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Abstract

Traditionally, environmental decision analysis in subsurface contamination scenarios is

performed using cost–benefit analysis. In this paper, we discuss some of the limitations

associated with cost–benefit analysis, especially its definition of risk, its definition of cost

of risk, and its poor ability to communicate risk-related information. This paper presents an

integrated approach for management of contaminated ground water resources using health

risk assessment and economic analysis through a multi-criteria decision analysis

framework. The methodology introduces several important concepts and definitions in

decision analysis related to subsurface contamination. These are the trade-off between

population risk and individual risk, the trade-off between the residual risk and the cost of

risk reduction, and cost-effectiveness as a justification for remediation. The proposed

decision analysis framework integrates probabilistic health risk assessment into a

comprehensive, yet simple, cost-based multi-criteria decision analysis framework. The

methodology focuses on developing decision criteria that provide insight into the common

questions of the decision-maker that involve a number of remedial alternatives. The paper

then explores three potential approaches for alternative ranking, a structured explicit

decision analysis, a heuristic approach of importance of the order of criteria, and a fuzzy

logic approach based on fuzzy dominance and similarity analysis. Using formal alternative

ranking procedures, the methodology seeks to present a structured decision analysis

framework that can be applied consistently across many different and complex remediation

settings. A simple numerical example is presented to demonstrate the proposed

methodology. The results showed the importance of using an integrated approach for
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decision-making considering both costs and risks. Future work should focus on the

application of the methodology to a variety of complex field conditions to better evaluate

the proposed methodology.
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1. Introduction

Contamination of ground water resources has been one of the major en-

vironmental concerns during the past few decades due to concerns on public

health. Management of contaminated ground water resources has been a difficult

challenge because of the limited resources that can be committed to remediate a

large number of contaminated sites (National Research Council, 1994). In order

to rationalize the allocation of these limited resources, health risk assessment was

adopted as a management framework to screen and prioritize remediation of

contaminated sites. Risk-based management of contaminated sites consists of two

stages, risk assessment and decision analysis. Risk assessment includes quanti-

fication of the risk to human health, and the evaluation of the significance of this

risk. When the risk is determined unacceptable, potential remedial alternatives

are identified, and decision analysis is performed to choose the best corrective

action.

Typical environmental decision analysis is performed using a cost benefit

analysis framework. The comparison of different decision alternatives is measured

by an economic index such as the total revenue, benefit/cost ratio, or rate of return.

The best alternative is decided following a decision criterion such as the

maximum, maximin, minimax regret, or robustness criteria. A common approach

for a decision analysis problem is to maximize the total revenue objective function

that incorporates the net present value of a stream of benefits and costs. The

objective function may include uncertainty by incorporating the expected cost of

failure. The uncertainty of each alternative can thus be included in the objective

function using the risk of failure. This formulation of the risk–cost–benefit (RCB)

objective function is widely used because of its simplicity, flexibility, capability of

treating uncertainties, and above all due to the ease of interpreting the results in

monetary terms (Massmann and Freeze, 1987a,b; Freeze et al., 1990; Massmann

et al., 1991).

The risk in the RCB analysis, which is typically the probability of failure,

should not be confused with the health risk, which is the probability of harm to

human health. The definition of failure, through which the risk or failure

probability is calculated, is based on the probability of exceeding the drinking

water standard defined as the maximum contaminant level (MCL) of the

contaminant of concern in ground water. In order to incorporate information from
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the health risk assessment into the RCB framework, risk-based cleanup levels are

used instead of the MCL to define the failure probability. However, risk-based

cleanup levels are estimated through back-calculation using the risk quantification

model. Back-calculation of cleanup levels requires the use of point estimates in the

risk calculations, which are often conservative estimates with unknown uncer-

tainties (Finley and Paustenbach, 1993). Probabilistic risk assessment, which

explicitly accounts for uncertainty and variability, is not carried out in the back-

calculation mode because of the need to forwardly propagate the uncertainties (US

EPA, 1999). Hence, crucial information on variability and uncertainty of risk

estimates is not typically used in the RCB analysis.

Another shortcoming of the RCB analysis is the improper representation of

the cost of failure, which accommodates the uncertainty. The failure cost term

can never be guaranteed to be inclusive nor precise due to the nature of post-

failure consequences that are inherently difficult to predict. Litigation costs,

regulatory penalties, loss of opportunity or investment, and damage to public

relations are difficult to quantify or predict. The magnitude of the failure cost

affects directly the alternative that is chosen. Decisions made using a RCB

analysis are regularly subject to high sensitivity of result to the failure cost

(Wang and McTernan, 2002; Russell and Rabideau, 2000; Waldis et al., 1999;

Rosen and LeGrand, 1997).

Public interest in health and environmental impacts of pollution has grown

considerably in recent years due to improved public education. This interest has

made it vital to include the public in the decision-making process. However,

communication of risk information is inherently difficult due to the complexity of

the technical information. Typically, a RCB analysis provides information on the

current and future scenarios in monetary terms, which is easy to understand.

However, it conceals the degree of uncertainty in the outcome, and does not

provide important information about the actual risk, the significance of the risk,

and the confidence of its estimates.

A recent study by Khadam and Kaluarachchi (2003) provided a detailed

discussion on the limitations of the existing risk-based management of contam-

inated sites and provided evidence for the need to improve the current approach

using the knowledge gathered from other fields such as dam safety management

and the utility industry. The underlying motivation for this paper is to extend these

ideas to attempt to establish an improved quantitative framework, in the context of

environmental pollution and restoration, to address the trade-off between the

acceptable health risk and the cost of risk reduction. Ideally, any health risk should

be eliminated, but this desire is not practical due to resource constraints and

sometimes the inherent complexity of the contamination event. Therefore, there

exists a de minimis health risk, beyond which all risks are deemed trivial. This de

minimis risk is often a function of the costs required to reduce a unit of risk, as well

as the seriousness of threat to human health and life. This study is not concerned in

resolving this trade-off due to some of these inherent issues and concerns, but only

motivated by the challenge.
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A rational public policy will consider a management plan only if its benefits

exceed the costs. The benefits are typically difficult to quantify in the same metric

as the costs, which is often in monetary terms, thus, an alternative approach should

be found to compare the benefits and costs. In essence, the theme of this paper is to

address the major issue of comparing the benefits with costs in decision-making at

hazardous waste contaminated sites. In this work, an alternative approach for

cost–benefit decision analysis is proposed and the potential applicability of the

methodology is demonstrated through a numerical experiment involving a

hypothetical field-scale scenario.

The proposed methodology aims at reformulating the decision problem of

ground water remediation in a multi-criteria decision setting rather than the

currently employed RCB analysis framework. We recognized that the trade-off

between the residual risk and the cost of risk reduction should be the focus of the

methodology. We also recognized the need to incorporate the uncertainty and

variability of decision criteria in the methodology to ensure an informed decision-

making process. In order to establish a broad and consistent definition of

acceptable risk, we investigated the relationship between the individual risk and

the population risk and the possible trade-off between these two parameters. The

decision criteria were developed to describe the acceptable risk and cost-effec-

tiveness as a measure of desirability of any given remediation alternative. Finally,

the proposed methodology explores the use of three multi-criteria decision

analysis methods to rank and select between remedial alternatives.
2. Proposed methodology

The proposed methodology integrates probabilistic risk assessment and multi-

criteria decision analysis into a comprehensive framework for subsurface con-

tamination management. The framework consists of two parts; i.e., the risk

analysis and decision analysis as shown in Fig. 1. In a typical cleanup scenario,

a set of remedial alternatives will be developed upon the detection of the

contamination event. These remedial alternatives will be developed using the

data gathered from the ongoing field monitoring and testing. The design of

remedial alternatives is dependent on the available data, chemicals of concern,

extent of contamination, and the exposed population. A risk assessment will then

be conducted using the protocols suggested by the US Environmental Protection

Agency (US EPA) (US EPA, 1989b, 1991) to determine the cancer risk for each

proposed remedial alternative. The information needed for the risk assessment will

be collected from a hydrogeologic model of flow and transport incorporating

spatial variability and a population model incorporating variability of population

characteristics. The information derived from the probabilistic risk assessment is

then incorporated into the multi-criteria decision analysis model. Each remedial

alternative is tested against the decision criteria, and then the alternatives are

ranked to determine the best alternative.



Fig. 1. A flow chart describing the proposed risk-based decision analysis methodology.
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2.1. Health risk assessment

Risk assessment is the process that estimates the likelihood of occurrence of

adverse effects to humans and ecological receptors as a result of exposure to

hazardous chemical, physical, and/or biological agents. Human health risk

assessment is defined as the characterization of the potential adverse health effects

of human exposures to environmental hazards. Risk assessment may be performed

in short-term (acute) exposures or long-term (chronic) exposures, or a combina-

tion of these exposures. Risk assessment is composed of four steps; hazard

identification, exposure assessment, toxicity assessment, and risk characterization

(Asante-Duah, 1993; US EPA, 1989b).

