so-called wave friction factor. The latter can be 

estimated by a method described in detail by Doering and Baryla (2002), based on formulae proposed by 

Nielsen (1992).  

 

The first step to calculate the thickness of the wave-bottom boundary layer is to evaluate a grain roughness 

friction factor. This can be calculated by employing a formula by Swart (1974), which is expressed as: 

 

    𝑓2.5 = exp⁡[5.213 (
2.5𝑑50

𝑢
)
0.194

− 5.977]                    (2) 

where d50 is the median grain diameter of the sediment. 

  

To measure the force exerted by fluid on a sediment particle during the surface wave transition, a dimensionless 

quantity is used, known as the mobility number, Ψ. The total disturbing force acting on a sand particle at the bed 

is approximately proportional to the square of the horizontal velocity amplitude u and the ratio between this 

disturbing force and the stabilising force due to gravity (Nielsen 1992). Hence, the number Ψ is defined by the 

equation:  

    =
(𝑢)2

(𝑠−1)𝑔𝑑50
                          (3) 

 

where s is the density of the sediment, and g is the acceleration due to gravity. 

 

The sediment mobility number and the grain roughness friction factor define the grain roughness Shields 

parameter 2.5 (Nielsen, 1992), expressed by the formula:  

 

    5.25,2
2

1
f                      (4) 



 

The parameter 2.5 is a dimensionless measure of the bottom shear stress, occurring in the flow over a sandy bed.  

When a bottom is covered by ripples, then θ2,5 < 0.25, and it should be assumed that the hydraulic roughness of 

the bed is a function of the ripple height, its length and the grain roughness. To take into account the effect of 

the roughness due to the mechanisms of sand particles moving over ripples, a formula for the hydraulic 

roughness can be used:  

𝑟 =
8𝜂2

𝜆
+ 170𝑑50√𝜃2.5 − 0.05 

(5) 

in which  and λ are the ripple height and length, respectively.  

 

The water under the surface wave interacts with the sandy bottom mainly due to shearing, which is measured by 

a shear stress . For this reason, the determination of the shear stress is an essential element in the calculation of 

the sediment transport. Generally, the friction factor of the wave is a function of the Reynolds number and the 

hydraulic roughness (r) of the bottom. Under certain conditions, the wave friction factor can be expressed in a 

simple way. For instance, if the bed is hydraulically smooth, than the friction factor fw is a function of only the 

Reynolds number. If, in turn, the bottom is hydraulically rough, then fw is a function of the bed roughness. It is 

assumed here that the bottom is hydraulically rough, which means that the boundary layer conditions are 

turbulent. In this case, the wave friction parameter is defined by:  

 

  𝑓𝑤 = exp [5.5 (
𝑟𝜔

𝑢
)
0.2

− 6.3]     (6) 

 

where r denotes the hydraulic roughness of the bed,  is the angular frequency. The wave friction factor, 

obtained from Eq. (6), can then be used to calculate the thickness of the boundary layer, as described by Eq. (1). 

 

For the experiments described in this work, the ripple geometry was found to remain fairly constant, and could 

be described by the parameters  = 1.7 cm and  = 7 cm. The median grain diameter d50, as mentioned earlier, 

was 0.257 mm. For this case, the near-bed velocities in wave-bottom boundary layer were measured by the PIV 

technique, and the value adopted in the calculations was u = 0.24 m/s. With this information, the grain 

roughness Shields parameter (2.5), hydraulic roughness of the bed (r), and the friction factor (fw) were found to 

be 0.16, 0.047, and 0.36, respectively. With these latter values, the thickness of the wave-bottom boundary 

layer, assuming rough turbulent conditions, was calculated to be equal to 1.04 cm. This result is consistent with 

that determined from the PIV measurements, wherein the thickness of the moving sediment layer in a wave-

bottom boundary region, r, was approximately 1 cm, see the previous section.  

5. CONCLUSIONS 

The following conclusions can be drawn from the experimental observations presented in this paper:  

 

(i) In the wave-bottom boundary layer, the maximum velocities near the ripple crest can be up to two 

times higher than the maximum free stream velocity. This is the result of the flow acceleration 

over the crest and the jet flow associated with the ejection of vortices on the slopes of the sand 

ripples (the mean velocity value in the near-bed region is 0.24 m/s, compared to 0.14 m/s in free 

stream flow). 

(ii) The vertical velocities in the near-bed region vary from about 0.04 to about 0.06 m/s, and are 

strongly influenced by the presence of underlying sand ripples. 

(iii)  Bed forms significantly affect the near-bed sediment vertical velocities, leading to strong 

downward and upward local flows, depending on the local morphology of the ripples.  

(iv) The thickness of the wave-bottom boundary layer (the sand active layer) was measured with a 

good accuracy, and its value was in accordance with the results of theoretical calculations. 
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ABSTRACT 

Modern ship locks are made of steel reinforced concrete. A crucial issue, similar to other hydraulic structures, 

is the intensive exposure to water and therefore consequently the contact to a highly varying physical and 

chemical environment. This may cause rapid deterioration of the concrete cover due to the ingress of chloride, 

oxygen and moisture leading to excessive corrosion of the embedded reinforcement. Consequently, a strong 

decrease in structural strength is inevitable. Against this background a study was conducted in which only a 

plain concrete structure was considered. This construction method had been used successfully in former times 

and was then replaced by reinforced concrete constructions in the 1960s. The study considered a typical 

concrete ship lock structure without any reinforcement, with length of 190 m, width of 12.5 and a fall of 10 m. 

The structural analyses are focused on the lock chamber walls as they are the most labor and cost intensive 

components rather than on the lock head and gates. The structural and geotechnical verifications were 

conducted in accordance to latest Eurocodes and German standards along with Finite Element Analysis using 

ANSYS. The structure was designed for three extreme operating conditions depending on different water level 

inside the chamber. Furthermore dimensional optimizations are preformed using linear programming and 

sensitivity analysis is conducted by variation of input parameters. Whereas this paper would only focus on 

effects due to variation in groundwater level, concrete and soil type. The findings suggest that the most critical 

loading condition is when there is no water in the chamber. In this case a gravity wall base length of 13.28m is 

required to reach sufficient stability. However, the bearing capacity of soil and the tensile strength of the 

concrete are the most critical safety checks for this type of structure.   

