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ABSTRACT

Synergistic Timing Speculation for Multi-threaded Programs

by

Atif Yasin, Master of Science

Utah State University, 2016

Major Professor: Sanghamitra Roy, Ph.D.
Department: Electrical and Computer Engineering

Timing speculation is a promising approach to increase the processor performance and

energy efficiency. Under timing speculation, an integrated circuit is allowed to operate at a

speed faster than its slowest path—the critical path. It is based on the empirical observation,

which is presented later in the thesis, that these critical path delays are rarely manifested

during the program execution. Consequently, as long as the processor is equipped with an

error detection and recovery mechanism, its performance can be increased and/or energy

consumption reduced beyond that achievable by any other conventional operation.

While many past works have dealt with timing speculation within a single core, in this

work, a new direction is being uncovered — timing speculation for a multi-core processor

executing a parallel, multi-threaded application. Through a rigorous cross-layered circuit-

architectural analysis, it is observed that during the execution of a multi-threaded program,

there is a significant variation in circuit delay characteristics across different threads.

Synergistic Timing Speculation (SynTS) is proposed to exploit this variation (hetero-

geneity) in path sensitization delays, to jointly optimize the energy and execution time of the

many-core processor. In particular, SynTS uses a sampling based online error probability

estimation technique, coupled with a polynomial time algorithm, to optimally determine the

voltage, frequency and the amount of timing speculation for each thread. The experimental
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analysis is presented for three pipe stages, namely, Decode, SimpleALU and ComplexALU,

with a reduction in Energy Delay Product by up to 26%, 25% and 7.5% respectively, com-

pared to existing per-core timing speculation scheme. The analysis also embeds a case study

for a General Purpose Graphics Processing Unit.

(44 pages)
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PUBLIC ABSTRACT

Synergistic Timing Speculation for Multi-threaded Programs

Atif Yasin

Timing speculation is a promising approach to increase the processor performance and

energy efficiency. Under timing speculation, an integrated circuit is allowed to operate

at a speed faster than the rated speed specified by its vendor. However, doing so might

result in an incorrect execution. Consequently, as long as the processor is equipped with an

error detection and recovery mechanism, its performance can be increased and/or energy

consumption reduced beyond that achievable by any other conventional operation.

While many past works have dealt with timing speculation within a single core, in

this work, a new direction is being uncovered by exploring timing speculation for a multi-

core processor executing a parallel, multi-threaded application. It is observed that during

the execution of a multi-threaded program, there is a significant variation in circuit delay

characteristics across different threads. Synergistic Timing Speculation (SynTS) is proposed

to exploit this variation to jointly optimize the energy and execution time of the many-

core processor. The experimental analysis shows significant performance improvement and

savings in energy, compared to existing timing speculation schemes.
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INTRODUCTION

1.1 Worst-Case Design

System reliability is of fundamental importance for ensuring a correct execution of a

program. However, sometimes the system execution deviates from its original intended

behavior and results in an incorrect output (for the scope of this study, the errors referred

to are the timing errors1). These errors can manifest because of many reasons, including,

process variation and aging etc. In order to ensure that the system is reliable and always

results in correct/expected execution of a program, contemporary systems are designed with

some slack/guard band to incorporate these rare extreme cases. Since these timing errors

occur rarely, for most of the time, system energy is being wasted, which can otherwise

be utilized to enhance the performance and/or lower energy consumption. In the quest

of achieving the ever higher system performance, Ernst et al. proposed a system design,

Razor, to exploit this slack [1].

1.2 Better Than Worst-Case Design

Timing errors occur when the combinational delay of a circuit exceeds the clock period

associated to it. If the frequency of the system is increased by eliminating the guard band,

it is essentially equivalent to removing the slack designed to cater for such extreme rare

cases, leaving the circuit prone to timing errors. In order to detect and correct these timing

errors dynamically on-the-go, additional hardware as depicted in Fig. 1.12 is added to the

system. Error correction is necessary for ensuring the robustness of the pipeline.

The underlying idea proposed by Ernst et al. is to exploit the above mentioned slack

by operating an integrated circuit at a higher over-scaled frequency, causing the timing

errors to occur frequently [1]. It then detects and corrects the timing errors incurred

1Timing error is seen when the incurred circuit delay exceeds the clock period.
2Ernst, D. et al Razor
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instead of avoiding them, ultimately helping in running the system at a higher energy

efficiency/performance, while the reliability still intact.

