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ABSTRACT

An Electromagnetic Coupling Model for Side-Channel Analysis

by

Michael L. Schena, Masters of Science

Utah State University, 2016

Major Professor: Ryan Gerdes, Ph.D.
Department: Electrical and Computer Engineering

This thesis presents an EM coupling model used to enhance power, side-channel mea-
surements used in CPA. The Kalman filter is used to combine measurements of magnetic
flux density with voltage or current traditionally used to measure power consumption. The
DES encryption algorithm is used to evaluate CPA using EM coupled power measurements

compared to traditional power measurements.

(56 pages)
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PUBLIC ABSTRACT

An Electromagnetic Coupling Model for Side-Channel Analysis
Michael L. Schena

Data encryption is important for secure digital communications. While the algorithms
used to encrypt data are fairly secure, the physical devices used to run them can be vul-
nerable. Sensitive information that can be used to decrypt data can be discovered through
analyzing some of the physical attributes of these devices. Things like the power consumed
by a device or the time it takes a device to perform encryption can be used to obtain this
sensitive information. This thesis presents a way to us electromagnetic waves produced by
a device to enhance one’s ability to use the power consumed by a device to gain sensitive

information.
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CHAPTER 1

Introduction

The research presented in this thesis aimed to develop an electromagnetic coupling
model to improve the accuracy of power consumption measurements for side channel anal-
ysis. The intent of this coupling model is to improve power measurements through noise
reduction. The Kalman filter is used for integrating EM signals into power measurements.
It was chosen for its capability of handling multiple signals and its design for removing the
zero mean Gaussian noise that is common in physical systems [1].

Experiments were performed to evaluate EM coupling as a noise reduction technique
for side channel power analysis. The main noise reduction technique used in side channel
analysis is averaging multiple traces of the same operation. To analyses the noise reduction
of EM coupling, CPA will be performed on traces obtained from a crypto-device with and
without EM coupling. In addition, both of these implementations will utilize trace averag-
ing. The number of traces used for averaging will be varied to compare the contributions
of EM coupling to noise reduction.

DES was the first encryption algorithm to be approved and accepted by the United
States government and is still used in many applications today [2,3]. It is considered to be an
extremely secure encryption algorithm [4]. Although from a theoretical standpoint DES is
cryptographically secure, It physical implementations have been shown to leak information
through side channels and to be vulnerable to attack [5,6]. For these reasons DES was
chosen as the targeted encryption algorithm.

Two implementations of DES were implemented on embedded style devices, one mi-
crocontroller and one FPGA, and were analyzed using Correlation Power Analysis (CPA).
Some preliminary work was done to assess the devices vulnerability to power analysis and
then CPA was performed on measurements taken from the devices. Results of the vulner-

ability of these DES implementations and the effects of EM coupling will be presented.



CHAPTER 2

Background

This chapter covers the background necessary for the development of the EM coupled
power model for CPA. The targeted encryption algorithm, DES, used to evaluate the CPA
implementation is described. Then, side-channel analysis, power analysis, and CPA are
described, giving the relationship the power consumption side-channel and DES. Finally, a
general explanation of the Kalman Filter is presented; in chapter 3 the specifics of how the
Kalman Filter is used to integrate EM emanation and current measurements to obtain a

noise reduced power consumption measurement will be presented.

2.1 Data Encryption Standard

DES is an interoperability standard that describes the functions and formats used to
communicate DES encrypted data from one computer to another [3]. DES is symmetric
encryption algorithm that utilizes a shared, secret key. The algorithm was approved by
NIST as FIPS PUB 46 in 1977 and was reaffirmed every five years as the standard the last
of which was in 1993 [7]. DES is still in use in many applications and has been used to
examine other side-channel analysis techniques (put refs here stupid!). It was the choice

for this research because it is so well known and has been documented to be vulnerable to

CPA.

2.1.1 Description

DES operates on a 64-bit input referred to as the plaintext and produces a 64-bit
output referred to as the cyphertext. First the plaintext is passed through the Initial
Permutation (IP) then split into 32-bit halves Ly and Ry. These halves are passed through
16 rounds where R, is passed through the Feistel Function and combined with L,, by an

XOR function. At the end of each round L, is set to R,, and R, is set to the output of
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the XOR function. After the 16th round the halves are swapped then passed through the
Final Permutation (FP) which is an actually the inverse of the IP.