Keywords: Ship-Lock Structures, Plain Concrete, Static Structural Analysis, ANSYS, Feasibility, Optimization 

1. INTRODUCTION

Steel reinforced concrete can withstand high stresses in slender constructions which make it the obvious choice 

for hydraulic structures in general and modern ship locks in specific. However, these structures are permanently 

in contact with water and therefore subjected to highly variable physical and chemical environments depending 

on their location and usage. Processes like carbonation, freezing-thawing cycles and acid attack progressively 

reduce the durability of the concrete structure Rapid deterioration of  concrete cover leads to an increasing 

ingress of chloride, oxygen and moisture causing  excessive  corrosion  of  the  embedded  steel  reinforcement  

and  a strong decrease  in  material durability and service life (Westendarp et al. 2014). In addition, “Navigation 

structures are subjected to significant weathering and deterioration that can result in spalling, scaling, and 

increased surface roughness along with scour and erosion in underwater locations.” (USACE 2016).  

It had been observed by the experts at German  Federal  Waterways  Engineering  and  Research  Institute 

(Bundesanstalt  für  Wasserbau,  BAW) that the maintenance  requirement for reviving the structural integrity of 

young reinforced concrete structure is comparatively higher when compared with older plain concrete 

structures. Similar problems are reported in United States navigation infrastructure, “Steel and other metallic 

materials may be damaged by corrosion, fatigue, mechanical overloading, stress-assisted corrosion and 

embrittlement” (USACE 2016). 

In addition to high susceptibility of reinforcement to damage, it was found that the most dominant failure mode 

in existing hydraulic infrastructure under the BAW and Waterways & Shipping Board (WSV) was cracking, 

which was experienced in almost 25 % of inspected structures (Kunz and Bödefeld 2001). The crack allows the 
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penetration of water and air which additionally aids corrosion and exponential decrease of stress bearing 

capacity of structure.  

The construction method employing only plain concrete in hydraulic structures had been extensively used in 

former times until in 1960s when the reinforced concrete design was introduced. It is estimated by BAW that 

about 65 % of the existing structures in the waterway’s infrastructure are made out of plain concrete or light 

reinforced concrete. Most of the old unreinforced infrastructure still fulfills its functional requirements with little 

required maintenance. In view of this advantage a study was initiated by BAW in cooperation with Department 

of Hydraulic Engineering and Water Resources Management, University of Stuttgart with the research target of 

optimized structural and dimensional requirements of a modern ship lock structure. The research employed the 

concepts of using plain concrete under consideration of the current standards and design philosophies of 

Eurocodes and German standards. Similar concepts have been used in the past and reported in (PIANC 1986) 

and (Partenscky 1984) but the ship size and functional requirement of that time were lesser than present times. 

Therefore, a typical modern ship lock was chosen with a length of 190 m, width of 12.5 m with a fall of 10 m 

was selected.  

 

The main focus of the initial design is on the lock chamber walls due to two reasons. Firstly, because it is well-

known that concrete cannot withstand high tensile forces, therefore using plain concrete in head structures is not 

possible. Secondly, the lock chambers are the most labor and cost intensive component, hence its design and 

optimization would have a major impact on the feasibility of building such a structure. In order to assure the 

stability and safety of the structure, compliance with all current codes and standards is mandatory. The static 

structural and geotechnical verifications are made and additional verification for internal stresses was conducted 

using Finite Element Analysis of ANSYS. This study is conducted in accordance with the standards   and   

design  philosophies  of  Eurocodes  (EN  1990, 1991, 1992,  1997)  and  German  standards  (i.e.  DIN 19702). 

The structure was designed for three operating conditions, when the water level is at maximum, minimum 

operation water level and when there is no water in the lock chamber (maintenance condition).  The last part of 

the research included the optimization of structural dimensions for each of loading conditions and varied input 

parameters. A literature review was conducted for selection of appropriate optimization algorithm. Several 

algorithms have been used for various objective functions for hydraulic structures, PSO (Particle Swarm 

Optimization Algorithm) was employed for hydraulic structural optimization field (Xinmiao et al. 2008), 

Genetic Algorithm (GA) was used in optimization model for optimum dimensions of the dam section under 

dynamic loadings due to seismic excitation  (Ahmed et al. 2014), computation and comparison was conducted 

for optimized dimensions of a concrete gravity dam structure using gravitational search algorithm; particle 

swarm optimization; weighted least squares support vector machine (Salajegheh and Khosravi 2011). But all 

these advanced methods are requires high computational power and input data. Therefore a more generalized 

method “Linear programming” was used, considering the advantage that it requires no generation of new data 

points and its functioning could be understood intuitively. Consequently for this study the dimensional 

optimizations was performed by using linear programming for deign loading cases (water level in chamber) as 

well as for assessment of most sensitive parameters by varying the groundwater level, concrete type and soil 

type.  

2. METHODOLOGY 

2.1. Codes and Standards  

In the last few decades Europe has seen a major shift in engineering design methodology with the inclusion of 

limit states design in its standards. This study considers both the European codes (EN) as well as German codes 

(DIN). The standards that were considered in the study are enlisted below.  

 

European Standard (Eurocodes) with German Annexes  

 DIN EN 1990 Eurocode 0 - Basis of structural design 

 DIN EN 1991-1-1 Eurocode 1: Actions on structures - Part 1-1: 

 DIN EN 1992-1-1 Eurocode 2: Design of concrete structures - Part 1-1 

 DIN EN 1997-1 Eurocode 7: Geotechnical design - Part 1: General rules 

 

DIN - Deutsches Institut für Normung (German Institute for Standards) 

 DIN 19702 Solid structures in hydraulic engineering–Bearing capacity, serviceability and 

durability 



 

 DIN 19703 Locks for waterways for inland navigation –Principles for dimensioning and equipment 

 DIN 1054 Subsoil –Verification of the safety of earthworks and foundations –Supplementary 

rules to DIN EN 1997-1 

 

Since the Eurocodes were used, the structure was designed and analyzed against ultimate and serviceability limit 

state using the corresponding partial safety factor for different actions and materials. This ensures that the design 

resistance (Rd) should not be less than the deign effects of actions (Ed). Furthermore a “safety ratio” was 

calculated which is the ratio between design resistance and design effect of actions. The key purpose of safety 

ratio is to translate all calculation of each limit state to a single value which later on assisted in simplification of 

the optimization process. The limit states considered in the research include limit state for failure by hydraulic 

uplift (UPL), by loss of static equilibrium (EQU), by failure of structure (STR) and geotechnical (GEO) failure.  

2.2. Design load conditions and materials  

Ship lock structures experience diverse environments; hence several loading conditions, corresponding shapes 

and sizes are possible. One of the investigated shapes consists of three disjoint structures, two concrete gravity 

retaining walls and an unreinforced concrete base slab. The preliminary shape and dimensions of the structure is 

shown in Figure1. The applied loads include hydro-static pressures, effective earth pressures, ground water 

forces, surcharge loads, up-lift pressures, self-weight of structures, weight of overburden soil. The application of 

these forces is indicated in Figure 2. 