In Figure 1.1, a combinational logic state is being executed at a speculative frequency,

resulting in timing errors. The outlined scheme, Razor, uses a shadow latch operated with a

delayed clock and in an event of a timing error, the delayed clock latches a different output

than the main flip flop output; the Xor gate drives the error bit high for replaying the pipe

line and hence correcting the timing error event.

Fig. 1.1: Razor flipflop.

The trade-off for selecting the optimal Timing Speculative frequency is illustrated in

Fig. 1.23 on the next page. fr is the rated frequency, specified by the vendor for the system,

f0 is the nominal frequency and fs is some optimal speculative frequency. Any frequency

chosen above this point will result in the degradation of performance, since the penalty

caused by flushing and replaying the pipeline will dominate the performance gain achieved

by higher frequency, and likewise, any point chosen between f0 and fs will be sub-optimal.

3Josep Torrellas and Brian Greskamp, ”Timing Speculation: Designing Multi-Cores for Single-Thread
Performance”
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Fig. 1.2: Timing speculation vs. Error probability.

1.3 Timing Speculation: Single-Threaded vs. Multi-Threaded Applications

Having established that for a single-threaded application, an optimal point for a par-

ticular speculative frequency can be chosen. That is, for a specific thread, there exists a

frequency which yields the highest benefit in the performance gain. However, the scenario

changes for the execution of a multi-threaded application. Since there are multiple threads

instead of just one thread, optimal point of one thread might not be similar to that of

the other threads, that is, the timing error probability might not be same for all threads.

Choosing an optimal point independently for all cores ignores a fact that execution of a

program in a multi-threaded system is dependent on other threads. This, hence, requires

a formal architectural analysis of an execution of a multi-threaded application to allow us

to analyze the effect of frequency up-scaling in all cores holistically, so that the maximum

benefit can be attained out of timing speculation.

1.4 Multi-Threaded Application and Barrier Synchronization

In order to better understand the inner mechanics of a multi-threaded application

and the underlying dependency among threads, in this section, a multi-threaded workload

execution is dissected. Fig. 1.3 shows a brief snapshot of a multi-threaded workload. Since,
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the execution of a multi-threaded application is dependent on all of the threads, they need

to synchronize at certain points, so that their execution goes hand in hand [2]. One typical

implementation of rendezvous points is barrier synchronization; a thread arriving at the

barrier interval can only pass that synchronization point when all threads have arrived at

that point. This type of synchronization makes sure that no thread is left behind and all

the dependency of data between threads is maintained properly [3]. However, it is possible

for the threads not to arrive at the barrier points simultaneously [4]. As it is shown later

in this paper using empirical data, this is what happens in the multi-threaded workload

as shown in Fig. 1.4. There exists ”faster” threads and ”slower” threads and due to this

difference, faster threads have to wait at barrier points so that the slower threads can catch

up and all threads can move forward across the barrier point. This idle waiting for the

slower critical threads to arrive at barrier can be exploited to improve performance and/or

save the energy.

Fig. 1.3: Multi-threaded workload execution.

Fig. 1.4: Threads arriving at barrier at different times.
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RELATED WORK

Previous work most relevant to this work fall in two broad categories. (a) timing

speculation architectures for single core processors; and (b) conventional voltage/frequency

scaling techniques for multi-threaded applications. The works in the first category aim

at reducing the clock cycle time to boost performance, and/or reduce the supply voltage

to save energy. Many of these techniques are recovery-based, where rare timing-errors are

detected and recovered using micro-architectural techniques. RazorII based dynamic voltage

scaling allows elimination of safety margins and operation at the point of first failure of the

processor. This technique deals with the variation induced delay-errors, specifically the PVT

(Process,Voltage and Temperature) and SER (Soft error rate) [6]. Other techniques allow

elimination of clock frequency safety margins from dynamic voltage supply while correcting

the timing errors [17,18].

Some recent works propose proactive techniques, where they anticipate an upcoming

timing error before the clock edge, using various sensors embedded in the pipe stages. These

techniques mask timing errors by borrowing time from successive pipeline stages [19–21].

Several other works advocate dynamic clock skewing [22, 23], in combination with timing

speculation, for energy efficiency. All of these papers are focused on isolated processor com-

ponents and/or a single-core pipeline, and do not address how to synergistically overclock

or voltage scale a multi-core processor.