Each of the 16 rounds utilize a different subkey for the Feistel Function. These 48-bit
subkeys are generated from the key using 2 permutation functions, PC-1 and PC-2, along
with a circular shift. The key is first passed through PC-1 where it is reduced from 64-bits
to 56-bits and permuted according to a set standard function. From there to produce the
subkey for the nth round each 28-bit half is circular shifted left by n-bits and passed through
PC-2, another set permutation function. The output of PC-2 is then the 48-bit subkey for
the nth round. It is important that if any subkey is known the majority of the key can be

recovered.

Feistel Function

In each of the 16 rounds, the Feistel function takes R, and the nth round subkey
as inputs. In the Feistel function R, is expanded through what is called the Expansion
Permutation, which expands the 32-bit half to 48-bits. These 48-bits are then combined
with the subkey through an XOR function. This is the point where sensitive key information
has entered into the encryption algorithm. In later sections how this information is taken
advantage of will be explained. The XOR output is then divided into 8 6-bit words that
are sent through what are called Switch Boxes or SBoxes. The combined output of these

SBoxes is the output of the Feistel Function.

SBoxes

Each of the 8 SBoxes is a 4-by-16 array of 4-bit outputs. One entry of the array is
chosen as the output by indexing the array with the 6 input bits. From the input, bits 0
and 5 determine the row while bits 1 through 4 determine the column. The SBoxes are
important for CPA, described in later sections, because their output is determined by both
the plaintext and the key but also a change of any one bit of input can result in multiple
bits of output changing, which is favorable for producing distinct correlations between these

bits and power consumption.



2.2 Side-Channel Analysis

Side-Channel Analysis is a branch of cryptography that analyses a crypto-system
through physical attributes that leak information, which are referred to as side channels [5].
Some known side channels for DES are power consumption, scan chain [8], and electromag-
netic emanations [9]. A high level block diagram of a crypto-system is shown in figure 2.2.
Because crypto-systems make use of sensitive information to perform their operations, the
sensitive information can affect the performance of the physical devices performing these op-
erations. When sensitive information affects physical attributes of the crypto-system, these
changes can be measured through side channels and then analyzed to potentially reveal
sensitive information. If the analyzed crypto-system’s side-channels directly or indirectly
correspond to the system’s sensitive information then a side-channel attack against that

system is feasible.

2.2.1 Correlation Power Analysis

CPA is a side-channel attack that correlates the power consumption of a device when
performing operation on data containing sensitive information. An example of CPA was
described, attacks were mounted, and results were presented for both DES and its successor
AES in [5]. For DES a register load operation, at the end of the first round or the beginning
of the sixteenth round, can be targeted. CPA correlates the power consumption, of the
crypto-device at that time, with the Hamming distance between some initial or reference
value and a new or final value being stored in the register. Hamming distance is used
because it is assumed that it correlates well with power consumption. The final value being
stored must depend on both the desired sensitive information and some known variable
value. If these criteria are met actual power measurements can be correlated with expected
Hamming distances to infer the sensitive information contained in the data.

Equation 2.1 is the Pearson correlation coefficient that is used to calculate the cor-
relation between the Hamming distance and the power consumption given as h and p re-
spectively. The sample version of this equation used to compute the correlation for actual

measurements is given in 2.2. The Hamming distance for a power trace i and guess g is



Sensitive Information

Data Input Cryptosystem Data Output
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(leaked information)
Fig. 2.1: A block diagram overview of a crypto-system that is vulnerable to side-channel

analysis

given by h{ with h9 being the mean Hamming distance for that guess, over all n power

traces. The value p;(t;) is the power trace i at some targeted sample time ¢; for which

p(tj) is the mean, again over all n power traces. The standard deviation of the Hamming

distance and power consumption is spe and s,y respectively.

Py = cov(h,p) 2.1)
Thop

(n— 1)shgsp(tj)

The process for guessing a key using power measurements and CPA is as follows. First,
exhaustively guess the sensitive bits that are to be targeted. From those guesses, for each
of the known variable data used, compute the expected Hamming distance of the register
operation under test. Then using 2.2 correlate the measured power with the expected
Hamming distance for each guess. The guess with the highest correlation is considered the

most likely guess.



Hamming Distance

Hamming distance is a measure of the difference between two binary data values. The
equation for Hamming distance H D between some reference value R and a new value D is
shown in 2.3. In 2.3 the XOR between R and D results in a binary number where a bit
is 1 if the corresponding bit in R is different than that in D. Then the Hamming weight
function HW is a count of the bits that are one in its input. This results in the Hamming

distance being the count of bits in D that differ from their corresponding bit it R.