 

Figure 1. Shape and initial dimensions of the locks structure 

 

 
Figure 2. Forces and pressures applied on walls of the lock 

 

The combinations of these forces lead to three design loading conditions. The material considered for the study 

was concrete class C 20/25, C 25/30 and C 30/35. The material strength and partial safety factor for the design 

compressive and tensile strength were taken from EN 1992(2014). For the design conditions concrete class C 

20/25 was considered with design compressive strength (fcd) of 9.33 MPa and design tensile strength (fctd,0.05) of 

0.70 MPa. The properties of the earthen material for design conditions include the specific weight of the 

unsaturated soil with 20 KN/m3 and of the saturated soil with 10 KN/m3, the angle of internal friction was set to 

φ = 30°. For initial conditions, the earth pressure is 50 % active earth pressure and 50 % passive earth pressure 

resulting in an effective earth pressure coefficient of Keff = 0.39.  



 

 

Nine other conditions were evaluated in the sensitivity analysis by parameter variation. The following Table1 

indicates the conditions and its respective changes.  

 

Table 1. Parameters changed for Design conditions 

Group 

No  
Parameter Situation Case 

1 
Water level in 

the chamber  

Highest operational water level in the chamber (w.l +14.0 m) 
Design 

conditions 
Lowest operational water level  (w.l + 4.0 m) 

No water in chamber/maintenance case  (w.l + 0.0 m) 

2 
Water level in 

the ground   

Water at 2/3 of total height of structure 
Sensitivity  

analysis 1 
Water at the ground surface level 

Water at lowest level of structure 

3 

Different 

concrete 

strengths  

Concrete class C 20/25 
Sensitivity  

analysis 2 
Concrete class C 25/30 

Concrete class C 30/35 

4 Soil type 

Fine sand ɣ = 20 KN/m3 ɣ' = 10 KN/m3 , φ = 30o 
Sensitivity  

analysis 3 
Clay ɣ = 19.5 KN/m3 , ɣ' = 9.5 KN/m3 ,φ = 22.5o 

Gravel ɣ = 21 KN/m3 , ɣ' = 12 KN/m3 , φ = 37.5o 

2.3. Static verifications & Finite Element Analysis  

For each limit state function corresponding actions, materials and partial safety factors were selected from the 

Eurocodes and DIN as mentioned in the section earlier. In total seven static verifications were made, which 

include safety against uplift, overturning, sliding, eccentricity, bearing capacity failure, shear forces and 

compressive strength check. The respective resistances and actions were calculated and a safety ratio was 

evaluated for each case. The details are given in the Table 2.  

 

Table 2. Limit state function for verifications 

Static 

verifications 
Limit State condition Remark 

Reference 

literature 

Failure by 

hydraulic 

uplift 

Vertical design 

destabilizing force 
< 

Vertical design 

stabilizing force  

EN 1997-1, 

DIN 1054 

Overturning 

stability 

Factored 

overturning 

moments 

< 
Factored reacting 

moments 

For both pivot points, 

heel & toe 

EN 1997-1, 

DIN 1054 

Sliding 

resistance 

Total horizontal 

sliding forces 
< Resisting forces 

No cohesion between 

concrete & soil 

EN 1997-1, 

DIN 1054 

Load 

eccentricity 

Factored load 

eccentricity 
< Allowable eccentricity 

for both conditions 

Only permanent force 

&  with variable force 

DIN 1054 

Bearing 

capacity check 
Stress on soil < 

Allowable ultimate 

bearing capacity of soil 

For both about heel & 

toe 
DIN 1054 

Shear forces 

check 

Shear stress 

(design load) 
< 

Concrete design 

strength(shear & 

compression) 

Shear stress in the 

concrete from axial load 
EN 1992-1-1 

Compressive 

strength check 

Compressive 

stresses 
< 

Concrete design 

compressive strength 

With & without pore 

water pressure 

DIN 19702, 

EN 1992-1-1 

 

In order to evaluate the internal stresses and possible failure of the material, Finite Element Analyses (FEA) was 

conducted. ANSYS Mechanical was used for the FEA for the proposed structure. For the current study a 

traditional approach was adapted for the static analysis of the subject structure, whereas the future work could 



 

possible include dynamic analysis. The approach included selection of element type as “Solid 185” with eight 

nodes and homogenous isotropic structural solid elements. The concrete material properties for  FEM modelling  

considered material as isotropic linear elastic concrete with a young’s modulus of 30 GPa, Poisson’s ratio 

 = 0.2 and unit density of 24000 kg/m3 with a typical concrete material failure stress strain curve. For 

generation of the computational mesh the triangular element shape was selected along with Ansys automatic 

meshing option. The boundary conditions, displacements Ux,y,z and rotation Rx,y,z were selected in accordance to 

the structural systems considered in the codes and standards, where the chamber retaining wall was considered a 

cantilever with fixation at the base only. In the current feasibility study the variation in the soil adjacent to the 

chamber was not considered and earth pressure was considered as a fixed load. The consideration and modelling 

of soil-structure interaction in the FEM model might be a part of the subsequent future studies. The pressures 

and forces systems considered are shown in the Figure 2. The overall handling of the FEA from element 

selection to post processing of results was automated by developing a code in ANSYS-APDL (Ansys Parametric 

Design Language). 

In post processing both nodal and parametric solutions were extracted. These solutions include tensile stresses, 

compressive stresses, maximum horizontal shear stresses (Txy) and maximum horizontal normal stresses on 

vertical planes (compressive, σy) for assessment of ultimate limit state. For evaluation of the serviceability limit 

state, the nodal solution of maximum displacement in x-direction was evaluated and compared with the 

permissible values of the standards. For validation of the FEA results, the solutions from Ansys and results of 

static verifications with regards to compressive stress in principle axis, horizontal planes and vertical planes are 

compared with those computed by ANSYS using FEA. Once an approximation is found between the analytical 

calculations and FEA results, the boundary conditions, mesh size, shape and force system are fixed for other 

loading conditions and cases.  

2.4. Optimization and Sensitivity Analysis  

Upon completion of static verification and FEA in accordance to respective limit states, each case is condensed 

to one value, “the safety ratio”. The ratio is evaluated by comparing calculated value of limit state (static/FEM) 

and values allowed by the standards. Table 2 enlists some of static verification and limit states. In general this 

ratio indicates the order of sufficiency of the proposed structure in context to verifications enforced by 

standardization, a value smaller than one means that the proposed structural dimensions are insufficient and 

need to be revised. Whereas, a safety ratio more than one indicates more than code required sufficiency and a 

need of optimization for reduction of dimensions. 