The second category of works explores the use of conventional voltage/frequency scaling

(i.e., without any timing speculation), to optimize the energy and execution time of multi-

threaded applications. In these works, the criticality of threads is assessed from their

individual execution latency variance due to specific architectural events (e.g.,cache misses)

or the balance of work among threads [8, 15, 24]. None of these works address timing

speculation for multi-threaded applications and are oblivious of the fact that the error

probability functions of a multi-threaded workload are heterogeneous in nature or exploit
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timing speculation criticality, which this work does for the first time.
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MOTIVATIONAL EXAMPLE

As mentioned in the previous section, timing speculation for a multi-threaded appli-

cation depends on all the threads executing in a multi-core processor. Fig. 3.5 shows an

example of a timing speculation critical thread in the Radix benchmark from the SPLASH-2

benchmarks suite (See Section 4.3 for detailed methodology.) In this example, Thread 0

consistently has the highest error probability with decreasing clock period, about 4x greater

than the thread with the lowest error probability.

Fig. 3.5: Timing error probability with a normalized clock period for one barrier interval in
the Radix benchmark.

3.1 Synergistic Timing Speculation Approach

To exploit this intriguing thread-level heterogeneity in timing errors characteristics,

Synergistic Timing Speculation for multi-threaded workloads is proposed in this thesis by

incorporating timing speculation criticality. The approach is referred to as SynTS.

Figure 3.6 explains the opportunities of SynTS to substantially improve the system

energy efficiency by exploiting heterogeneity in thread error probabilities.
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(a) Nominal baseline - Same voltage and frequency for all cores. All threads reach the barrier
at the same time.

(b) Step-1 - Frequency up-scaling and gaining performance benefit. A slack created because
of heterogeneity in thread error probabilities.

(c) Step 2 - Voltage downscaling and adjusting frequency to save on energy efficiency

Fig. 3.6: Overview of the SynTS approach. The data here is generated based on the
error probability curve in Figure 3.5. More details about the algorithm and experimental
parameters are given in Section 3.3 and Section 4.3, respectively.



9

The example initially presents a scenario where all four threads run at the nominal

voltage and frequency without timing speculation (Each core has only 1 thread). An as-

sumption is made that all the threads are racing to a barrier, and reach the barrier at the

same time at the nominal voltage and frequency. This means that the threads are perfectly

balanced with perfect work distribution and perfect cache latencies.

In step 1, timing speculation tends to reduce thread execution time by increasing the

frequency (reducing clock period) for all threads at the expense of a small error probability.

As shown in Figure 3.6, reducing the clock period by 24%, reduces execution time of Thread

0 by 7%, observed empirically. The execution times of Thread 1, 2 and 3 are reduced even

further, since they have lower error probabilities. Any further increase in clock frequency

hurts the performance, since it causes an increase in timing errors and its associated recovery

overheads in Thread 0, nullifying the positive effects of higher frequency. At the end of Step

1, although all the threads reach the barrier sooner than in the nominal case, Thread 0 is

now critical, i.e., it reaches the barrier last, while the other three threads have some slack.

In Step 2, the slack that has been created is leveraged to reduce the voltage and

potentially frequency of Threads 1, 2 and 3, thus reducing their energy consumption without

hurting the application’s execution time. In this case, the voltage of all three threads is

reduced to 0.9V. Overall, for this motivational example, both the execution time and the

energy consumption of the barrier interval reduce by 7%, each. This example demonstrates

the dual benefits in execution time and energy consumption— the significant potential of

synergistic timing speculation that is not achievable by naively adapting existing single-core

timing speculation approaches to the multi-core setting.

In summary, this example motivates the key research question that is answered in this

thesis: How can the optimal voltage, frequency, and as a result the error probability be

synergistically determined (for each thread/core) so as to jointly optimize for execution

time and energy consumption?

3.2 Exploring the GPGPUs

In the above mentioned analysis, a case study for a 4 core Alpha Processor is presented
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and have motivated that there is a distinct heterogeneity in error probabilities since multiple

threads exist in a multi-threaded application. GPGPUs are an excellent candidate for timing

speculation as well, since GPGPUs architecture resemble to that of CMPs and contain

thousands of threads and multiple streaming cores, providing an extensive parallelism [5].

This motivates to perform thread level path sensitization delay analysis for GPGPUs as

well.

3.3 Thesis Contributions

This thesis makes the following contributions and first in the domain of exploring

Timing Speculation in the multi-threaded applications for multi-core systems including

GPGPUs.

• Using an elaborate cross-layer methodology, empirical evidence of heterogeneity in

error probabilities of threads under timing speculation for SPLASH-2 benchmarks

applications is provided. SynTS approach is implemented that is aware of this het-

erogeneity and synergistically performs timing for all the threads to optimize the

performance and energy.

• A mathematical formulation for SynTS is implemented as a discrete optimization

problem, along with a polynomial time algorithm that optimally solves this problem.

Subsequently, a practical online implementation of SynTS based on error probability

sampling and polynomial time algorithm is proposed.