The US EPA (1989a) proposed a linear relationship between the exposure and

risk for both chronic (carcinogenic) and acute (non-carcinogenic) exposures. The
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equation used to predict the human lifetime excess cancer risk for a single-stage

carcinogenic effect from exposure to organic contaminants is based on the Poisson

model for individual cancer occurrence, with probability of at least one cancer

occurrence of interest (Maxwell et al., 1998). The cancer risk, R, is given as
R ¼ 1� exp½�DE� SF� ð1Þ

SF is the slope factor of the carcinogenic contaminant (kg day/mg) and DE
where

is the average daily exposure of the carcinogenic chemical (mg/kg day).

Eq. (1) approaches a linear relationship for small values of risk (risk < 0.01),

and therefore can be written as
R ¼ DE� SF ð2Þ
The slope factor represents the cancer developing potency. The average daily

exposure of a carcinogenic chemical is approximated as the average concentration

of the chemical of concern multiplied by the daily intake of contaminated media,

e.g., water. The typical exposure pathways of cancer risk at an off-site receptor are

due to ingestion of water, inhalation of volatiles, and dermal contact due to the use

of water (US EPA, 1989a,b). The risk from each of these exposure pathways can

be summarized as follows:

Risk due to ingestion of water (Rg)
Rg ¼
SFg � C � Ig � EF� ED

WB� AT� 365
ð3Þ
Risk due to inhalation of volatiles (Rh)
Rh ¼
SFh � C � Ih � K � EF� ED

WB� AT� 365
ð4Þ
Risk due to dermal contact (Rd)
Rd ¼
SFd � C � Sa� Pc� Kv � ET� EF� ED

WB� AT� 365
ð5Þ
where C is the concentration of the chemical of concern in water at the receptor

(mg/l); SFg, SFh, and SFd are the slope factors of the chemical (kg day/mg) due to

ingestion, inhalation, and dermal contact, respectively; Ig is the daily water

ingestion rate (l/day); Ih is the daily indoor inhalation rate (m3/day); K is the

volatilization factor of the contaminant (l/m3); Pc is the skin permeability

constant (cm/h); Sa is the exposed skin surface area (cm2); ET is the shower

duration (h/day); EF is the exposure frequency (days/y); ED is the exposure

duration (year); WB is the body weight (kg); AT is the average lifetime (year);
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and Kv is the volumetric conversion factor (10 � 3 cm3/l). The total cancer risk, R,

is the sum of risks from all individual pathways given as
R ¼ Rg þ Rh þ Rd ð6Þ
2.2. Probabilistic risk assessment

Many sources of uncertainty surrounding the existing risk assessment meth-

odology are due to the incomplete exposure assessments, limited and questionable

monitoring information, limitations of dose–response assessments, and/or the

absence of complete toxicology profiles of some chemicals. The slope factor and

the daily dose of chemical intake contribute to the uncertainty in the final risk

value given in Eq. (1). The uncertainty in the slope factor is inherently high due to

the extrapolation methods used to derive human cancer potency factors from

laboratory test results on animals. Unfortunately, it is difficult to characterize such

uncertainty in the slope factor. The average daily intake of a chemical typically

shows considerable variability and uncertainty. Sources of the uncertainty and

variability are attributed to the concentration of the chemical and the population

characteristics. The uncertainty in the concentration is due to the high uncertainty

generally associated with the hydrogeologic parameters of the subsurface. The

variability of the population characteristics, for example ingestion rate, is

associated with a large variability in physical and behavioral characteristics of

individuals in any population (Zhao and Kaluarachchi, 2002). A population model

can account for the variability of population characteristics by means of age-

independent statistical distributions of some important characteristics, e.g., inha-

lation rate, ingestion rate, and body surface skin (McKone and Bogen, 1991).

Probabilistic risk assessment incorporates the variability and uncertainty of the

risk parameters in the risk estimate. The input parameters are described through

probability distributions, and the solution provides the statistical distribution of

the risk estimate. The risk model used here is given as (Bogen and Spear, 1987):
R ¼ ProbðU ;V Þ ð7Þ

U={u1, u2, . . ..un} is a vector of n uncertain parameters, and V={v1, v2,
where

. . ..vm} is a vector of m variable parameters. In the context of human health risk,

U and V are defined as: U={C} and V={Ig, Ih, Sa, ET, EF, ED, WB, AT}. The

vectors U and V are represented through statistically independent probability

distribution functions, and the output provides the statistical distribution of the

risk. In this work, we propose to use the Monte Carlo method to compute the risk

due to the joint uncertainty and variability of the input parameters.

The modified two-stage simulation using the Monte Carlo method (Cohen et

al., 1996) has an ‘‘inner loop’’ which accounts for the variability, and an ‘‘outer

loop’’ that accounts for uncertainty (see Fig. 2). The computational effort can be

reduced substantially, especially in handling large amounts of data by storing only



Fig. 2. A flow chart describing the modified two-stage Monte Carlo simulation.
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the summary statistics such as the 50th and 95th percentiles of the results of the

inner loop.

2.3. Hydrogeologic analysis

Ground water flow is described using the Darcy’s law and the mass conser-

vation equation. The governing equation, describing transient ground water flow

in a two-dimensional flow domain, is given as
@

@x
KxB

@h

@x

� �
þ @

@y
KyB

@h

@y

� �
¼ s

@h

@t
þW ð8Þ

x and y are spatial coordinates; t is time; Ki is the hydraulic conductivity
where

(L/T) where i= x or y; h is the hydraulic head (L); B is the aquifer thickness (L); s

is the storage coefficient (L0); and W is the sink or source term (L/T). The pore

water velocity, vx (L/T) along the x-direction, is estimated from Darcy’s law as
vx ¼ � Kx

n

dh

dx
ð9Þ

n is the effective porosity. Note vy can be computed in a similar manner to
where

Eq. (9).
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The transport of a reactive organic contaminant in ground water can be

described by the advection–dispersion–reaction equation with the inclusion of

a reaction term to account for biodegradation. The two-dimensional form of the

equation is given as
R*
@C

@t
¼ DL

@2C

@x2
þ DT

@2C

@y2
� vx

@C

@x
� vy

@C

@y
� COW

nb
þ �m ð10Þ

C is the water phase concentration of the contaminant (M/L3); (COW)/(nb)
where

is the source or sink term (M/L3-T); �m is the rate of removal or addition of

contaminant (M/L3-T); R* is the retardation coefficient (L0); and DL and DT are

longitudinal and transverse dispersion coefficients, respectively. The dispersion

coefficients can be estimated from
DL ¼ D*þ vxaL; and DT ¼ D*þ vyaT ð11Þ

D* is the effective diffusion coefficient (L2/T), and ax and ay are
where

longitudinal and transverse dispersivities, respectively. Longitudinal dispersivity

can be estimated from (Xu and Eckstein, 1995):
ax ¼ 0:83ðlogxÞ2:414 ð12Þ

x is the length of a typical flow path for the specific problem. The
where

longitudinal to transverse dispersivity ratio ((ax)/(ay)) is generally within the

range of 6–20 (Fetter, 1999). The retardation coefficient due to linear adsorption is

calculated as
R* ¼ 1þ rb
Kd

n
ð13Þ

rb is the bulk density of the soil (M/L3); and Kd is the distribution coefficient
where

of the contaminant which is soil-dependent (L3/M).

2.3.1. Biodegradation

Organic contaminants dissolved in ground water typically undergo intrinsic

biodegradation, also known as natural attenuation, subject to the availability of

one or more electron acceptors, nutrients such as N and P, and favorable

environmental conditions such as pH, microbial population, and non-toxic

conditions. Common aromatic hydrocarbon species, such as benzene or toluene,

can be easily biodegraded under aerobic conditions followed by other electron

acceptors under anaerobic conditions. Aerobic biodegradation is typically fast but

accounts for less than 15% to 20% of the long-term biodegradation under natural

conditions (Newell et al., 1995). The reason for this small attenuation is the limited

supply of oxygen to the contaminated zone by natural ground water flow, which

typically contains less than 6 mg/l of dissolved oxygen. However, when enhanced

biodegradation is promoted through the injection of oxygen to the contaminated
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zone via ground water, the rate of biodegradation can accelerate substantially.

Anaerobic biodegradation is also possible in the presence of electron acceptors

such as nitrate, iron, and sulfates. However, it is a slow process, but the long-term

biodegradation potential is higher than with oxygen alone as the electron acceptor

(Newell et al., 1995).