HD = HW(R& D) (2.3)

Hamming distance is expected to correlate with the power consumption, because the more
bits are changed in a register the more power it will need to transition those bits. In the
typical CMOS device, this added power consumption comes from both the cost of charging
capacitances to the new static value and the dynamic cost of switching transistor states.
A model for the relation between Hamming distance and power consumption in CMOS
devices was developed and tested in [5]. Hamming weight and Hamming distance have

been assumed or analyzed in [9-12] and has result positively.

2.3 Kalman Filter

The Kalman Filter is a widely used noise reduction filter; when the applied models
and parameters are correct, it promises statistically optimal filtering [1]. This provides a
useful tool for CPA because noise introduced to power measurements can greatly affect the
correlation performance. Also, The Kalman Filter has been used for utilizing the informa-
tion from multiple types of measurements to approximate a single desired parameter or to
produce some other aggregate parameter [13—15]. This is why it was chosen for the practi-
cal purposes of this work that entails combining magnetic flux measurements with supply
current measurements to better approximate a device’s power consumption. The rest of
this section will layout general Kalman filter method that was used in the implementation

of experiments for this thesis.



2.3.1 Process Model

In order to use the Kalman Filter to approximate the state of some process a model
of the process and the measurements of said process must be made. The equations 2.4 and
2.5 give discrete models for the process state xj and its measurements z;. In the Process
Model the vector u represents the known control inputs to the system and those inputs
are transformed into the process state space by the matrix B. The Process state vector
xy, hold the observed and unobserved parameters of the process that are being modeled.
The matrix F' represents how the process develops from one timestep to the next. In a
trivial example where the process state vector has two parameter that are assumed to be
constant F' would be given by 2.6, a two by two identity matrix. This example may seem
unimportant, but if the parameters are relatively constant with a small enough time step
it may be appropriate to model them this way. The measurement vector z; holds the
observations of system parameters and the matrix H describes how the system parameters
relate to the measurement values. wy and vy are the process noise and measurement noise
respectively. Both are assumed to be zero mean Gaussian random variables. Estimating the

variance of these noise variables is part of deriving a Kalman Filter for any specific system.

xp = Fap_1 + Buy + wy, (2.4)

2 = Hxp, + vy, (2.5)
10

F = (2.6)
01

2.3.2 Filter Update Equations

From the process model the Kalman Filter produces its estimation and correction
equations shown in 2.7 and 2.8 respectively. Equation 2.7 estimates the system state Zyx_;
with all the information known up to and including timestep k — 1. Then, 2.8 corrects that
estimate using the new information of z; measured at timestep k. To correct the estimation

2.8 multiplies the difference between the estimated state and the measured state known as
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the residual by the Kalman Gain K}, to determine how much estimate needs to be corrected
based on the measurement. To filter a set of measurements the process of estimating and

then correcting is repeated for each timestep.

Tpk—1 = FZp_qp—1 + Buy (2.7)

Ty = L1 + Ki(ze — HEgp—1) (2.8)

2.3.3 Filter Parameters

In order to use the Kalman Filter the Kalman Gain must be computed for each time
step. Equation 2.10 gives the update equation for K} that depends on the Covariance
Matrix P and Measurement Noise Covariance R. In equations 2.9 Pk|k — 1 is estimated
using the previous Covariance Matrix and the Process Noise Covariance. The Process
Noise Covariance used here Q) is a time varying approximation based on measurements.
The details of how the noise parameters R and @ were determined will be given in the
implementation chapter. Finally the Covariance Matrix is updated based on the Kalman
Gain that was computed for this time step. The equations 2.9-2.11 shows that K is based
on the variance of both process and measurement noise and represents a ratio of uncertainty

between the state estimation and state measurement.

Pyt = FPy_1—1 FT + Qp, (2.9)
Kj, = Py H" (HPy_1H" + R)™1 (2.10)
Py, = (I — KyH)Pypp (2.11)

2.3.4 Rauch-Tung-Striebel
The RTS smoother was first developed in [17]. It is a smoother based on Maximum-
Likelihood that can be added to the Kalman Filter. RTS consists of two passes, a forward

pass that is the original Kalman Filter where the a-posteriori and a-priori state vectors and
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covariance Tk, Tgjk—1, Prlk, and Py_1 are stored for a backward pass. In the Backward
pass x|, is computed as shown in 2.12. This computation uses a new Gain factor Cj
determined by the a-posteriori and a-priori covariance. The RTS smoother was applied

when filtering data in this research.