• Using a rigorous circuit-architectural simulation environment, a significant improve-

ment in energy-efficiency of CMPs – up to 26%, 25% and 7.5% reduction in the energy

delay product (EDP) for Decode, SimpleALU, and ComplexALU respectively when

compared to existing timing speculation schemes.

• Exploring the architecture of Radeon HD 7970 GPGPU for the presence of hetero-

geneity in error probabilities among 16 Streaming Multiprocessors in inter-SIMD unit

containing thousands of parallel threads.
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SynTS DESIGN

In this section, the design of SynTS for CMPs is discussed in three steps. First, a math-

ematical model for timing speculation on multi-core processors is discussed (Section 4.2).

Then, ideal offline implementation of SynTS is discussed (Section 4.1) and finally a practical

online version is presented (Section 4.3).

4.1 System Model

In this thesis, a multi-core processor consisting of M homogeneous cores is considered

and a multi-threaded application executing on the processor with one thread per core (that

is, the number of threads is also M). The cores are equipped to handle timing speculation,

that is, they can both detect and recover from errors using schemes proposed in literature

[6].

Each core can dynamically tune its voltage and clock frequency (or equivalently, clock

period); a capability that is available in several commercial multi-core processors. The

voltage of core i (i ∈ [1,M ]) is Vi ∈ V, picked from Q discrete voltage levels, i.e., V =

{V1,V2, . . . ,VQ}. For every voltage level V ∈ V, there is a nominal clock period tnom(V ) at

which core is guaranteed to operate without any errors. To enable timing speculation, core

i can operate at a clock period smaller than the nominal period. That is, the clock period

of core i, tclki , is a ratio ri (ri ∈ [0, 1]) of its nominal period; tclki = rit
nom(Vi). The symbol

ri is referred to as timing speculation ratio (TSR), and assumed that it is picked from one

of S discrete levels including 1. That is ri ∈ R, where R = {R1,R2, . . . ,RS = 1}. Note

that the TSR implicitly corresponds to the discrete clock frequency at which the cores can

operate.

For a given ri, the error probability is given as perri = erri(ri). erri is a decreasing

function of ri; longer clock periods imply lower error probability. An example of the error

probability function is shown in Figure 3.5. As observed before, the error probability func-
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tion can vary from one thread to another, i.e., it is thread specific. With these preliminaries,

system performance and energy consumption can be modeled based on the one proposed

by Kruijf et al. for processors with fine-grained error recovery mechanisms like Razor [7] .

In particular, the seconds per instruction (SPI)4 of thread i can be written as:

SPIi = tclki

(
perri Cpenalty + CPIbasei

)
(4.1)

where Cpenalty is the error recovery penalty (5 cycles for the Razor processor [7]) and

CPIbasei is the baseline clock per instruction of thread i in the absence of errors.

The focus of this thesis is on parallel applications that use barrier synchronization.

Without the loss of generality, the application execution time for a single barrier interval is

measured; the total execution time can be obtained by summing over all barrier intervals.

In a given barrier interval, thread i executes Ni instructions. the execution time of the

barrier phase, texec, is determined by the last thread to reach the barrier [8]:

texec = max
i∈[1,M ]

Nit
clk
i

(
perri Cpenalty + CPIbasei

)
(4.2)

Finally, the energy consumption of a thread, eni, can be written as:

eni = αV 2
i Ni

(
perri Cpenalty + CPIbasei

)
(4.3)

where α is the average switching capacitance of a core. The energy equation multiplies

the energy consumed per clock cycle with the number of clock cycles, including the extra

cycles introduced due to timing speculation. Although the model does not currently account

for leakage power, it can be easily extended to do so. Furthermore, although the focus of this

thesis is for exploring the energy versus execution time trade-offs, the proposed approach

can be generalized to address power consumption as well.

4.2 Offline Optimization

4Inverse of instruction per second (IPS).
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This sections describes the proposed synergistic timing speculation methodology for

CMPs. To begin with, it is optimistically assumed that the workload characteristics, that

is, each thread’s error probability function, err(ri), is known in advance. In Section 4.3,

the above mentioned assumption will be relaxed and detail an online policy that estimates

the error probability function for each thread on the fly.

The goal is to determine the optimal voltage and clock period of cores in each barrier

interval, so as to minimize a weighted sum of the total energy consumption and the barrier

execution time. This can be formulated as the following optimization problem, SynTS-

OPT,

min
Vi,ri

∑
i∈[1,M ]

eni + θtexec (4.4)

such that Vi ∈ V and ri ∈ R for all i ∈ [1,M ]. θ is a designer-specified weighting factor

that determines the importance of execution time vis-a-vis energy.