In this paper, we propose to consider remedial alternatives requiring both

natural and enhanced biodegradation. There are many biodegradation reaction

models present in the literature that includes models using complex Monod-type

reaction kinetics (Bordon et al., 1986; Semprini and McCarty, 1991; Clement et

al., 1998) to simple instantaneous reaction models (Rifai et al., 1988). The use of a

given model is dependent on the availability of site-specific data to model the

appropriate reaction kinetics. Although Monod-type reaction models are broad,

flexible, and accurate, these models also require substantial data, especially data

that depends on aqueous phase chemistry and microbiology. Due to the large

variability of soil biota and the uncertainty in accurately measuring or estimating

such parameters, the use of complex Monod-type models may not be appropriate

for many sites. On the other hand, simple instantaneous reaction models have been

successfully used in many field sites (Rifai et al., 1988).

The purpose of this work is to demonstrate the need for health risk-based

decision analysis for aquifer remediation and to introduce a candidate framework

for such a decision analysis. In keeping with this focus while not being too specific

in the hydrogeologic modeling, we propose to use the instantaneous reaction

model to describe both intrinsic and enhanced biodegradation. The proposed

framework is independent of the biodegradation model, and future work may

include sophisticated models that require more data.

The instantaneous reaction model of biodegradation can be simply demon-

strated as follows:
DC ¼ � O

F
ð14Þ

DC is the change in the organic contaminant concentration (M/L3); O is the
where

oxygen or the electron acceptor concentration (M/L3); and F is the stochiometric

ratio (L0) between the electron acceptor and the contaminant. When the oxygen

concentration in ground water is small compared to the demand exerted by the

organic contaminant, then the oxygen is depleted from the system causing

oxygen-limited biodegradation. This is the common scenario with natural

attenuation and thereafter, long-term anaerobic degradation can help reduce the

dissolved phase plume unless aerobic degradation is promoted through the

injection of oxygen to the contaminated area.

In this study, the ground water flow model, MODFLOW (McDonald and

Harbaugh, 1988; Harbaugh and McDonald, 1996), is used. The fate and transport

model that includes instantaneous biodegradation, RT3D, is used in this work

(Clement et al., 1998). RT3D has the advantage of simulating instantaneous

biodegradation of fuel hydrocarbons under both aerobic and anaerobic conditions.



2.3.2. Spatial variability

Hydraulic conductivity is the most important spatially variable hydrogeologic

property in a heterogeneous aquifer. Hydraulic conductivity is considered a

spatially correlated random field, and there are many models available to describe

this random stochastic field using a lognormal distribution (Gelhar, 1993; Dagan,

1979). The spatial variability of hydraulic conductivity can be represented as a

statistically stationary, two-dimensional random field. The natural logarithm of

hydraulic conductivity is assumed to be second-order stationary with an expo-

nential semi-variogram, g, given as (Gelhar, 1993),
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gðzÞ ¼ s2 1� exp � d
l

� �� �
and s2 ¼ Var½lnðKÞ� ð15Þ

l is the correlation length (L); s2 is the variance of lnK; and d is the
where

distance.

The semi-variogram of hydraulic conductivity is used to generate multiple

realizations of the random hydraulic conductivity field. The turning band method

of Thompson et al. (1989) was used in this work to generate the random fields of

hydraulic conductivity through unconditional simulations.

The simulation of flow and transport using a large number of random fields can

be time-consuming. In order to reduce this effort, the minimum number of

simulations needed to achieve statistical convergence was estimated prior to the

simulation using the approach described by Lahkim and Garcia (1999). In this

approach, the cumulative mean and variance at each node were evaluated and

assessed for convergence based on the number of random fields included in the

simulation.

2.4. Decision analysis

2.4.1. Decision criteria

Decision-making to select the best remedial alternative requires the identifica-

tion of the decision objective, which is crucial to the outcome. The immediate

objectives of a decision-maker, faced with a subsurface contamination situation,

typically include (a) reducing the cancer risk to the exposed population to the

extent feasible; (b) minimizing legal liability by complying with the acceptable

risk established by the regulators; and (c) minimizing the cost of the corrective

measures. This set of objectives is not inclusive and may include a variety of other

objectives based on the breadth of the decision field, and the interests and attitudes

of the decision-maker. The abovementioned decision objectives, however, are

sufficient to describe the desire of many decision-makers involved in a contam-

ination issue.

The proposed methodology introduces five decision criteria that measure the

desirability of each remedial alternative in accordance with the decision objec-

tives. These decision criteria are (a) maximum individual risk, (b) expected
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individual risk, (c) population risk, (d) risk index, and (e) cost per cancer case

avoided or cost per life saved. These criteria describe the basic features of each

alternative in terms of performance, compliance with environmental regulations,

and cost-effectiveness. The decision analysis framework described next will use

these decision criteria in the decision-making process.

The joint uncertainty–variability risk analysis generates a three-dimensional

risk surface, R,
R ¼ f ðu; vÞ

u is degree of uncertainty, and v is degree of variability. The 3-D risk
where

surface can be reduced to a two-dimensional risk profile describing the

uncertainty at a given variability, or to a profile describing population variability

at a given uncertainty. A risk profile resulting from a cut parallel to the variability

axis, R(v = a,u), provides information about the uncertainty of risk estimate for a

given population variability. Similarly, a risk profile resulting from a cut parallel

to the uncertainty axis, R(u = b,v), indicates the variation of risk with population

variability for a given hydrogeologic uncertainty.

Maximum individual risk (MIR) measures the lifetime risk at an upper limit of

the uncertainty and variability; hence, MIR gives a conservative estimate of any

individual developing cancer. In other words, the maximum individual risk is the

risk posed on the maximum exposed individual in the population. This definition

of individual risk is such that it satisfies the regulatory requirement to consider

the risk at a high percentile (US EPA, 1999). The MIR here will be defined as the

risk estimated at the 95th percentile of variability and 95th percentile of uncer-

tainty, or
MIR ¼ Rðv ¼ 0:95; u ¼ 0:95Þ ð16Þ
The use of the 95th percentile is to avoid the effect of the extreme points at the

tail of the risk distribution.

Expected individual risk (EIR) is an expression of the average maximum risk.

In contrast to the MIR, EIR estimates the average risk posed on the maximum

exposed individual in the population. EIR is calculated as the average of the risk

profile at the 95th percentile of the population variability:
EIR ¼
Z 1

0

Rðv ¼ 0:95; uÞdu ð17Þ
Population risk (PR) is the number of expected cancer cases in the exposed

population per year. PR is estimated by averaging the risk profile using the

formulation of Zhao and Kaluarachchi (2002),
PR ¼ N

ED

Z 1

0

Rðv; u ¼ 0:95Þdv ð18Þ
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N is the size of the exposed population, and ED is the exposure duration
where

(years).

Risk index (RI) describes the trade-off between the individual and population

risks. Travis and Richter (1987), through the review of cancer risk data used to

support regulatory decisions concerning carcinogenic substances, found that the

key to understanding regulatory practices is in the relationship between the

individual lifetime risk and the population risk. The analysis of data from several

regulatory agencies suggests that for small population risks (fewer than 0.1 cancer

deaths per year in the exposed population), regulatory action is seldom taken on an

individual lifetime risk less than about 10� 4. As the population risk approaches

250 cancer deaths per year (which could occur only in a population similar to the

US), the tolerable individual risk decreases to 10� 6. The formulation of these

findings is presented in Fig. 3. The upper left side of the graph corresponds to a

high individual risk experienced in a small group of people, e.g., risk in the

workplace. The lower right side corresponds to the individual risk experienced in a

large population, e.g., risk in large metropolitan centers. The relationship between

the individual and population risks can be described using the following

relationship:
RI ¼ �log10ðPR�MIRÞ ð19Þ
Eq. (19) indicates that an acceptable risk can be described with a RI of 5 (see

Fig. 3).
Fig. 3. Definition of acceptable risk using the risk index.
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Cost per-life saved is a measure of the cost-effectiveness of a remedial

alternative. CPLS is expressed as the cost per cancer case avoided or saved.

CPLS is defined as follows,
CPLS ¼ Costi � Cost0

ðPR0 � PRiÞ � ED
ð20Þ

(0) refers to the basecase scenario which is the no-action scenario and (i)
where

refers to the ith alternative. Cost is the present discounted cost of the remedial

alternative defined as
Cost ¼
Xt

t¼1

1

ð1þ rÞt
½Capital Costþ Operation Cost� ð21Þ

r is the discount rate and t is the time horizon of the remedial alternative.
where

2.4.2. Methodology

The choice of an alternative from a set of alternatives is inherently difficult if no

one option is dominant for the given decision criteria. The dominance is

established if an alternative is the best or worst considering all the decision

criteria. The challenge of a decision-making process is to identify the best

alternative when none of the alternatives are dominating. In such circumstances,

there is a necessity to have a scientific, reliable, and consistent framework to

identify the best alternative given the decision criteria. The purpose of this

proposed decision analysis framework is to identify the best alternative in the

presence of a set of non-dominant alternatives. In this work, the general

expectation is that any additional cost should provide additional risk reduction

and better compliance of environmental regulatory requirements. The degree of

desirability of an alternative increases with the increase in the RI and risk

reduction while the desirability decreases with the increase in total cost and

CPLS. Therefore, remedial alternative ranking requires a multi-criteria decision

analysis that provides a reliable tool for non-dominant alternative analysis.