Tein = Tk + Ck(@ki1n — Thijk) (2.12)
Cr = Py FL P} (2.13)
k klk L b1 Dk

Pyn = Py + Co(Pis1jn — Pioy1i)CF (2.14)
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CHAPTER 3

Kalman Theory

This chapter covers the details of the specific Kalman Filter used for the implemen-
tation of an EM coupled CPA attack. The main intention of this filter is to improve the
power measurement by removing as much measurement noise as possible. To improve the
noise reduction, the RT'S smoother was used after the forward pass of the Kalman Filter is
completed as described in chapter 2. There are multiple methods by which sensor measure-
ments can be combined using a Kalman Filter [16]. In this work measurement were simply
combined through the observation matrix. The process model and noise estimation used to
apply the Kalman Filter to EM coupled power measurements in this work are described in

this chapter.

3.1 Electromagnetic Coupling
Power analysis is a type of side channel analysis that gains leaked information from
the power consumption of a device. Figure 3.1 shows an EM coupled model for measuring
the power consumption of a targeted device. In this model the device is assumed act like
a wire for the purposes of EM measurements. In order to couple a devices EM emanations
to its power consumption the relation between current and magnetic flux is used. %—lf is a
proportional measure of % where B is the magnetic flux and I is current. The infinitely

ol

long wire approximation, B = 52, is used. The antenna used to probe the device measures

the change in magnetic flux density B [18].

3.2 Process Model
The process model developed here represents a crypto-device and tracks the total power
of the device. The measurements represent the voltage over a shunt resistor inserted in the

ground line of the supply voltage and the change of magnetic flux density caused by current
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Vad
P
+
Device Lp Lp Vp =44
Device Probe

Vg o—4

Ia| §RS

Fig. 3.1: EM Coupling model V; measurements shown on left and EM probe model shown
on right

passing through the shunt resistor. The equations 3.1 and 3.2 give models for the process
state zp and its measurements z;. For this model it is assumed that the control vector input
u is null and so it and B are excluded. The Process state is represented as xj = [Vi Bk]T
where V and B respectively are proportional to I and I from the EM coupling model. The
process model used here assumes B is constant and I is given by the previous value for I
plus I times the timestep At, which leads to process matrix given in 3.4. The measurement
is 2z = [vg i)k]T where vy is a voltage measurement that is proportional to I by some

resistance value r and by, is the measured change in magnetic flux which is proportional to

I by some coupling coefficient m. This results in the equation for H given by 3.3.

rp = Frp_ 1+ wg (3.1)

2z = Hxp + v (3.2)
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10
H = (3.3)
0 1
1 rmAt
F= (3.4)
0 1

3.3 Filter Execution

The equations used execute the Kalman Filter are its estimation and correction equa-
tions shown in 3.5 and 3.6 respectively. Equation 3.5 estimates the system state Zy;_1 to
be [Vi_1+ Bj_1At B;;,l]T where V and B come from the a-posteriori state vector T 1|k—1-
Then, 3.6 computes the residual, the difference between xy,_; and z. To correct the es-
timation 3.6 multiplies the difference between the estimated state and the measured state
known as the residual by the Kalman Gain K}, to determine how much estimate needs to
be corrected based on the measurement. To filter a set of measurements the process of

estimating and then correcting is repeated for each timestep.
Tp—1 = Fop_1p—1 (3.5)

T = Tppp—1 + Ki(zx — HEpp—1) (3.6)

For each timestep the Kalman Gain is computed based on the process and measure-
ment models, specifically F' and H, developed in section 3.2, and ) and R, which will be
developed in section 4.3. Equation 3.8 gives the update equation for K} that depends on the
uncertainty covariance Matrix P and Measurement Noise Covariance R. In equations 3.7
PEk|k — 1 is estimated using the previous Covariance Matrix and the Process Noise Covari-
ance. The Process Noise Covariance used here )i is a time varying approximation based
on measurements. The details of how the noise parameters R and @); were determined will
be given in the implementation chapter. Finally the Covariance Matrix is updated based
on the Kalman Gain that was computed for this time step. The equations 3.7-3.9 shows

that K is based on the variance of both process and measurement noise and represents a



ratio of uncertainty between the state estimation and state measurement.
T
Pop—1 = FP_qp 1 F7 + Qk

Ky = Pop—1 H(HPy  H" + R)71

Py = (I — KiH) Py

13

(3.7)

(3.8)

(3.9)
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CHAPTER 4
DES Power Data Collection

To test the proposed EM coupling model developed in Chapter 3 magnetic flux density
and voltage measurements, referred to as power traces or records, of a crypto-device have
to be taken. This chapter describes the experimental set up used to record measurements
and some details of how the measurements were improved. To improve the quality of
magnetic flux density measurements, some EM shielding was constructed and placed around
the antenna probe along with the targeted component. After collecting the data some
preprocessing was done to align the records and determine the samples to target for CPA.