4.2.1 MILP Formulation

SynTS-OPT is a discrete, non-linear optimization problem. It is first reduced to a

mixed integer linear programming (MILP) problem, which is referred to as SynTS-MILP.

To do so, binary variables xijk are introduced, that are set to 1 if thread i runs at voltage

level Vj and TSR Rk, and 0 otherwise. The objective function can now be written as:

minx,en,perr,tclk,texec

∑
i∈[1,M ],j∈[1,Q],k∈[1,S]

xijkenijk + θtexec, (4.5)

subject to:

texec ≥ Nit
clk
i

(
perri Cpenalty + CPIbasei

)
∀i ∈ [1,M ], (4.6)

tclki =
∑

j∈[1,Q],k∈[1,S]

xijkRkt
nom(Vj) ∀i ∈ [1,M ], (4.7)

perri =
∑

j∈[1,Q],k∈[1,S]

xijkerri(Rk) ∀i ∈ [1,M ], (4.8)
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enijk = Ni

(
perri Cpenalty + CPIbasei

)
αV2j xijk ∀i ∈ [1,M ], (4.9)

and ∑
j∈[1,Q],k∈[1,S]

xijk = 1 ∀i ∈ [1,M ]. (4.10)

Equation 4.6 constrains execution time of the barrier to be larger than that of each thread,

while Equations 4.7, 4.8 and 4.9 compute the clock period, error probability and energy,

respectively, in terms of the xijk variables. Equation 4.10 ensures that each thread gets

assigned to only one voltage and frequency level. SynTS-MILP can be input to a standard

MILP solver to obtain optimal voltage and frequency levels for each thread.

Polynomial-time Algorithm Solving a MILP problem is, however, not practical in an online

setting since the run-time of MILP solvers scales poorly with the problem size. Fortunately,

the specific form of SynTS-MILP lends itself to a polynomial-time solution shown in

Algorithm 1 – a key contribution of this thesis.

The intuition behind this algorithm, SynTS-Poly, is as follows. It iteratively demar-

cate each thread as the critical thread, i.e., the thread that has the longest execution time

(O(M) iterations). For a critical thread, all combinations of voltage and timing speculation

ratios are tried; for each such combination, thread’s execution time is obtained (O(QS) it-

erations). Then, for every other thread, lowest energy configuration that allows it to finish

before or with the critical thread is searched (O(MQS) iterations). These steps yield a pair

of energy and execution time values for each thread, voltage and clock period combination

(a total of MQS pairs). Of these, the algorithm returns the configuration with the lowest

weighted cost. The run-time of SynTS-Poly is quadratic in the number of threads/cores,

voltage levels and timing speculation ratios.

Lemma 4.2.1. Algorithm 1 is guaranteed to return an optimal solution for SynTS-OPT.

Proof. The optimality of the algorithm can be proved based on the fact that there exist at

least one critical thread, among all other threads, having the longest execution time. Since
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the algorithm iteratively assume each thread as a critical thread, there exists a case where

this assumption is true. Performing SynTS under that correct assumption, all possible

combinations of voltage and timing speculation ratios will be searched. Therefore, the

algorithm will return the optimal result. Note that it depends on the fact that the non-

critical threads only impact the energy component of the cost function.

Algorithm 1: SynTS-Poly optimization procedure

1 Algorithm SynTS-Poly(V,R, tnom, err, Cpenalty, CPIbase)
2 for i ∈ [1,M ] do
3 for j ∈ [1, Q] do
4 for k ∈ [1, S] do
5 perr ← erri (Rk);

6 tclk ← tnom(Vj)Rk;

7 texec ← Nit
clk
(
perrCpenalty + CPIbasei

)
;

8 en← αV2jNi

(
perrCpenalty + CPIbasei

)
;

9 for l ∈ [1,M ] ∧ l 6= i do
10 en← en+minEnergy(l, texec);
11 end
12 costijk ← en+ θtexec;

13 end

14 end

15 end
16 return arg minijk costijk;

17 Procedure minEnergy(i, texec)
18 for j ∈ [1, Q] do
19 for k ∈ [1, S] do
20 enjk ←∞;
21 perr ← erri (Rk);

22 if Nit
nom(Vj)Rk

(
perrCpenalty + CPIbasei

)
≤ texec then

23 enjk ← αV2jNi

(
perrCpenalty + CPIbasei

)
;

24 end

25 end

26 end
27 return minjk enjk;
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4.3 Online Optimization

In practice, the error probability versus the clock period data is not available in advance,

and must be estimated on-the-fly. Here, an online sampling based approach is proposed to

address these practical constraints.