As discussed before as well, there are several optimization schemes and algorithms used for structural 

optimization which include but not limited to Particle Swarm Optimization Algorithm PSO (Xinmiao et al. 

2008), Genetic Algorithm GA (Ahmed et al. 2014), gravitational search algorithm; particle swarm optimization; 

weighted least squares support vector machine (Salajegheh and Khosravi 2011). Since the orientation and 

requirement of the subject study was limited to assess feasibility, therefore selection of method was based on 

ease of application and less computational power requirement. Considering this, linear programming 

optimization scheme was selected. A linear programming model was constructed based on the objective of 

minimizing the base length. The constraints of the model were that all safety ratios must be at least equal to 1.0. 

For acceptance of the optimal design, the performance function was the most critical verification whose safety 

ratio must be equal to 1.0. The optimization process did not only give the optimal dimensions of the proposed 

geometry but also indicated the critical parameters and limit states for various loading scenarios. Similarly each 

design case was optimized and dimensions corresponding to the worst case scenario were selected. 

Subsequently a sensitivity analysis was conducted by changing the input parameters. The influences of three 

parameters were analyzed, which include change in ground water level, concrete type and soil type. Each input 

change was applied to the dimensions finalized from design conditions and then static verification and FEA was 

done to assess sufficiency. For each change, safety ratios were computed to determine the most critical safety 

aspect and then optimization was performed to evaluate the dimensional requirements. 

 

3. RESULTS  

Three design situations depending on the water level in the lock chamber, respectively water level at +14.00 m, 

+4.00m and no water in the chamber, were selected for this study. The initial base length of gravity wall was 

considered to be 12.0 m. The results of the analysis for design case 1 show that the structural dimensions are 

sufficient, while the eccentricity is the most critical parameter. For optimization the eccentricity check was set 



 

as performance function and base length as parameter. The optimized length was found out to be 9.78 m. The 

same procedure was carried out in case of the water level at +4.00 m, which indicated the bearing capacity as 

critical safety check; the optimized length was 11.65 m. Also case 3 representing no water in the chamber 

showed that the eccentricity was the critical safety check where the safety ratio was decreased to 0.92. The 

corresponding optimized base length was calculated to 13.28 m and was set as design value for all further 

analysis. The analysis of the design conditions show that bearing capacity, eccentricity and sliding resistance are 

among the most critical checks. In the Finite Element Analysis, the lowest safety ratios were found for the safety 

check of tensile stresses, where the safety ratio decreased from 2.89 to 1.53 for the decrease of the water level in 

the chamber as shown in Table 3. The location of the maximum tensile stresses is at the toe shown in Figure 3. 

The safety ratios for shear stresses decrease from 4.12 to 1.96 with the decrease in water level. The structure is 

abundantly safe against compressive stresses. The safety ratios increase as the stresses inside the structure 

increase due to the bigger size and higher weight. This is validated from the results in static verifications. The 

maximum compressive stress is 1.79 MPa whereas the allowed compressive stresses are 9.33 MPa giving a 

safety ratio of at least 5.21. The location of the maximum compressive stress (least safety ratio) is at the heel of 

the structure in design case 2 as shown in Figure 3. Concluding that the optimized base length of 13.28 m is 

sufficient to fulfill all limit states under design conditions and loadings.   

 

Table 3. Results of safety ratios in design conditions and optimization  

Group 1 (Design Conditions)  Design 1 Design 2 Design 3 

Std = Standard, Opti = Optimized  Std Opti Std Opti Std Opti 

   Optimizing parameter Base length  12 9.78 12 11.65 12 13.28 

S
tatic C

alcu
latio

n
s 

Uplift stability 2.02 2.03 3.25 3.25 4.97 4.96 

Overturning stability 1.65 1.20 1.27 1.23 1.43 1.61 

Sliding resistance 1.69 1.39 1.22 1.19 1.35 1.49 

Eccentricity limit 1.42 1.00 1.42 1.35 1.13 1.34 

Bearing capacity 1.87 1.70 1.02 1.00 0.92 1.00 

Shear strength 2.57 2.10 2.67 2.59 2.60 2.88 

Compressive strength 10.40 8.72 8.21 7.98 7.74 8.55 

F
E

M
 u

sin
g

 

A
N

S
Y

S
 

Principle tensile stress 2.89 2.04 1.33 1.32 1.53 1.90 

Principle compressive stress 10.02 8.79 5.21 5.17 6.31 6.69 

Max shear stress Txy 4.12 3.69 1.96 1.77 2.76 2.94 

Max normal tensile stress σy 6.72 3.61 1.72 1.67 2.43 3.33 

Max displacement-x  7.98 5.68 4.53 4.32 4.43 5.27 
 

 
Figure 3. Tensile and compressive stress distribution through Ansys-APDL 

 

Another auxiliary structure considered for design was the base slab of the lock structures. Two types of 

construction possibilities were considered in the initial part of the research. Firstly a U frame monolithic 

construction where all components of the structure are connected and secondly a construction considering three 

disjoint sub-structures which is indicated in Figure 1. The U frame monolithic construction with plain concrete 

was analyzed and it was found as an unfeasible shape as the tensile stress at the connection of base slab and 

chamber walls exceeded the concrete design tensile strength of 0.7 MPa. The details of this design and analysis 



 

are not a part of this paper. Whereas the plain concrete base slab design and consideration for a disjoint system 

would be discussed briefly here. Similar to the chamber wall structure, the base slab was also considered for 

three design cases, two of which meaning the critical. Firstly, when the water level in the chamber is at 

maximum operational level and secondly when no water is within the chamber and only the self-weight of the 

structure could resists the forces. The following figure indicates equivalent factored loading system for the both 

critical design cases. Considering the beam theory, respective applicable standards and the evaluated bending 

moment the appropriate depth of the slab was calculated to be 3.0 meters.     

 

 
 

 

 

All design cases considered a groundwater level up to two third of the height of the structure. The ground water 

level is now altered to evaluate the sensitivity of this parameter on the safety of the lock structure.  

To assess the variation in safety ratios due to change in ground water level, three loading conditions were 

assessed. First being that the ground water level equals to structure height (maximum level), it was witnessed 

that a rise in uplift pressure improves the bearing capacity but reduces all other stabilities making the 

eccentricity limits and sliding safety to be the most critical. However, the results show that a base length of 

13.28 m is still sufficient for all stabilities. Although the safety ratios for eccentricity limits (1.03) and sliding 

resistance (1.05) with base length 13.28 m are marginally higher than 1.0 as indicated in the graph figure below. 