Aside from the power traces used for CPA, measurements were taken for the estimation
of process and measurement noise needed for the Kalman Filter implementation. Measure-
ments for the process noise were taken much like the CPA power traces but the key is varied
along with the plaintext. The Measurement noise was analyzed using an arbitrary function
generator in place of the cryptodevice. The function generator was used in order to have a
more precisely known signal to measure. All the Data collection is described further in the

following sections.

4.1 Data Collection

For execution of CPA on a device power traces of the device need to be recorded while
the device is performing it’s encryption algorithm on variable inputs (plaintext) using the
same sensitive information (key). For this experiment 1000 different plaintexts used for
encryption with the same key. In addition, 125 different power traces were taken for each
plaintext in order to be averaged, which is a common noise reduction technique used for
CPA. To automate the process a GPIO pin was lowered just before DES began and raised
again at the end. Also, a delay loop was used in between DES iterations to allow for data

transfer from the oscilloscope to a computer, which was storing the data.
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Collection of the power traces was done with a Techtronics MDO 4104-3 oscilloscope.
FEach DES trace consisted of 5000000 samples taken at 625 mega-samples per second. Three
channels of the oscilloscope were used one for the power voltage, the EM antenna probe,
and a probe on the GPIO pin trigger. The voltage probe was placed above a 9.856 Ohm
shunt resistor on the ground line between the device and an external power supply. The
EM nearfield antenna was positioned above the shunt resistor, both within a Ferriday cage,
and its voltage signal was passed through a 10 Db amplifier before reaching the oscilloscope.
Examples of voltage and magnetic flux traces are shown in figures 4.1 along with the traces

after averaging over 125 traces in figures 4.1.

4.2 EM Shielding

Because of the nature of probing EM signals, noise is present from many external
signals. It was shown in [19] that shielding an EM probe is an effective way of reducing
noise from external sources. As in [19] a Faraday cage was constructed to shield the probe.
The cage was a four by four by four inch cube, pictured in figure 4.2, constructed with two
mesh layers, one of Steel and one of Aluminum. Apertures had to be cut to allow for the
EM probe and device components to be connected while inside the Cage. The holes were
kept as small as practical. When in use, The Ferriday cage was connected to the external

power supply’s ground line below the shunt resistor.

4.2.1 Alignment

Alignment was performed on the records to compensate for the trigger jitter caused
by the oscilloscope’s edge triggering device. A matched filter was used as the alignment
technique where each record was aligned to a reference record from which the matched filter
was produced. A distinctive oscillating in the voltage signal, caused by raising the GPIO
trigger, was used as the matched filter and cross correlation was computed between the
Matched filter and each record. A peak and oscillations appeared in the cross correlation
output, example shown in figure 4.2.1, corresponding to the position of the voltage oscil-

lation in each signal. As apparent in Figure 4.2.1, the two first positive peaks are fairly



16

0.06 T T T T

0.04 1

0.02

Voltage

-0.02

-0.04 4

-0.06 1 1 1
0 1 2 3 4 5

Sample Point «108

0.15 T T T T

0.1

0.05

Voltage

-0.05

-0.15 L L L
0 1 2 3 4 5

Sample Point «108

Fig. 4.1: A typical power (top) and EM emanation (bottom) trace taken while the Tiva
performs DES
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Fig. 4.2: A power(top) and EM emanation(bottom) trace resulting from averaging 125
power traces taken while encrypting the same plaintext with the same key
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Fig. 4.3: The Faraday Cage with EM probe and Shunt Resistor Inserted
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close in magnitude, so because the position is going to be used to create a relative offset
the minimum point of the negative peak was used. After finding these position they were
normalized by subtracting the position for the reference trace to determine the relative
offset. When averaging was performed as explained in chapter 5 each trace was shifted by

the offset index determined through this process.