At the beginning of each barrier interval, each thread spends the firstNsamp instructions

in a sampling phase. During the sampling phase, all threads run at a fixed voltage Vsamp ∈ V,

but at different clock periods. In particular, each thread spends
Nsamp

S instructions at each

of the S available frequency levels (or equivalently, timing speculation ratios), for the voltage

level Vsamp. Figure 4.7 shows an overview of this procedure.

Fig. 4.7: Sampling phase at the start of each barrier interval.

At the end of the sampling phase, an estimate of the error probability function is

obtained, erri, for each thread i. This estimated error probability function is referred to as

˜erri. Note that although the error probability estimate is obtained for a single voltage level

(Vsamp), the error at any other voltage V ∈ V is estimated as ˜erri(
tclki

tnom(V )).

Finally, the estimated error probability functions are provided as the input to SynTS-

Poly algorithm (Algorithm 1), which returns optimized voltage and timing speculation

ratios (i.e., clock periods) for each thread. The threads are then run at these optimized

levels for the remaining barrier interval.

The number of instructions in the sampling phase, Nsamp and the voltage at which cores

execute in the sampling phase, Vsamp, are both knobs in the online approach. Increasing

Nsamp provides more precise error estimates, but results in greater energy and execution
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time overheads during sampling. Increasing Vsamp increases the energy but reduces the

execution time overhead of sampling. Section 5.5 discusses how values for these parameters

are set.
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EVALUATION METHODOLOGY

5.1 Cross-Layer Methodology

In this section, cross-layer methodology has been described which motivates for the need

of a synergistic timing speculation strategy. Fig. 5.8 gives an overview of the methodology

used.

Fig. 5.8: Cross-layer methodology to profile delay characteristics.

5.2 Architectural Simulator

For performing the architectural simulations, a cycle-accurate Gem5 simulator [9] is

used to model a 4-core Alpha processor. Several Splash2-benchmarks representing a range

of real world applications [10] are executed on the simulator to extract cycle-by-cycle input

vectors for each stage in the processor. These input vectors are used to drive the netlist in

the circuit-level timing analysis, to estimate the actual propagation delay of each instruction

during the program execution. Each benchmark is executed for 3 barrier intervals, or to its

completion, whichever comes first. For the GPGPUs analysis, a cycle-accurate Multi2sim
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4.2 simulator [11] is used to model a Radeon HD 7970 GPGPU processor. Several Splash-

2 [10] and Parsec 2.0 [12] benchmarks are executed for the analysis.

5.3 Timing Error Modeling

Using Synopsys Design Compiler, Illinois Verilog Model [13] of the Alpha processor is

synthesized to obtain a gate-level netlist for each pipe stage; and MIAOW rtl [5] for Radeon

HD 7970 processor to obtain gate-level netlist for a SIMD unit within the Compute Unit.

Next, by feeding cycle-by-cycle input vectors for each stage to its structural RTL netlist,

sensitized paths for each instruction is recorded. In this work, the analysis is performed for

decode, SimpleALU and ComplexALU pipe stages of a CMP. The propagation delays of

gates on the sensitized paths are obtained from HSPICE simulations using the Predictive

Technology Model (PTM) for the 22nm node [14]. Finally, to model the impact of voltage

scaling on the propagation delay, HSPICE is used to simulate 22 nm ring oscillators and

record the clock period versus voltage, as shown in Table 5.1. Based on this cross-layer

methodology, traces of propagation delays for each instruction are recorded.

Table 5.1: Voltage versus Nominal clock period.

Vdd (V) 1.0 0.92 0.86 0.8 0.72 0.68 0.65

tnom (×) 1.0 1.13 1.27 1.39 1.63 2.21 2.63

5.4 Benchmarks-CMPs

The above mentioned methodology is used to characterize the error probability func-

tions of 10 SPLASH-2 benchmarks— FMM, Radix, LU-contig, LU-ncontig, FFT, Water-sp,

Barnes, Raytrace, Cholesky and Ocean. Of these, FFT, Ocean and Water-sp have homo-

geneous error probabilities for all threads, for which conventional timing speculation and

proposed approach (SynTS) would work just as well. In fact, the FFT error probabilities

are high and do not permit any timing speculation. Hence, results for the remaining 7

benchmarks from the Splash-2 suite are reported in Section 5.5.
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5.5 Benchmarks-GPGPUs

Again, the above mentioned methodology is used to characterize several benchmarks in-

cluding BlackScholes, EigenValue, MatrixMult, FFT, BinarySearch, Raytrace, StreamClus-

ter, Swaptions and X264. For this particular architecture of GPGPU, all the multi-threaded

applications demonstrated homogeneous error probabilities among all 16 streaming cores in

a particular SIMD unit.