Two approaches for decision analysis will be presented here. The first is an

explicit analysis of the proposed alternatives based on the decision objectives

stated previously. The second approach is an implicit analysis of the alternatives

based on a standard multi-criteria decision analysis tool developed in operations

research. Both approaches use the decision criteria developed in the previous

section to analyze the desirability of each alternative.

2.4.3. Explicit decision analysis

Explicit decision analysis is a two-stage approach that has a filtering stage

followed by a selection stage as shown in Fig. 4. The filtering stage rejects the

alternatives that do not match the decision criteria, and the decision-maker has the

option of re-evaluating these alternatives for modifications. The selection stage

ranks the filtered alternatives in a detailed manner for the final selection.



  

 

 

Fig. 4. A flow chart describing the proposed explicit decision analysis.
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2.4.3.1. Filtering stage. The proposed methodology requires that all alternatives

pass three conditions of the filtering stage given as (a) positive risk reduction, (b)

acceptable risk, and (c) reasonable CPLS. The positive risk reduction condition

requires that each alternative should not lead to an increase in the risk to the

exposed population. In some occasions, the proposed remedial alternative may

cause a reduction of risk to certain segments of the population while increasing

the risk to other segments of the population. In such cases, the accurate prediction

of the overall impact of the remedial alternative is important.

Risk reduction alone is not a sufficient justification for implementing a

remedial alternative; the alternative should also lead to a risk below the acceptable

risk. The acceptable risk is typically not clearly defined and depends on various

other considerations. In order to satisfy the regulatory requirement of acceptable

risk, we will examine the acceptable risk criteria developed in the previous section.

The RI of a proposed alternative should fall within the acceptable risk range as

indicated in Fig. 3. In addition, the maximum and expected individual risk should

fall within the range of the acceptable risk of 10� 4 to 10� 6. These criteria, when

viewed jointly, give a good judgment about the acceptability of the final risk.

The CPLS is a measure of the efficiency of a proposed alternative. A high

CPLS indicates inefficient management of the contamination event. Thus, alter-

natives with low CPLS are more preferable than those with high CPLS while

achieving similar cleanup targets and risk reduction. The decision about how high

or low a certain CPLS is a subjective judgment that relies on the comparability to

CPLS and other expenditures in similar events. In summary, this criterion will

depend on the subjective judgment of the decision-maker and data from the US

EPA in similar events (Khadam and Kaluarachchi, 2003; also see Table 1).



Table 1

Values of CPLS established by US EPA in various environmental regulations (from US Office of

Management and Budget, Fiscal year 1992)

Regulation CPLS (US$m)

Trihalomethane drinking water standards 0.2

Standards for radionuclide in uranium mines 3.4

Benzene NESHAP (Original: Fugitive Emissions) 3.4

Ethylene dibromide drinking water standard 5.7

Benzene NESHAP (Revised: Coke byproducts) 6.1

Arsenic emission standards for glass plants 13.5

Arsenic/copper NESHAP 23

Hazardous waste listing for petroleum refining sludge 27.6

Cover/move uranium mill tailings (Inactive sites) 31.7

Benzene NESHAP (Revised: Transfer operations) 32.9

Cover/move uranium mill tailings (Active sites) 45

Benzene NESHAP (Revised: Waste operations) 168

Dichloropropane drinking water standard 653

Hazardous waste land disposal ban (1st and 3rd) 4190

Municipal solid waste landfill standards (proposed) 19,107

Trazine/alachlor drinking water standard 92,069

Hazardous waste listing for wood preserving chemicals 5,700,000
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2.4.3.2. Ranking stage. The selection of the best alternative from a set of

alternatives, which satisfies the conditions of the filtering stage, requires the

ranking of the alternatives. To develop a consistent and logical ranking procedure,

a matrix known as the M matrix is proposed. The M matrix is a simple analytical

tool that computes the amount of risk reduction achieved when moving from

alternative i to alternative k, and the corresponding change in the cost. In general,

the difference in the increased cost due to the reduction in risk from alternative i to

alternative j, Costik is given as
Costik ¼
Costi � Costk

ðPRk � PRiÞ � ED
ð22Þ

the terms with i and j refer to the corresponding values of alternatives i and
where

j, respectively. The M matrix is an upper triangular matrix with n� 1 rows and n

columns, where n is the number of alternatives (see Fig. 5). Since the order of the

alternatives in the matrix is crucial in the analysis, the alternatives should be in an

ascending order of their total cost; column i has a lower total cost that column

(i + 1) for the same row. The value of each cell of the upper triangle is the

additional cost that may incur due to the additional safety, Costik. The last column

of theMmatrix holds the best alternative of each row, which corresponds to that of

the column with the lowest entry in any row that is greater than 0.

Once the M matrix is prepared, the frequency of appearance of a given

alternative in the last column across all alternatives provides the highest rank

among all alternatives. This ranking is an expression of the relative preference of



Fig. 5. The M matrix of the explicit decision analysis.
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the proposed alternatives. The ranked alternatives then undergo the final step to

select the best remedial alternative. In this step, other criteria, mainly non-

technical considerations and decision-maker preferences, play an important role

in the decision for the best alternative.

2.4.4. Implicit decision analysis

The first task of this technique is the definition of decision criteria that are

applicable to all alternatives. Unlike the explicit method, the implicit method

does not attempt to study each alternative separately to measure its compliance

with the decision objectives. Instead, the method performs a one-step process to

rank all the alternatives based on the decision criteria. Two mathematical

methods for ranking alternatives are used, and these are the importance order of

criteria (IOC) method and the fuzzy dominance and resemblance (FDR)

method.

2.4.5. Importance order of criteria method

When faced with a set of non-dominant alternatives, a common practice is to

assume an additive utility function by assigning weights to the decision attributes

(Clemen, 1996). The total utility of an alternative is the simple arithmetic sum of

weighted attributes. The different options are then ranked based on their total
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utility. However, the assignment of numerical scores and weights is highly

subjective and reflects the risk-aversion, preferences, and policies of the deci-

sion-maker that may change with time. In order to overcome some of the bias

associated with the weight assignment, Yakowitz et al. (1993) proposed a method

of ranking of alternatives based on the order of importance of decision criteria. The

method calculates the best and the worst total utility for each alternative using the

importance order without requiring the decision-maker to set a prior weight. The

ranking of alternatives is then carried out based on the best and worst utilities. If

the resultant two rankings are not similar, then the final ranking is carried out using

the average utility.

Imposing the importance order implies that the m decision criteria, q1, q2. . .qm,
can be ordered so that the weights satisfy w1	w2	 . . .	wm. The total utility

function, U, of an alternative is given as
subjec

where
U ¼
XXm

i¼1
wiqi ð23Þ

t to the following set of constraints:

w1 	 w2 	 . . . 	 wmPm
i¼1

wi ¼ 1

wi 	 0 ð24Þ
The solution to the maximum and minimum utilities can be expressed in a

closed form (Yakowitz et al., 1993). The best total utility, BU, and the worst total

utility, WU, are given as
BU ¼ maxfskg

WU ¼ minfskg;

sk ¼
1

k

Xm
i¼1

qiðk ¼ 1 . . .mÞ ð25Þ
The solution to the above equation provides the maximum and minimum total

utility possible for any combination of weights that do not violate the given

importance order of the criteria. It should be noted that this closed-form solution

does not solve explicitly for the weights, instead the maximum and minimum

utility values are computed directly. For details about the mathematical derivation

of the solution, refer to Yakowitz et al. (1993).

When the utility of each alternative is calculated, these alternatives can be

ranked based on maximum, minimum, or average utilities. The spread between the
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minimum and maximum utility values expresses the sensitivity of each alternative

to a choice of weights where the higher difference reflects greater sensitivity

(Yakowitz, 1996; Yakowitz et al., 1993).

2.4.6. Fuzzy dominance and resemblance method

Wenger and Rong (1987) used a method based on the fuzzy set theory to rank

alternatives. In this approach, a pair-wise comparison of alternatives is performed,

and this task is called the Level 1 analysis. The second task is called the Level 2

analysis, and it identifies the degree of similarity between alternatives. Level 1 and

2 analyses are based on the fuzzy dominance and fuzzy resemblance relationships

described by Kaufman (1975). Level 1 analysis ranks alternatives, but those with

adjacent positions in the ranking list may or may not be similar. Level 2 analysis

provides insights into the similarity between alternatives.