Nevertheless the optimization was conducted and an optimized base length is found to be 13.05 m. The change 

in ground water level was reduced to a minimum level. In this case the original base length of 13.28 m failed to 

fulfill required bearing capacity check and the safety ratio reduced to 0.93, this is shown in the figure with 

comparison to other ground water level. To fulfill this requirement the dimensions were increased and the 

respective optimized length was 14.0m. The following figure indicates the various static and FEM verifications 

for the respective structure with the variation in the ground water level where the aspects of interest are those 

with safety ratio around 1.   

 

Figure 4. Equivalent force systems on base slab for design cases 



 

 
 

 

 

The next sensitivity analysis is conducted considering the change in concrete quality. The stability related to 

structure geometry and geotechnical properties are not sensitive to any small change in concrete properties. 

Since the changes of the strength class will keep the weight and density almost at the same value. For C20/25, 

C25/30 and C30/35, only the safety ratios related to the material strength i.e tensile, compressive and shear 

strength are improved slightly. But none of these stabilities are critical and the bearing capacity has the least a 

safety ratio of 1.00. Therefore the optimized base length remains at 13.28 m, regardless of an improved concrete 

class. This is indicated in the figure below with identical safety ratios for critical aspects.  

 

 
 

 

 

 

Sand was considered as design soil, the sensitivity of a change in soil type was evaluated. The soil type was 

varied choosing clay and gravel with basic properties written in table 1. The results indicate that clayey soil 

reduces the stabilities, hence decreasing the bearing capacity ratio to 0.95. Therefore, the required base length 

Figure 5. Sensitivity analysis for change in ground water level with base length of 13.28 m 

Figure 6. Sensitivity analysis for change in concrete type with base length of 13.28 m 

GWL (min) 
 

GWL (max) 
 

GWL (2/3) 



 

was computed to be 14.11 m. Gravel soil provided more stability and a higher bearing capacity resulting in a 

reduced optimized base length of 12.58 m. 

 

 
 

 

 

A general perspective of the sensitivity analysis carried out in this study shows that for retaining gravity walls 

made out of plain concrete, the stability is most critically restricted by the bearing capacity of soil and 

eccentricity limits. However, the safety against internal stresses (tensile stresses) is the most critical aspect 

which needs to be corroborated. 

4. CONCLUSIONS  

 

When considering latest standards and concrete without reinforcement, for design of a modern ship lock 

structure, the construction arrangement consisting of three disjoint sub-structures was found more feasible, in 

contrast to the currently employed typical reinforced concrete U frame structure which has rapid reinforcement 

deterioration and maintenance issues. The suggested arrangement consists of two identical concrete gravity 

retaining chamber walls and a plain concrete base slab. The static verification and finite element analysis in 

accordance with Eurocodes and German standards was conducted for a lock with a length of 190 m, width of 

12.5 m and a fall of 10 m. From the three design conditions considered it is found that critical loading conditions 

occur when no water is inside the chamber. The most critical verifications were the eccentricity check and 

bearing capacity of the soil. A linear programming optimization scheme was employed. This provided the 

optimized base dimension of 13.28 m. The critical loading conditions were applied to the base slab resulting into 

a final thickness 3.00 m, which was determined using beam theory. 

 

Upon completion of verification of the design conditions, a sensitivity analysis was conducted to investigate the 

impact of the change in input parameters on the dimensional requirements and stabilities. The conducted 

analyses determine that stabilities are sensitive to changes in the ground water level. The increase of the ground 

water results into a decreased stability and lowered safety ratios for all verifications with exception to the 

bearing capacity verification, where the safety ratio increased. The reason for the observed reduction is the 

increase in vertical forces due to uplift. The second sensitivity analysis determined the influence of change in 

concrete type. The analysis revealed that such change will have no impact on the structure’s critical verifications 

i.e. eccentricity and bearing capacity which depend on the weight of the structure rather than on the strength of 

concrete. The third change in the input parameters was the change in soil type. The analysis showed that coarse 

soils provide a better environment and higher stabilities, thus reducing the dimensions of the structure. Soils 

having finer material or smaller angles of friction require a longer base length to guarantee the stability. 

 

Figure 7. Sensitivity analysis for changes of the soil type with base length of 13.28 m  

Group 4 



 

It can be concluded that bearing capacity verification is most critical, whereas eccentricities check can be ranked 

second for this type of concrete structure. Since the base length is a function of base pressure and eccentricity, it 

is recommended to elongate the base of the structure and gradually reduce the other dimensions along with the 

height for an optimal shape. As established before the change in concrete class does not have an impact on the 

optimal dimensions of the structures. The bearing capacity remains the most critical verification, which is 

independent of concrete strength. 

 

The sensitivity analyses indicate that coarse soils will improve the bearing capacity and reduce the earth 

pressures on the walls, the proposed structural arrangements would be more feasible and stable in regions with 

gravel and rock foundations. Soil replacement could be an option in cases where the soil is clayey. In conditions 

where foundation soils have a very low bearing capacity, a pile foundation could be employed. 

 

An increased ground water level has an impact on the sliding resistance of the structure, hence recommendations 

are presented. Firstly, providing a key at the bottom of the structure would improve the stability.  Secondly, the 

application of a ground water drainage system along the earthen side of the structure is suggested. Furthermore a 

drainage system along the chamber walls is of vital importance when the structure is undergoing maintenance 

conditions (no water in the chamber). Since this loading condition is critical but at the same time temporary, the 

reduction of the natural ground water level in the vicinity of the structure is suggested, however this short 

duration will not have any major impact on the regional ground water system. 

 

The same methodology could be adapted for the assessment of stabilities for existing hydraulic structures made 

out of plain concrete which consists of about 60 % of navigation infrastructure of Germany. Further studies 

regarding fracture mechanism and location of potential failure planes within the structure due to tensile stresses 

are recommended. This would ensure the safety of the overall structure especially foundations against 

progressive development of uplift pressures leading to hydraulic fracturing and deterioration. A better 

understanding of the soil-structure interaction and fluid-structure interaction considering dynamic loadings and 

soil variation would be highly beneficial for additional optimization on the structure in terms of shapes and 

dimensions. Other structural configurations involving decrease in height of retaining wall by cascading smaller 

lock structures in series could further improve the scheme which needs to be investigated. However, an 

economic and life-cycle cost analysis would be pivotal in making the final decision concerning selection and 

usage of lock structures made out of plain concrete.  
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ABSTRACT 

Air-water flows can be found in different engineering applications: from nuclear engineering to huge hydraulic 

structures. In this paper, a single tip fibre optical probe has been used to record high frequency (over 1 MHz) 

phase functions at different locations of a stepped spillway. These phase functions have been related to the 

interfacial velocities by means of Artificial Neural Networks (ANN) and the measurements of a classical double 

tip conductivity probe. Special attention has been put to the input selection and the ANN dimensions. Finally, 

ANN have shown to be able to link the signal rising times and plateau shapes to the air-water interfacial 

velocity. 