Fig. 5.9: Streaming Cores and Vector ALUs in HD Radeon 7970.

In order to better understand this homogeneity in error probabilities, output obtained

from the 16 SMs/Vector ALUs (Figure 5.95 shows the VALU(VLIW lanes)) is analyzed to

plot the hamming distance bar graphs. For each Work-Item (set of instructions), cycle-by-

cycle instruction inputs to VALU are extracted to analyze its output. Figure 5.10 represent

the hamming distance graphs for different VALU’s showing almost a similar trend in the

output.

5Ubal, Rafael, et al. ”Multi2Sim: a simulation framework for CPU-GPU computing
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(a) Vector ALU 0 (b) Vector ALU 1

(c) Vector ALU 2 (d) Vector ALU 3

(e) Vector ALU 4 (f) Vector ALU 5

Fig. 5.10: Hamming distance bar graphs for the output of 6 vector ALUs. The graphs for
rest of the VALUs are qualitatively similar.
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The data is shown for 6 VALUs and for 16k instructions, however, the trend is almost

similar for remaining 10 VALUs, evaluated over 100k instructions. Similar hamming dis-

tance means that the output characteristics of different VALUs are similar and trends in

the path sensitization delays are also similar. This evaluates to the homogeneity in error

probabilities. Hence, the per-core timing speculation will work just fine for this particular

architecture and workload.
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EXPERIMENTAL RESULTS

Since the error probabilities of GPGPU were homogeneous, the results of synergistic

timing speculation analysis is presented for the CMPs only. The proposed SynTS approach

is compared to several other comparative schemes, as described below:

• Nominal V/F (Nominal): each core runs at its nominal voltage and corresponding

clock period, i.e., without any V/F scaling and without any timing speculation.

• Optimal V/F without timing speculation (No-TS): each core runs at different voltage

levels so as to minimize the weighted cost function of energy and execution time in

Equation 4.4, but without any timing speculation. The No-TS baseline reflects existing

approaches that attempt to balance workload variations between threads using DVFS

as proposed by [15].

• Per-core timing speculation (Per-core TS): each core leverages timing speculation,

to independently minimize its own energy and execution time cost, as measured using

Equation 4.4. Per-core TS serves as a best possible bound for single-core timing

speculation techniques like Razor [6], since it has offline access to the error probability

functions for each core.

The results for the offline version of SynTS are presented followed with the results for a

practical online implementation of SynTS.

6.1 Offline Optimization Results

The above mentioned schemes are initially compared to SynTS in an offline setting;

i.e., assuming that the error probability functions in each barrier interval are known in

advance. Although such an offline approach cannot be implemented in practice, it allows

the quantification of the best results that can be obtained from SynTS.
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Fig. 6.11: Energy versus execution of FMM for offline versions of the SynTS, Per-core TS
and No-TS approaches, normalized to the Nominal baseline. Each point corresponds to a
different value of weight θ from Equation 4.4 - (SimpleAlu).
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Fig. 6.12: Same data as in Figure 6.11 for the Cholesky benchmark - (SimpleAlu).
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Fig. 6.13: Same data as in Figure 6.11 for the Cholesky benchmark - (Decode).
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Fig. 6.14: Same data as in Figure 6.11 for the Raytrace benchmark - (Decode).
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Fig. 6.15: Same data as in Figure 6.11 for the Cholesky benchmark - (ComplexAlu).
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Fig. 6.16: Same data as in Figure 6.11 for the Raytrace benchmark - (ComplexAlu).
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To compare the energy vs. execution time trade-offs that can be achieved using SynTS

against competing approaches, offline optimization for each approach is performed by vary-

ing values of the weight θ (see Equation 4.4). Figure 6.11 to 6.16 show the resulting Pareto

curves for energy and execution time for Decode, SimpleAlu and ComplexAlu for different

benchmarks, normalized to the Nominal baseline. Several observations are made from these

figures. First, both TS approaches have lower best-case execution times than the No-TS

baseline; both TS approaches use over-clocking to increase performance. Moreover, SynTS

provides high performance at lower energy costs than Per-core TS, 21% lower for FMM

and 6% lower for Radix, respectively, for SimpleAlu; 27.6% lower for Cholesky and 25.1%

lower for Raytrace for Decode. ComplexAlu also shows lower energy as compared to other

approaches, however, direct comparison can not be drawn since Per-core TS and No TS

do not converge close to SynTS. Second, in its low energy configuration, SynTS is 18%

and 10.3% faster than Per-core TS for FMM and Radix ,respectively, for SimpleAlu; 20%

and 21% faster for cholesky and raytrace, respectively, for Decode. In all of these cases,

Per-core TS consumes marginally less (< 2%) energy. The relative savings of SynTS over

No-TS are even greater. Finally, although omitted for space constraints, the results for

other benchmarks are qualitatively similar for all three pipe-stages analyzed.