For a given set of n alternatives and m criteria, there exists a data matrix that

contains the decision matrix, X, with elements xik where i represents the row

containing the remedial alternative, and k represents the column containing the

decision criterion. The data matrix should be set up such that xik>0. The data

matrix X can also be transformed by assigning weights to the decision criteria. A

matrix Y is then set up by normalizing each column in X between 0 and 1. Hence,

for each criterion, the attributes are scaled separately between 0 and 1.

2.4.6.1. Fuzzy dominance analysis. The alternatives can now be ranked based

on the dominance relationships between pairs of alternatives using matrix Y. For

a pair of alternatives i and j, the dominance index, Dk(i,j), is defined as
A new
Dkði; jÞ ¼

1; if ðyik � yjkÞ > 0

0; if ðyik � yjkÞ < 0

0:5; if ðyik � yjkÞ ¼ 0

ðk ¼ 1 . . .mÞ

8>>>><
>>>>:

ð26Þ

matrix Z1 is now constructed as

z1ij ¼
Pn
k¼1

Dkði; jÞ; if i 6¼ j

0; if i ¼ j

ði; j ¼ 1 . . .mÞ

8><
>: ð27Þ
The degree of dominance of one alternative over another to achieve remedial

goals and objectives is measured by first calculating the sum of each row. The

alternatives can then be ranked.

2.4.6.2. Fuzzy resemblance analysis. The purpose of this additional layer of

analysis is to identify the degree of similarity among remedial alternatives based
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on the information in the Y matrix. Since two alternatives with adjacent positions

in the ranking list may or may not be similar, Level 2 analysis can be applied to

determine whether the alternatives are truly distinct or essentially slight variations

of the same theme. Wenger and Rong (1987) provide a full discussion of the

theory behind this level of analysis. A matrix Z2 with elements zij
2 is defined as
z2ij ¼ 1� c
Xn
k¼1

yik � yjk

�����
����� ð28Þ

c is a constant chosen so that 0 zij
2 1. The particular value of c is not
where

important, as long as the chosen value satisfies 0 zij
2 1 for all i and j. A power

matrix, ZP, is now constructed to perform the clustering analysis, which is based

on the concept of similarity. ZP is constructed as the product of (Z2�Z2), with the

‘‘�’’ operator indicating a row-column operation similar to that of ordinary matrix

multiplication that can be described by,
z
p
ij ¼ ðzi1* ^ z1j*Þ _ ðzi2* ^ z2j*Þ _ . . . ðzim* ^ zmj* Þ ð29Þ

(a^b =max(a,b), and (a_b) =min(a,b). The ZP power matrix can be used
where

to identify clusters of similar alternatives by defining
ZP ¼ ½zPijðaÞ� and zPij ¼
1; if z

p
ij 	 a

0; if z
p
ij < a

8<
: ð30Þ

zij is the ijth entry of ZP. The variable a provides a ‘‘similarity measure.’’
where

By varying a from 0 to 1, it is possible to determine how clusters are formed and

to identify similar alternatives. A value of a close to 1 indicates that a rigid

measure is being used; therefore, few, if any, alternatives are likely to be clustered

into a single group. On the other hand, a value of a close to 0 is indicative of a lax

measure under which most of the alternatives are likely to be clustered into a

single group (Hope, 1996).
3. Demonstration example

3.1. Problem description

The purpose of this section is to evaluate the applicability of the proposed

decision analysis methodology. In this work, we propose to use a numerical

experiment developed for the purpose of demonstration and has key features

representing field-scale scenarios. Consider a high yielding regional aquifer used

for a municipal water supply that has been recently detected with serious ground

water quality concerns due to a high dissolved organic content. Preliminary field
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investigations concluded that the source of the contamination is a leaking

underground storage tank (LUST) from a nearby gasoline station. A municipal

well is located downgradient of the LUST (see Fig. 6). The municipal well

supplies drinking water to a population of 4000 with 2000 m3 daily. The

contamination history is unknown; the leaking could have started anytime during

the working life of the tank which is 30 years. The major chemical of concern is

benzene, which is present in high concentrations and is known to pose a serious

carcinogenic risk. In a typical field site, detailed field investigations and moni-

toring would be conducted to assess the extent of soil and ground water

contamination and this information is used to determine the future remedial

alternatives. Since this example was developed as a numerical experiment for the

purpose of demonstration, there are no measured or observed data to develop the

current status of the dissolved plume. This difficulty is overcome by recreating the

problem by simulating the historical event of the leakage for a known period of

time. In an actual field site, the field-measured concentration distribution can be

used to develop the dissolved plume and carry out the remaining analysis. The
 

 

Fig. 6. A schematic showing the areal views of the aquifer used in the demonstration example. (a)

Location of the source and the municipal wells. (b) Locations of injection and extraction wells for

different remedial alternatives described in Table 3. Alternative 1 uses E-1. Alternative 2 uses E-1 and

E-2. Alternative 3 uses E-1 and E-3. Alternative 4 uses E-1 and E-2 for extraction and I-1 and I-2 for

injection. Alternative 5 uses E-1 for extraction and I-1, I-3, I-4, I-5, I-6, and I-7 for injection.
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demonstration example described here uses an aromatic hydrocarbon constituent,

benzene, which is a carcinogen. However, the methodology can be easily applied

to sites with dissolved plumes of industrial solvents, such as trichloroethylene

(TCE) or similar carcinogens, through proper representation in the risk assessment

and hydrogeologic analysis.

3.2. Hydrogeologic analysis

The idealized aquifer considered in this study is a sandy gravel confined aquifer

with a uniform thickness of 100 m, length of 4 km, and a width of 2 km. A

background gradient of 0.002 m/m is causing the ambient steady ground water

flow from west to east, while the north and south sides of the aquifer are assumed

no-flow boundaries. The geologic formation of the aquifer has an effective

porosity of 0.2, a bulk density of 1.75 g/cm3, and a soil carbon fraction, foc, of

0.01 similar to the values described by Bedient et al. (1984). The longitudinal

dispersivity, aL, is estimated from Eq. (12) for a flow path of 2000 m and found to

be 15 m. Assuming a dispersivity ratio of 10, the transverse dispersivity, aT, is

about 1.5 m. The retardation factor, R*, of 2.3 was estimated using a partition

coefficient, Koc, of 1.5 for benzene (Fetter, 1999). The instantaneous biodegrada-

tion model considered O2 � , Fe2 + , SO4
2 � , and CO2 as electron acceptors

(Bedient et al., 1984) and further details are given in Table 2. Nitrification was

not considered here because biodegradation of benzene by nitrification is found to

be insignificant (Barker and Wilson, 1997).

The heterogeneous hydraulic conductivity field for the study area is described

by a lognormal distribution with a geometric mean of ln(K) of 2, and a variance of

1. The correlation lengths were 200 m (lh = 200) horizontally and 10 m vertically

(lz = 10), yielding a domain of 20 lh in length, 10lh in width, and 10lz in depth.

This hydraulic conductivity field is similar to the values published in the literature

(Smalley et al., 2000; Lahkim and Garcia, 1999; Maxwell et al., 1999). The above-

described aquifer was not intended to represent a particular site, but to provide a

convenient demonstration of the methodology presented in this paper.

The dissolved ground water plume of benzene was recreated modeling the

LUST as a point source for 20 years under steady flow conditions. The resulting

plume, which is a depth-averaged concentration distribution, is used to represent

the observed plume.
Table 2

Data of electron acceptors used in the simulation

Electron

acceptor

Stoichiometric

ratio

Background

concentration (mg/l)

Concentration in

plume (mg/l)

O2 3.08 3.0 0.5

Fe3 + 21.48 3.5 100

SO4
2� 4.62 10 1

CO2 2.12 0.001 0.1
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3.3. Remedial alternatives

In order to demonstrate the proposed decision analysis methodology, five

remedial alternatives are proposed and the details are given in Table 3. The

alternatives include simple configurations of pump-and-treat (PAT) with inject-

ing wells as shown in Fig. 6. The simplest alternative is the no-action alternative

which allows the plume to be destroyed through natural attenuation. Other

alternatives include different combinations of PAT and two involving enhanced

biodegradation using oxygen injected into the plume. Air stripping is used to

clean the contaminated ground water extracted from the PAT operations. This

simple configuration facilitates the optimization of the well locations using a

trial and correction process without the use of a sophisticated optimization

analysis.

To explore the applicability of the proposed remedial alternatives, the break-

through curve (BTC) at the municipal well for each alternative is compared to the

no-action alternative. Fig. 7 shows an example of BTCs obtained for different

alternatives when a uniform K of 30 m/day is used. These BTCs are presented here

for demonstration purposes only using a uniform hydraulic conductivity field. The

results provide an indication on how the level of contamination is reduced by each

alternative, while the actual impact of such a reduction on the risk to the exposed

population should be explored separately. The risk-based decision analysis of each

alternative will later use the spatially variable random hydraulic conductivity field

described earlier.