Keywords: air-water flows, Artificial Neural Networks, air-water interfacial velocity, stepped spillways 

1. INTRODUCTION

Air-water flows can be easily found in large hydraulic structures, where self-aeration occurs as a complex and 

turbulent air-water compatibility phenomenon (Valero and Bung 2016). In spillway flows, researchers’ efforts 

have focused both in the aerated regions (Zhang and Chanson 2016a, Bung 2011, Felder and Chanson 2011, 

Boes and Hager 2003, Chanson and Toombes, 2002) and non-aerated regions (Valero and Bung 2016, Zhang 

and Chanson 2016b, Meireles et al. 2014, Meireles et al. 2012, Amador et al. 2006); while some unresolved key 

challenges still exist (Matos and Meireles 2014, Chanson 2013). Hydraulic jumps have been also a common 

case of air-water flow studies as the impingement induced aeration plays a main role (Murzyn et al. 2005, Wang 

and Murzyn 2016, Wang and Chanson 2015, Wang et al. 2014, Chanson and Brattberg 2002). 

Although some new non-intrusive techniques are available (Bung and Valero 2016, Bung and Valero 2015, 

Felder and Chanson 2014, Nóbrega et al. 2014, Leandro et al. 2014, Bung 2013, Chachereau and Chanson 2011, 

Kucukali and Chanson 2008, Misra et al. 2006), intrusive techniques have been more widely used (Wang et al. 

2014, Boes and Hager 2003, Chanson and Brattberg 2002). When the air fraction 𝐶, or water fraction (1 – 𝐶) 

exceeds 1 to 3 %, accuracy of common instrumentations for single phase flow measurements is typically 

affected and conductivity/optical probes become the best option (Felder and Chanson 2015). However, when 

using intrusive measurement techniques, some drawbacks and limitations can arise (Borges et al. 2010). In order 

to save some difficulties involved in air-water flow velocity measurements, Artificial Intelligence (AI) 

techniques have recently been used (Bung and Valero 2016a). Optical fibre probes work based upon the 

difference on light refraction at air/water interfaces. Usually, when velocity measurement is required, these 

probes comprise two conical tips. First and second tip are intended to record two signals based on the same 

bubbly events. Then, by cross-correlating the signals the most probable lag time can be obtained. Altogether 

with the known distance between both probes, a velocity may be computed. Nonetheless, a second option is 

available based on a single tip configuration. 

In this study, raw signals are recorded in a highly aerated flow on a moderately sloped stepped spillway; similar 

to the setups described in Bung and Valero (2015) and Bung (2011). These signals, altogether with the 

previously obtained information, are later processed and used to train different Artificial Neural Networks 

(ANN) configurations by using PyBrain open-source package (Schaul et al. 2010).  



 

2. EXPERIMENTAL SETUP 

2.1. Stepped spillway 

All measurements have been conducted in a moderately sloped stepped spillway (1V:2H, 𝜙 = 26.56º) with step 

height 𝑠 = 6 cm for three different flow rates 𝑞 = 0.07, 0.09 and 0.11 m2/s. Total drop height is 1.74 m with a 

width of 0.50 m. Water was pumped from a lower basin into an open head tank from where it was conveyed into 

the stepped chute via an approaching channel of 1 m length. In order to complete a wider range of air 

concentrations, measurements have been conducted at steps (E) 13, 14, 18, 19 and 21; being the flow fully 

developed at step 21 for the highest discharge (see Fig. 1). 

 

  

Figure 1. Sketch of flow regions over a spillway (left) and aerated flow at step 21 for 𝑞 = 0.07 m2/s (right). 

2.2. Single tip optical probe description and settings 

Since the early study of Neal and Bankoff (1963), phase detection probes have become a common measuring 

technique in multiphase flows disciplines. In this study, a single tip optical probe is employed (Fig. 2). This 

probe (also known as mono-optical probe) has been placed in the centreline of the spillway, over the step edges. 

As shown in Fig. 2, the probe is moved by a CNC controlling system (isel) with an accuracy of ~0.1 mm. The 

probe is manufactured and distributed by A2 Photonic Sensors, including a signal recording and analyser 

software and an optoelectronic module. 

 

Vertical interfacial velocity profiles (raw signals) have been recorded perpendicularly to the pseudo-bottom with 

2 mm spacing, at steps 13, 14, 18, 19 and 21, resulting in 646 measurements. 

 

  

Figure 2.  Monofibre optical probe location (left) and 2D controlling system configuration (right). 

 

Single optical phase detection probes are able to measure gas velocities provided that their sensitive length (or 

latency length, 𝐿) is accurately known (Cartellier 1998, Cartellier and Barrau 1998a, b). To avoid a certain level 

of sensitivity to uncontrollable parameters (i.e.: angle of the impact on the bubble interface), probes geometry 

can differ from the commonly used dual tip optical fibres. Thus, more complex geometries can be used 



 

(Cartellier and Barrau 1998b), e.g.: a cone + cylinder + cone geometry where the tip reduces its inner diameter 

through an intermediate cone. However, the employed probe corresponds to a simple cone geometry, which is 

more sensitive to uncontrolled parameters. 

 

Air-water interface velocity can be approximated by using: 

 

𝑣 = 𝐿 · 𝑡𝑟
𝑏  (1) 

 

where 𝑡𝑟 is called the rising time, which represents the time it takes the signal to pass from level 10% to 90% of 

the air level, 𝑏 is a dimensionless parameter taking a value close to –1 to correct the estimation and 𝐿 depends 

on the probe’s tip length. For the employed probe, 𝑏 = –1.02 and 𝐿 takes the value of 45.3 μm when the rising 

times are taken in microseconds to obtain the velocity in meters per second. Threshold levels 10% and 90% are 

based on the provider’s experience and directly affect the values taking the other parameters. 

 

Cartellier (1998) reports a relative error of around 10 % both for air fraction and gas flux, while the provider 

points out that an error of 15 % can be expected for the used probe. Further discussion on the probe/bubble 

interaction and the effect upon the air fraction measurement accuracy can be found in Vejražka et al. (2010). 

Errors are globally comparable for the monofibre and the bi-probe techniques, but these techniques are not 

equally sensitive to the flow regime. For finely dispersed flows, monofibre optical probes are better suited while 

double tip probes seem better adapted whenever large gas inclusions are present (Cartellier 1998). This makes a 

challenge for monofibre probes to measure in highly turbulent aerated spillway flows. Also, their actual 

response is sensitive to small geometrical defects occurring at their tips as pointed out by Cartellier and Barrau 

(1998a, b). This fact underlines the benefit of using more complex techniques than the rise time/velocity 

correlation provided by Eq. 1. 