6.2 Online Optimization Results

A critical factor in the success of SynTS online optimization is the fidelity of the error

estimates obtained from the sampling phase. Figure 6.17 shows the actual and estimated

error probability functions for an entire barrier interval of the FMM and Radix benchmarks.

Here, the length of the sampling phase, Nsample, is set to 10% of the total number of

instructions in the barrier interval. Observe that in both cases, (1) the estimated error

probabilities are close to the actual probabilities, and (2) importantly, the critical thread

from a timing speculation perspective is always identified. Similar behavior is observed for

all barrier intervals and for the rest of the benchmarks over all three stages.

For the online experiments, Nsample is set to 50K instructions, except for benchmarks

which have very short barrier intervals, interval size is adjusted accordingly. One such
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Fig. 6.17: Actual and online estimated error probability versus timing speculation ratio for
one barrier interval in the Radix and FMM benchmark.

example is for the benchmark FMM, where the Nsample is set to 10K instructions. In all

cases, Vsample is set to the nominal chip voltage. For every voltage level in Table 5.1,

each core can choose among six clock periods that are a fraction r ∈ [0.64, 1] of the nominal

clock period. Finally, since the focus here is on addressing heterogeneity in error probability

(and the impact of estimating it online), it is assumed that the information on workload

heterogeneity (Ni for each thread) is available from offline characterization or using online

workload prediction techniques proposed in the literature [8, 15,16].

Figure 6.18 plots the energy-delay product (EDP) of proposed online implementation

of SynTS to competing approaches for various benchmarks across three pipe stages. Results

are for a fixed value of θ that weights energy and execution time equally. The results are

normalized to the SynTS (offline), allowing us to evaluate the overheads of implementing

SynTS online.

Several observations can be drawn from Figure 6.18. (1) The overhead of online versus

offline SynTS is relatively low—10.3% in EDP on the average over the seven benchmarks.

These overheads are because of imperfect error probability estimation, and because the

sampling phase is executed at sub-optimal voltage and frequency levels to estimate the
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error probabilities. (2) Notwithstanding the difference, SynTS outperforms the competing

approaches for all seven mentioned benchmarks and for all three pipe stages. Compared to

existing timing speculation, online SynTS is better up to 25% in terms of EDP. The benefits

are even greater when compared to No-TS.

6.3 Optimization Overhead of SynTS-Online

As mentioned earlier, 10% of the instructions are sampled at the start of each barrier

interval. The primary power overhead in SynTS is attributed to the sampling process

of finding the timing speculation critical thread within each barrier interval. The power

overhead of proposed scheme is calculated by synthesizing the pipe stages from the IVM

1.0 using the Synopsys Design Compiler with a 45nm FreePDK library.

The overhead relative to the core power and area is estimated after adding all the

hardware enhancements of the SynTS. Overall, the power overhead is around 3.41% for

SynTS (online) relative to the core power when sampled for barrier intervals over one

benchmark, on average. The area overhead of SynTS (online) is even smaller, at 2.7% when

compared to the core.
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CONCLUSION

In this thesis, a novel technique, Synergistic Timing Speculation (SynTS), has been pro-

posed to optimize the energy and execution time of multi-threaded applications executing

on multi-core processors. SynTS is based on a new empirical observation — heterogene-

ity in the sensitized delay distributions and thereby the error probabilities under timing

speculation across different threads. Observing the sensitized-delay variance across differ-

ent threads, SynTS adjusts the operating-frequency and supply voltage for each thread to

make the thread-barrier synchronization more energy-efficient. One of the key objective of

this study was to improve the system energy efficiency and/or performance. Our empirical

evaluation of SynTS illustrates that it improves EDP by up to 25% as compared to per-core

timing speculation and up to 55% compared to no timing speculation.

As future work, this approach can be extended to multi-threaded applications that

use other synchronization mechanisms, besides barriers for CMPs. For GPGPUs, other

architectures can be analyzed, however, lack of resources (open-source GPGPU rtl and

corresponding architectural simulator) restrict the analysis for the time being.
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