The cost of remediation for each alternative was estimated using Tank RACER

software (Talisman Partners, 1999), which was developed for the US Department
Table 3

Details of different remedial alternatives considered in the demonstration example (also refer to Fig. 6)

Item Alternative

No-action 1 2 3 4 5

Remediation technology IB PAT PAT PAT PAT+EB PAT+EB

No. of pumping wells 0 1 2 2 2 1

Pumping rate (gpm) – 35 15, 10 35, 20 15, 10 35

Pumping duration (years) – 7 6, 5 6, 5 4, 3 2.5

Treatment of extracted

ground water

– AS AS AS AS AS

Discharge of treated

ground water

– POTW POTW POTW POTW POTW

No. of injection wells 0 0 0 0 2 6

Oxygen in injected water

(mg/l)

– – – – 10 10

Injection duration (years) – – – – 3 2.5

PAT is pump-and-treat, IB is intrinsic biodegradation, EB is enhanced biodegradation, AS is air

stripping, and POWT is a publicly owned water treatment plant.



Fig. 7. Breakthrough curve at the municipal well for different remedial alternatives using a uniform K

of 30 m/day. Breakthrough curve for alternative 5 does not show on graph because of scale (magnitude

of concentration is small).
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of Defense and later used by state and local agencies to determine the costs of

cleanup on a site-specific basis. Tank RACER is a parametric cost modeling

system for estimating environmental costs. The details of cost estimation for each

alternative are presented in Table 4. The costs include the capital, operation and

maintenance, and sampling costs. This cost model represents a simple description

of essential cost components, and this model can be further modified to include

additional cost components. The results show that the no-action alternative has the

least cost, which essentially is the monitoring costs, whereas the PAT alternatives

with enhanced biodegradation (alternatives 4 and 5) have higher costs due to water

injection with dissolved oxygen.
Table 4

Cost of remediation for different alternatives

Cost Alternative

No-action 1 2 3 4 5

Capital cost 0 $311,017 $325,898 $354,933 $512,049 $646,961

O & M Cost 0 $249,091 $297,668 $325,139 $433,130 $449,995

Monitoring duration

(year)

10 10 10 10 10 10

No. of samplings

(per year)

3 3 3 3 3 3

No. of parameters

sampled

8 8 8 8 8 8

Monitoring cost $602,956 $602,956 $602,956 $602,956 $602,956 $602,956

Total cost $602,956 $1,163,064 $1,226,522 $1,283,028 $1,548,135 $1,699,912
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3.4. Probabilistic risk assessment

The uncertainty in the concentration of the BTC was modeled using a spatially

variable random hydraulic conductivity field developed using the turning band

algorithm (Thompson et al., 1989) with the correlation length and semi-variogram

described previously. The number of random realizations needed to characterize

the uncertainty of K was determined using the procedure described by Lahkim and

Garcia (1999). In this approach, cumulative mean and variance maps were

generated. The N cumulative mean maps have values at each cell corresponding

to the mean from N simulations. The same procedure is followed for the

cumulative variance maps. Two parameters were used to quantify the stability

of the mean and variance for all the cells, and these are (a) the arithmetic average

of the cumulative mean of all nodes up to the simulation N and (b) the arithmetic

average of the cumulative variance of all nodes up to the simulation N. The results,

although not shown here, indicated that the average cumulative mean decreases to

an asymptotic value after about 60 simulations. The same observation is true for

the cumulative variance. Hence, 100 simulations were used to describe the

uncertainty of the K field in the joint uncertainty–variability analysis.

In each simulation, the BTC at the municipal well was generated, and the

corresponding 30-year average concentration curve was calculated. The resulting

maximum 30-year average concentration for each alternative was used to

generate the cumulative density function, CDF. The CDF of concentration was

then used to model the uncertainty in the contaminant concentration in the risk

assessment.

The population characteristics were described using the average characteristics

of the US population as shown in Table 5. The variability in the population was

described using three parameters; water ingestion rate per unit body weight, air

inhalation rate per unit body weight, and skin surface area per unit body weight.

The three-dimensional risk surfaces were generated using the two-stage

Monte Carlo method to analyze the joint uncertainty–variability of each
Table 5

Population characteristics used in the demonstration example

Parameter Distribution Values Unit

Average lifetime Constant 70 years

Shower duration Constant 0.2 h/day

Exposure frequency Constant 350 day/year

Exposure duration Constant 30 years

Skin Permeability constant Constant 0.1 cm/h

Water ingestion rate per unit body weight Lognormal (0.033,0.013) l/day/kg

Air inhalation rate per unit body weight Lognormal (0.39,0.5) m3/day/kg

Skin surface area per unit body weight Lognormal (270,25) cm2/kg

Sources: US EPA (1989a) and McKone and Bogen (1991).



Fig. 8. Computed risk surface from the joint uncertainty–variability analysis for the no-action

alternative.
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remedial alternative. Fig. 8 shows the risk surface for the no-action alternative.

Fig. 9 shows cuts through the surface parallel to the uncertainty axis at the 5th,

50th, and 95th percentile variability. The results show a modest change in the

estimated cancer risk across the complete range of the uncertainty of K for the

5th and 50th percentile variability of the population characteristics. However, as
Fig. 9. Variation of risk with uncertainty of K for different population variability values for the no-

action alternative.



Fig. 10. Variation of risk with variability of population characteristics for different uncertainty values

of K for the no-action alternative.
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the population variability is high, say at the 95th percentile, the estimated cancer

risk varies substantially with the uncertainty of K. Similarly, Fig. 10 shows cuts

through the surface parallel to the population variability axis at the 50th and

95th percentiles of uncertainty of K. In this case too, the changes in the

estimated cancer risk with population variability remain relatively small for

low to medium values of uncertainty of K. As the uncertainty of K is high at the

95th percentile, the estimated cancer risk is highly sensitive to the population

variability.

Table 6 provides the summary statistics of the decision criteria for all remedial

alternatives. As expected, the least total cost of remediation is with the no-action

case. The cost of remediation and CPLS both increase from alternatives 1 to 5.

However, there are other decision criteria such as the IR, PR, and RI that provide

different insight to the problem and need to be considered in the decision-

making.
Table 6

Computed risk statistics for different remedial alternatives

Alternative IR EIR PR RI Cost (US$) CPLS

(US$)

No-action 7.61e� 02 4.15e� 02 2.765 0.940 602,956 –

1 2.21e� 02 7.95e� 03 0.490 2.410 1,163,064 8204

2 1.18e� 02 4.70e� 03 0.288 2.868 1,226,522 8391

3 8.41e� 03 2.48e� 03 0.134 3.480 1,283,028 8613

4 7.13e� 03 1.90e� 03 0.106 3.693 1,548,135 11,849

5 3.00e� 04 2.77e� 05 0.002 7.255 1,699,912 13,232



3.5. Explicit decision analysis

3.5.1. Filtering stage

All remedial alternatives should satisfy the three criteria of the filter; positive

risk reduction, acceptable risk, and acceptable CPLS. The results in Table 6 show

that all remedial alternatives reduce the risk on the exposed population. However,

the acceptable risk criterion is not satisfied by all alternatives as indicated in Table

7. The acceptable risk is decided by three criteria, and these are the MIR, EIR, and

RI. For an alternative to satisfy the acceptable risk condition, it should at least

satisfy either the MIR, or RI and EIR. MIR is a formulation of the acceptable risk

suggested by the US EPA and is between 10� 4 and 10� 6. The RI and EIR are

alternative acceptable risk criteria developed in this study. Table 7 indicates that

only alternative 5 satisfies the MIR criterion, while the other alternatives violate

this criterion for acceptable risk. MIR reflects the maximum risk posed on any

individual in the population. To assess the uncertainty in theMIR, the EIR, which is

an average estimate of the risk posed on the maximum exposed individual, is

calculated and shown in Fig. 11.

The analysis of the alternatives for acceptable risk criterion and RI confirms

that only alternative 5 satisfies the acceptable risk requirement (see Table 7). In

addition, it is noted that alternatives 3 and 4, which do not satisfy the MIR

criterion, do satisfy both the RI and EIR criteria. This observation suggests that

alternatives 3 and 4 can be considered plausible for the selection stage.

The final criterion to be satisfied is the CPLS. All alternatives have a CPLS

that falls within the range of US$8000–14,000 (see Table 6). This range of CPLS

is considered reasonable when compared to the data in Table 1. However, there is
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Table 7

Details of the filtering stage of the explicit decision analysis; B and x refer to satisfactory and

unsatisfactory decision criteria

Parameter No-action 1 2 3 4 5

Positive risk

reduction

x B B B B B

Acceptable MIR x x x x x B

risk criteria EIR x x x B B B

RI x x x B B B

CPLS B B B B B B

M matrix

No-action 1 2 3 4 5 Desired

alternative

No-action $28,349 $33,018 $30,850 $43,804 $47,590 1

1 � $72,796 $52,458 $211,583 $163,034 3

2 $17,890 $119,484 $113,671 3

3 � $567,793 $414,400 5

4 $103,046 5



Fig. 11. Computed maximum individual risk (MIR) and expected individual risk (EIR) for different

remedial alternatives.
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a strong need to further study the definition of ‘‘reasonable CPLS’’ based on

legal, social, and political constraints.