 

In order to obtain an accurate estimation of 𝑡𝑟, the sampling rate has been set to 1 MHz, being around 50 times 

larger than the minimum recommended sampling rate for dual tip probes for similar types of flows, where only 

small discrepancies can be observed in the turbulence estimations at a higher sampling frequency of 20 to 40 

KHz (Felder and Chanson 2015). The sampling duration is recommended to be over 45 s, however in the study 

of Felder and Chanson (2015) only small differences can be observed over 20 s for similar flows. André et al. 

(2005) investigated the effects of sampling duration upon the interfacial velocity and the cross-correlation 

coefficient and suggested a sampling duration of more than 30 s. Consequently, the sampling duration has been 

set to 30 seconds, yielding over 30 million data points per recorded signal and nearly 20,000 million data points 

considering the entire set of recorded signals. 

3. SIGNAL ANALYSIS 

As described above, 646 million raw signals have been recorded, obtaining 30 million data points at each 

location to be later analyzed and used to train and test the artificial neural network employed in this study. Each 

signal displays a signature every time that a bubble impacts the monofibre probe tip (see Fig. 3 for an exemplary 

bubble event), which may provide a large amount of information. 

 

Figure 3. Exemplary signal of a bubble-tip impact extracted from the phase function recorded by the single tip 

probe, main features and ANN input definition (variables marked in green). 



 

High frequency small amplitude oscillations can be observed in the data files which may affect the analysis of 

the phase indicator function. To remove these small oscillations, a central moving average filter with a moving 

window of 10 time steps (at a time resolution of 1 MHz produces a 1 𝜇𝑠 signal delay) has been applied. By 

removing sampled frequencies above a certain cutoff frequency, the moving average creates a smoothing effect 

which has shown to remove effectively the noise. Further information on application of similar and more 

complex filtering techniques to air-water measurements can be found in the study of Bung and Valero (2015). 

 

In order to make the signal independent from the used voltage range, water and air levels defined with the 

providers’ software, all the signals have been scaled to be comprised between 0 and 100 %; thus a normalized 

voltage (𝑉∗) results, but an air-water voltage range over 5 Volts was always ensured in the original recordings. 

Every recording included thousands of events (i.e. phase changes from water to air or bubble/droplet impacts). 

To make the ANN independent of the number of events and the bubble size, a median signature (or median 

phase indicator function) has been extracted from each recording. Different parameters defining this median 

phase indicator function have been selected, which may be separated in (a) rising time parameters and (b) phase 

indicator shape parameters. As defined in Fig. 3, rising time related variables are: 

 

 𝑡10−25, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the 25 % value 

(𝑡25) and the time it reached the 10 % value (𝑡10). 

 𝑡25−50, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the 50 % value 

(𝑡50) and the time it reached the 25 % value (𝑡25). 

 𝑡50−75, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the 75 % value 

(𝑡75) and the time it reached the 50 % value (𝑡50). 

 𝑡75−𝑚𝑎𝑥, which is the difference between the time the dimensionless voltage 𝑉∗ reaches the maximum 

value (𝑉∗
𝑚𝑎𝑥) at the time 𝑡𝑚𝑎𝑥 and the time it reached the 75 % value (𝑡75). 

 

The phase indicators shape variables (also defined in Fig. 3) are: 

 

 𝑉∗
𝑚𝑎𝑥  is the dimensionless maximum value reached by the signature at each event, close to 100 %. 

 𝑉∗
1, 𝑉∗

2, 𝑉∗
3 and 𝑉∗

4 split the signal from 𝑡𝑚𝑎𝑥 to 𝑡𝑒𝑛𝑑 (where the signal crosses the 10% value again) 

in five equal portions. 

 𝑉∗
1𝑚 and 𝑉∗

2𝑚 are the normalized voltages measurements between 𝑉∗
𝑚𝑎𝑥  and 𝑉∗

1, 𝑉∗
1 and 𝑉∗

2 

respectively. These extra voltages where selected to better describe the exponentially decreasing tail 

which can be usually observed after the 𝑉∗
𝑚𝑎𝑥  takes place. 

 

All these time and phase parameters have been chosen arbitrarily based on a better representation of the overall 

phase function. 

4. ARTIFICIAL NEURAL NETWORK FOR INTERFACIAL VELOCITY 

ESTIMATION 

4.1. Introduction 

Artificial Neural Networks (ANN), one of the earliest techniques of Artificial Intelligence, have become a 

powerful tool for prediction and forecasting of water resources, being a large number of studies published 

recently addressing mainly hydrological (Maier et al. 2010) and sediment problems. However, when it comes to 

hydraulic instrumentation prediction improvement, only a few attempts are documented. Carosone et al. (1995) 

and Chen et al. (1998) employed neural networks altogether with Particle Tracking Velocimetry (PTV) and 

Particle Image Velocimetry (PIV) techniques. Recently, Bung and Valero (2016a) and Bung and Valero (2016b) 

have applied Artificial Intelligence techniques obtaining, at least, as accurate velocity fields as classical cross-

correlation based techniques for bubbly and swirling flows. 

 

All ANN models take the form: 

 

𝑌 = 𝑓(𝑋, 𝑊) +  𝜀 (2) 

 

Where 𝑌 is the vector of model outputs, 𝑋 is the vector of model input, 𝑊 the vector of model parameters (or 

connection weights), 𝑓(·) is a functional relationship between model outputs, inputs and parameters; and 𝜀 is the 



 

vector of model errors. The functional relationship depends strongly on the ANN architecture (e.g.: the number 

of hidden layers and number of neurons). In this study, the model output is a single scalar (velocity, 𝑣), the 

vector of model input is discussed in Section 4.2 on the basis of the event-driven description of the recorded 

signal; the number of neurons is discussed in Section 4.3 and the vector of model errors is the result of the ANN 

training, discussed in Section 4.4. All the described operations have been carried out by using Python 2.7, 

altogether with PyBrain 0.3 for the ANN setup (Schaul et al. 2010) and Matplotlib 1.5 (Hunter 2007) for 

scientific plotting. 

4.2. Input selection 

One of the most important steps in the ANN model development process is the determination of an appropriate 

set of inputs (𝑋). However, this task is generally given little attention in ANN modelling and most inputs are 

determined on an ad-hoc basis or using a priori system knowledge (Maier et al. 2010). 

 

 

Figure 4. Correlation matrix for the signal descriptors marked in Fig. 3. 