Although the no-action alternative and alternative 1 do not satisfy the filter

criteria, they will be considered in the selection stage of this example. This action,

although, is in contradiction to the proposed outline of the method, elimination of

these two alternatives will reduce the number of alternatives to three and make the

problem less interesting. This limitation is present because the demonstration

example is relatively simple and has a much smaller number of alternatives than in

a typical large-scale field setting such as the example of Russell and Rabideau

(2000). It is therefore important in future work to explore this method with field

examples with more complex settings and remedial alternatives.

3.5.2. Selection stage

The selection of the best alternative from the set of alternatives, which satisfies

the decision criteria of the filter, requires the ranking of these alternatives to

indicate the desirability order. This is accomplished by means of the M matrix,

which studies the incremental cost per additional life saved when moving from the

less costly alternative to a more costly alternative, assuming the additional cost

provides additional risk reduction.

The M matrix is presented in Table 7 and calculated as follows: the first row

contains the incremental costs per unit population risk reduction for all designs

with respect to the no-action alternative. The best option to be chosen for this row

is the one with the least CPLS, i.e., alternative 1. For row 2, the incremental

CPLS for alternatives 2 through 5 is calculated with respect to alternative 1. The

best option for this row is alternative 3, which has the least non-negative incre-

mental CPLS. Alternative 2, which has a negative value in this row, is rejected
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because the negative value indicates that additional costs resulted in increased risk.

The same procedure is applied for rows 3 to 5, which correspond to alternatives 2

to 4.

The M matrix indicates that alternatives 3 and 5 have good economical

justification to be implemented. Alternative 1 is also recommended economically,

but to a lesser degree than alternatives 3 and 5. It is also noted that the

implementation of alternative 4 is not economically justified compared to both

alternatives 3 and 5. In addition to alternative 4, alternative 2 is also not

economically justified compared to alternatives 1 and 3. Compiling the infor-

mation obtained from the filtering stage and the M matrix, the proposed

alternatives can then be ranked as shown in Table 8. Alternative 5 is at the top

because it has the best compliance with the acceptable risk criteria and has a high

recommendation from the M matrix. Alternative 3 is the next best alternative in

compliance with the acceptable risk criteria, and has equivalent recommendation

in the M matrix. Thus, it is logical that alternative 3 holds the second position in

the ranking of the alternatives. Alternative 4, which is not recommended by the

M matrix as alternative 1, has a higher compliance with the acceptable risk

criterion than alternative 1. For this reason, alternative 4 was offered a position

higher than alternative 1 in the alternative ranking. Finally, alternative 2 and the

no-action alternative are the least favorable with alternative 2 preferred over the

no-action alternative.

3.6. Implicit decision analysis

3.6.1. Importance order of criteria method

The first step in this method is to normalize the decision criteria between zero

and one. The second step in the IOC method is to specify the importance order of

the decision criteria as shown in Table 9. The ranking of the criteria was such that

the compliance with the acceptable risk requirement was given more importance

than the economic considerations.

Following the normalization of the decision criteria and the specification of

their order of importance, Eq. (25) was used to calculate the best and worst utility

scores for each decision alternative that satisfy the specified criteria ordering. The

best and worst utility scores refer to the maximum and minimum total scores
Table 8

Ranking of alternatives from the explicit decision analysis

Ranking Alternative

1 5

2 3

3 4

4 1

5 2

6 No action



Table 9

Details of the IOC method

Normalized decision criteria and the order

Importance Criteria Alternative

order
Base case 1 2 3 4 5

1 MIR 0.000 0.793 0.745 0.916 0.888 1.000

2 RI 0.000 0.291 0.260 0.439 0.386 1.000

3 Cost 1.000 0.489 0.432 0.380 0.138 0.000

4 CPLS 1.000 0.404 0.306 0.352 0.080 0.000

Ranking of decision alternatives

Ranking Best score Worst score Average

1 5 3 5

2 3 5 3

3 4 1 1

4 1 2 4

5 2 4 2

6 No action No-action No-action
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possible for any combination of the actual weights that one could choose, given

that the weights are consistent with the order of the importance of the decision

criteria. Thus, the spread of the best and worst utility scores shown in Fig. 12

describes the sensitivity of each alternative to its weights.

Table 9 summarizes the ranking of the decision alternatives obtained from the

best, worst and average utility scores. The ranking shows that alternatives 3 and 5

exchanged the first and second positions with each another in the best and worst

utility, indicating that the best alternative is one of them. On the other end, the no-
Fig. 12. Computed best, worst, and average utility scores for different remedial alternatives in the

implicit decision analysis.
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action alternative is the last ranking for the best and worst utility cases, indicating

that it is the least favorable alternative. On the other hand, alternatives 1, 2, and 4

exchanged positions with each other in the best and worst utility cases, indicating

that no clear distinction exists between these decision alternatives.

It is worth noting that the ranking from the best utility matches the ranking

obtained from the explicit decision analysis. The ranking obtained from using the

average utility is also close to that of the explicit decision analysis. However, the

ranking corresponding to the worst utility has little in common with the explicit

decision analysis except the no-action alternative.

3.6.2. Fuzzy dominance and resemblance method

Level 1 analysis ranks alternatives, but those with adjacent positions in the

ranking list may or may not be similar. Level 2 provides an insight into the issue of

similarity. Level 1 analysis is commenced by constructing the dominance matrix

shown in Table 10. The first row in the matrix corresponds to the degree by which

the first alternative, i.e., no-action alternative, dominates over the other alter-

natives. For example, the no-action alternative dominates alternative 1 by two

degrees; this means that there are two criteria for which alternative 1 scores are

better than those of no-action. These criteria, as noted in Table 10, are the total cost

and CPLS. The sum column in the dominance matrix contains the sum of scores in

each row. The sum indicates the degree by which each alternative dominates the

other alternatives. Hence, using the sum columns, the decision alternatives can be

ranked and are given in Table 10.

Level 2 analysis has two steps; the first is the calculation of the Z2 matrix, and

the second step is the generation of the power matrix ZP. The Z2 given in Table 11
Table 10

Details of the Level 1 analysis of the fuzzy dominance method

Z1 matrix

No-action 1 2 3 4 5 Sum

No-action 0 2 2 2 2 2 10

1 2 0 4 2 2 2 12

2 2 0 0 1 2 2 7

3 2 2 3 0 4 2 13

4 2 2 2 0 0 2 8

5 2 2 2 2 2 0 10

Ranking of decision alternatives

Ranking Alternative

1 3

2 1

3 5

4 No-action

5 4



Table 11

Details of the Level 2 analysis of the fuzzy dominance method

No-action 1 2 3 4 5

Scaled Z2 data matrix (c = 0.4)

No-action 1.00 0.67 0.60 0.67 0.44 0.60

1 1.00 0.92 0.99 0.77 0.93

2 1.00 0.93 0.84 1.00

3 1.00 0.77 0.93

4 1.00 0.84

5 1.00

Power matrix, ZP

No-action 1 0.674 0.674 0.674 0.674 0.674

1 1 0.931 0.994 0.843 0.932

2 1 0.932 0.843 0.999

3 1 0.843 0.932

4 1 0.843

5 1

Cluster analysis with power matrix, ZP(0.8)

No-action 1 0 0 0 0 0

1 1 1 1 0 1

2 1 1 0 1

3 1 0 1

4 1 0

5 1

Cluster analysis with power matrix, ZP(0.9)

No-action 1 0 0 0 0 0

1 1 1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1

5 1

Cluster analysis with power matrix, ZP(0.95)

No-action 1 0 0 0 0 0

1 1 0 1 0 0

2 1 0 0 1

3 1 0 0

4 1 0

5 1
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is calculated by scaling the matrix containing the difference between the scores of

each two alternatives for the set of specified criteria between one and zero by

means of the factor c. The power matrix ZP in Table 11, which is a function of the

Z2 matrix, is used for cluster analysis through the evaluation of ZP (a), where

0 a 1. The first row of ZP indicates that all the alternatives except the no-

action alternative, cluster into a single group at 0.67. This implies that there is a
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clear distinction between no-action and take-action alternatives. The second, third,

and fourth rows of ZP show that alternative 4 is slightly different than the

alternatives 1, 2, 3, and 5, which group closely at more than 0.93. Alternative 4 is

singled out reinforcing the suggestion of the explicit method that it is not

economically justified compared to alternatives 3 and 5. Note that the cause of

having alternative 4 in a different cluster is only clear through the explicit analysis.

The above cluster analysis can be further explained by evaluating ZP(a), at

a = 0.8, a = 0.9, and a = 0.95. When ZP(a = 0.8) is evaluated, which is a high value

for a, all the alternatives are clustered except for the no-action alternative,

indicating similarity. When a is 0.9, only alternative 4 is eliminated from the

previous clustering. When a is 0.95, two distinct clusters appear indicating

similarity between alternatives 1 and 3, and alternatives 2 and 5. The cluster

analysis for the 95th percentile of uncertainty and variability suggests that either

the decision alternatives have a high degree of similarity, or the decision criteria

are not sufficient to differentiate between the alternatives.

The results from both the explicit and implicit methods show that the explicit

method produced a logical ranking of the alternatives subject to the information

from the risk analysis. One reason for this observation is that the explicit method

considers the decision criteria explicitly and weighs the criteria in the decision-

making. The results obtained by the IOC method are identical to those obtained by

the explicit method for the specified importance order of the decision criteria. The

ordering of the decision criteria was such that it emphasizes the importance of

reducing the health risk over economic considerations. This importance order is

similar to the logical build in the explicit decision analysis approach. Thus, the

alternative ranking is similar for the explicit decision analysis method and the IOC

method.

However, the results obtained by the FDR method are not comparable to those

obtained by the explicit decision analysis method or the IOC method. Fuzzy

dominance analysis, by default, does not have a method of favoring a given

decision criterion over other criteria. The only way to enforce a preference or an

importance order is by assigning numerical weights to the criteria. The drawback

of using numerical weights is that there is no unique procedure for estimating the

weights. The results from the FDR method can be sensitive to the weights as well

as the importance order of the criteria. The shortcomings of the FDR method can

be overcome if a large number of unique decision criteria are employed, which can

provide a clearer insight into the fuzzy similarities and differences between the

different alternatives.

In summary, the explicit decision analysis provided a valuable insight into the

decision problem. The IOC method produced a logical ranking of alternatives that

is identical to that suggested by the explicit decision analysis. The FDR method

failed to provide a logical ranking of the alternatives. The method may require the

scaling of the decision criteria using weights to enforce an importance order of the

decision criteria and such changes in the method may produce results that are more

meaningful.
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4. Summary and conclusions

The acceptable risk on any individual is defined here using two criteria; the

maximum individual risk, and the expected individual risk. MIR is the maximum

risk posed on the maximum exposed individual, while EIR is the average risk

posed on the maximum exposed individual. MIR and EIR are both calculated at

the 95th percentile of hydrogeologic uncertainty and population variability to

avoid the effect of the outliers at the maximum percentiles. MIR and EIR convey

important information to the decision-maker about the welfare of each individual

in the population. Projecting the welfare of the population through the maximum

exposed individual is arguably a fair measure, because it guarantees no individual

in the population is more affected. The significance of the EIR is that it quantifies

the uncertainty of the MIR.

Population risk is another important criterion used in this methodology. PR

quantifies the ultimate cost that the society has to bear in terms of the expected

cancer cases as a result of a large-scale pollution event. We believe that PR

provides an interesting alternative to the individual risk as a criterion of risk

acceptability since the burden of remediation is eventually borne by the society.

Similar criteria that quantify consequences to the society are used to describe the

acceptable risks in different public safety projects. In dam safety projects, for

example, there exists a definition of the acceptable societal risk defined as the

expected number of the annual increase fatalities tolerated in any population,

typically less than 0.01 fatalities (Bowles, 2001). Indeed, a similar acceptable

population risk can be established for ground water contamination scenarios.

However, we believe that the use of such criteria will raise a legitimate ethical

question whether the collective welfare of the society is more important than the

welfare of the most vulnerable individual in the population or not. Since we are not

in a position to answer such a conflict, we introduced the risk index, which

establishes a trade-off between the individual and population risk based on

observations from published regulatory data. Thus, instead of attempting to select

a condition from a list of criteria, we established a trade-off between the two most

important decision criteria. Nevertheless, we recommend that a rigorous research

of practices of the regulatory agencies towards the individual and population risk

should be conducted, as we recognize that the proposed RI is not based on such a

rigorous research. Yet, we agree with Travis and Richter (1987) on the general

direction of the trade-off between individual and population risks.

Another important question we attempted to answer in this study is how to

define the trade-off between the residual risk and the cost of risk reduction.

Intuitively, if the risk is too high, then a high remediation cost does not justify a

‘‘no-action’’ response to lower the risk on the exposed population. On the other

hand, a low risk does not trigger an immediate action of remediation, nor does it

rule out the need for action. The appropriate action should be considered based on

the trade-off between cost of remediation and the corresponding risk reduction. If

the cost of a given risk reduction measure is small, then action might be required to
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avoid possible liabilities though it may not be cost-effective. Therefore, we

proposed the use of CPLS as the cost-effectiveness criterion to convey to the

decision-maker how costs are being employed to reduce the risk. Referring to the

numerical experiment performed here, it was noted that for all the decision

alternatives, the CPLS falls within a narrow range of US$8000–14,000 per unit

risk reduced (see Table 6). This observation indicated that, at least for this case, the

criterion of CPLS alone was not sufficient to address the trade-off between the

increased cost and risk reduction. A better understanding of this trade-off is

reflected through theMmatrix in which the incremental CPLS was calculated (see

Table 7). The M matrix helps to identify the point of diminishing return of the

investment used in the risk reduction. The M matrix shows the otherwise

undistinguishable cost-effectiveness and differences between the proposed alter-

natives, and therefore, provides a more meaningful insight into the risk-cost

trade off.

In addition to the explicit decision analysis, two implicit methods from

operations research were explored in this work. The IOC method provided a

ranking of alternatives comparable to that of the explicit analysis. The IOCmethod

is sensitive to the order of the criteria, which is based on the objectives of the

decision-maker. The key advantages of using the IOC method in decision analysis

are that the method is simple, accurate, and can avoid possible subjective biases of

the decision-maker. The success to the use of the IOC method depends heavily on

the correct order of importance of decision criteria applicable to a given problem

such that the ranking of the remedial alternatives is meaningful and reflects the

goals of the decision-maker.

The FDR method did not perform satisfactorily, at least in this demonstration

example, compared to other methods. One possible avenue of improving the

accuracy and applicability is the weighing of decision criteria to enforce an order

of importance. Another possible course of action is the increase of the number of

decision criteria, such that the fuzzy differences between alternatives are easier to

detect. In addition, the fuzzy similarity analysis or the Level 2 analysis did not

provide useful insight to the decision problem due to the same limitations that

affected the Level 1 analysis.

We would like to emphasize that some of the observations we noted about the

performance of ranking approaches should not be generalized. The simple

demonstration example presented in this work was not intended to capture the

complex nature of the decision-making context; rather it was intended to

demonstrate the applicability of the proposed decision analysis framework. Hence,

the generalization of the observations made from the single example of this study

should be carried out with caution. Instead, future work related to decision

analysis should consider the methodology proposed here and should evaluate

the methods through the use of more complex field scenarios with a variety of

decision criteria and alternatives. Such applications may provide better insight into

the proposed methodology and help future work on improving the approaches

suggested here.
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Another limitation of this work is the limited scope of the decision criteria

considered in the methodology. The decision criteria were limited to the most

basic objectives of a decision-maker in a subsurface contamination scenario, i.e.,

risk reduction, cost minimization, and regulatory compliance. In a real world

scenario, a variety of decision criteria would be relevant in the decision-making,

e.g., duration of the remedial action and engineering reliability of a remedial

technology. Another limitation is related to the design of remediation alternatives.

Since the design of remediation is not the central theme of this paper, the optimal

configuration of a given remediation alternative was not sought. In addition, the

hydraulic conductivity fields used to describe spatial variability was generated

using unconditional simulation, while realistically, conditional simulations are

employed to represent site variability and to reduce the variability of hydraulic

head (Gelhar, 1993).

Finally, we would like to acknowledge the anonymous reviewer’s thought-

ful comments questioning the applicability of the proposed methodology

since it requires policy changes. Policy changes refer to the proposed

definition of acceptable risk, which requires the trade-off between individual

and population risk, and the trade-off between risk reduction and remediation

cost. The proposed criteria may be employed to replace the definition of

acceptable risk which is presently used as an individual risk of 10� 6 by the

US EPA. We recognize that this paper calls for both policy changes as well

as management changes in risk-based management of subsurface contamina-

tion. Management changes are manifested in the adoption of multi-criteria

decision analysis in place of a cost–benefit analysis framework. Our position

related to the policy changes is that adopted policies should not dictate

research debate but instead promote research-guided policies. It is the duty of

the research community to introduce new concepts, debate their merits, and

investigate their applicability. Once the consensus of the research community

is finalized on the merits of a given methodology, then the timing is correct

for necessary policy changes.
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