 

 

All the variables marked in Fig. 3 are obtained for each event of the 646 measurements. This yields thousands of 

values for each measurement. In order to get only one value per signal, the median value is computed. Temporal 

variables are inverted (𝑡−1) which physically represents a velocity – instead of a time – and the shape 

parameters are selected based on the observed fact that the bubble impacting the tip produces a characteristic 

signature (Cartellier 1998, Cartellier and Barrau 1998a, b). In order to make the shape parameters independent 

from the event duration (and consequently from the bubble size), they have been selected by splitting the plateau 

of each event in equal parts. For the temporal variables, a logarithmic distribution has been noticed. 

Consequently, logarithm of 𝑡−1 is used to obtain a more homogeneous distribution. 

 



 

Given a fixed number of training samples, the addition of redundant model inputs increases the ratio of the 

number of connection weights to the number of training samples, thus increasing the likelihood of overfitting, 

while not providing any additional information to the model. Secondly, the inclusion of redundant model inputs 

introduces additional local minima in the error surface in weight space (Maier et al. 2010). To detect redundancy 

between the described variables, correlation among them has been computed (see Fig. 4). 

 

A strong correlation between the shape variables has been observed in the tail of the signal while 𝑉∗
𝑚𝑎𝑥, 𝑉∗

1𝑚 

and 𝑉∗
4 were less correlated. Thus, the other shape variables have been disregarded. Within the temporal 

variables, only 𝑡10−25 were found to be correlated to 𝑡25−50. Given that 𝑡10−25 is more correlated to the 

remaining parameters than 𝑡25−50, the former one has been neglected. Consequently, selected variables for the 

ANN input vector (marked in green in the Fig. 3) are the following: 

 

𝑋 = [log(𝑡25−50
−1) , log(𝑡50−75

−1) , log(𝑡75−𝑚𝑎𝑥
−1) , 𝑉∗

𝑚𝑎𝑥 , 𝑉∗
1𝑚, 𝑉∗

4] (3) 

 

Every element of the vector of model inputs is normalized between 1 and 1; which makes the training faster. 

4.3. ANN architecture 

The ANN of this study is a feedforward network with six input neurons and one output neuron and full 

connectivity (see Fig. 5). The dimensions of the input and output layers are directly determined by the selected 

inputs (Eq. 3) and the choice of the desired output or target (herein the interfacial velocity). However, 

dimensions of the hidden layer and the number of layers have undergone an iterative process. While one hidden 

layer can identify simple patterns, two can guarantee recognition of more complex patterns. Usually, it is not 

recommended to go over three hidden layers. In this study, two hidden layers have been selected. Different 

types of transfer functions between neurons have been examined, obtaining the best results for linear (input 

layer), sigmoid (hidden layer 1 and 2) and linear (output layer). Other types of transfer functions are available in 

PyBrain (Schaul et al. 2010) and in the literature (Rojas 2013). 

 

 

Figure 5. ANN architecture: feedforward network with full connectivity, 6 input neurons, 2 hidden layers and 1 

output layer. 

4.4. ANN training and testing 

As ANNs are prone to overfitting the calibration data, cross-validation is generally used, as part of which the 

calibration data are divided into training and testing subsets (Maier et al. 2010). The available dataset (646 

samples) has been divided in training and testing subsets with a proportion of 70 % and 30 % respectively (452 

and 194 samples respectively). The training algorithm adjusts the parameters reducing the mean squared error 

(MSE, as defined by Bennett et al. 2013) for the training subset while tracking the effect upon the testing subset. 

When the error in the testing subset stops decreasing the training is stopped (see Fig. 6). The iterations are 

commonly called epochs. 



 

 

Figure 6. Training with cross validation for the ANN model. Mean squared error (MSE, as defined by Bennett et 

al. 2013). 

 

The employed training algorithm is RProp- of Igel and Hüsken (2003) with all training samples with the same 

weight. Classic backpropagation algorithm has been also used resulting usually in a worst training. 

5. RESULTS 

Alternatively to the MSRE computed in the training process, the correlation coefficient (𝑟) as defined by Bennet 

et al. (2013) has been computed to assess both Eq. 1 and ANN performance; which is commonly used for model 

evaluation. In Fig. 7, 𝑟 values are shown for ANN training and testing datasets for a total number of 2541 

trainings (21 per combination). It is clearly observed that all shown combinations provide a 𝑟 value over 70 % 

for both training and testing datasets for all of the studied number of neurons in the hidden layers; and a 

maximum value of 88.9 % and 81.9 % respectively. 

 

In Fig. 7 it can be also observed that higher number of neurons in the hidden layers improves the accuracy for 

the training datasets while it suddenly stabilizes for the testing dataset. As the number of samples does not 

increase, a smaller number of neurons for the same accuracy level might be desirable. Consequently, a 

combination of five neurons in the hidden layer one with five neurons in the hidden layer two has been selected 

to show the ANN results (see Fig. 8). In order to illustrate utility of the present ANN, results from Eq. 1 are also 

shown in Fig. 8. 

 

 

Figure 7. Best correlation coefficient for training (left), testing (center) and all dataset (right) after 21 trainings 

until convergence and different neurons number in the hidden layers. 

 



 

 

Figure 8. Dual tip conductivity probe (CP) measurements of Bung (2011) and predicted interfacial velocity of 

the quasilinear Eq. 1 (left) and the ANN (right). 

 

 

Figure 9. Interfacial velocities histograms for the cross-correlation based velocity of Bung (2011) and the ANN 

approach presented herein. 

6. CONCLUSIONS 

In this study, a large number of measurements with a single tip optical fibre probe have been performed in a 

1V:2H stepped spillway. Measurements have been conducted every 2 mm at different steps, obtaining different 

velocities at regions of different aeration. After a correlation analysis (see Fig. 4), some irrelevant parameters 

have been discarded, finally selecting three temporal parameters and three phase function shape parameters as 

input for a feedforward ANN. Choice of these initially proposed parameters is based on previous studies 

observations, which showed that rising times are related to the interfacial velocities and that signature shape 

may depend on small geometrical defects occurring at the probes tips (Cartellier and Barrau 1998a, b). 

 

When using an ANN approach, non-linear model flexibility allows reproducing complex patterns and detection 

of important relations which could remain unseen otherwise. The proposed ANN counts on two hidden layers 

and one output (the interfacial velocity). The number of neurons in the hidden layers has been the result of an 

iterative process, as shown in Fig. 7, where training performance has been studied accounting also for the 

dimension of the network thus avoiding over fitting. 

 



 

In this study, improvement of the predictions has shown to be significant when compared to the initial proposed 

model. Accuracy enhancement of ANN model over the quasilinear approach (Eq. 1) can be observed in Figs. 8 

and 9. Majority of ANN predictions fall within the +/− 10 error, showing higher difficulty to reproduce extreme 

values. 
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