4.3 Noise and Variance

The two sources of noise that are modeled in the Kalman process model are the process
and measurement noise given respectively as wy and vg in 3.1 and 3.2. When executing
the Kalman filter these two noise sources are expressed through @ and R that are used
to determine the Kalman Gain K} for each timestep. These two parameters may need to
be estimated for each specific crypto-device, encryption algorithm, or measurement setup.

This section explains how for the experimental setup used in this thesis.

4.3.1 Process Noise

In order to approximate the Process Noise, the variance is measured across the process
operating on different inputs. The two inputs that affect the process are the plaintext and
the key. To measure the process noise one hundred and twenty five power and magnetic flux
traces were taken for each of one thousand plaintext, key pairs. Each of these sets of one
hundred and twenty five traces were then averaged. Then for each timestep, the covariance
between the voltage and magnetic flux of the thousand averaged traces was computed. The
result is a covariance matrix @) for each timestep of the process. The resulting @) is shown
if figure 4.3.1.

In practice the process noise estimated using this method could be determined using a
device identical to the target device an attacker has access to beforehand. If fact, the process
noise estimation should be applicable for any identical device running the same encryption
algorithm, and so could be used for multiple attacks on separate devices. Although this
method takes a substantial amount of time and traces, because it can be done beforehand

and without access to the targeted device it does not increase the time of performing the
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Cross Correlation Index «10%

Fig. 4.4: Output of the cross-correlation between a matched filter and a record to be aligned

actual attack.

Q1. = cov(vy, by) (4.1)
Vi = [v11(tk) v2.2(tk) -+ Vnn (t)] (4.2)
b, = [b11(tk) ba2(th) - - b (tr)] (4.3)

Qr, = cov(vy, by) (4.4)
Vi = [ (t5) V2, (k) -+ On i (5] (4.5)
i = [b1,x(tk) Do (k) - - b x (T)] (4.6)

4.3.2 Measurement Noise
The variance of voltage and magnetic flux density measurement noise must be estimated
to successfully apply the Kalman Filter. The Variance of the estimated noise is used in

the R matrix used in equation 3.8; R is given by 4.7 where oy and o, denotes standard



Variance

25

15

0.5

x10 "

Voltage Variance
Magnetic Flux Variance
Voltage Magnetic Flux Covariance

0.5 1 1.5 2 2.5 3 3.5 4 4.5
Samples x 10°

Fig. 4.5: The time varying @ used in Kalman Filter

21



22

deviation of voltage and magnetic flux density measurement noise respectively. Also, they
must be determined separately because of differences in the measurement methods. The
Voltage measurements were taken with an oscilloscope probe connected to the shunt resistor
terminal. Differing from this, the Magnetic flux measurements were taken with an antenna
positioned above the shunt resistor. Also, the Magnetic flux signal was passed through a

10 Db preamplifier before being passed to the oscilloscope.

R= (4.7)

In addition, the measurements are being averaged before being input to the Kalman
Filter and the estimated noise needs to reflect that. Because the noise is assumed to follow
a zero centered Gaussian distribution averaging should reduce the variance of measurement
noise present in the signal. To simulate this, while estimating the noise, multiple traces
were taken, then some number of them are averaged depending on how many traces per
plaintext are being averaged.

After implementing the filter with the estimated noise variances described in this sec-
tion, the filter was relying too much on z; for each Vj, estimate, following within 10~6 volts
of the measurement at each timestep. There are a few possible reasons this discrepancy.
First, the physical set up was slightly different when taking the records for Noise estimation
than when taking DES power traces. This was because the arbitrary function generator
took place of both the crypto-device and the power supply, which reduced the number of
connections between the voltage process and the oscilloscope probe. Another reason could
be that the DES power traces had a DC offset whereas the Measurement Noise was esti-
mated using a constant zero volt signal. After considering these differences, the voltage

measurement standard deviation oy was increased to ten times the original estimate.

Coupling Coefficient
The magnetic flux density traces used to estimate the measurement noise were also

used to estimate the coupling coefficient m necessary for equation 3.4. The signal being
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Fig. 4.6: An Example Voltage Trace taken of a constant zero volt signal produced by a
function generator across the shunt resistor
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Fig. 4.7: Voltage Trace after averaging 125 traces used to compute standard deviation
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Fig. 4.8: An example EM emanation trace taken over a constant-slope signal across the
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Fig. 4.9: Magnetic flux signal after averaging 125 traces used to compute standard deviation
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measured was EM emanations from the shunt resistor with a constant slope current signal
passing through it. This should result in a constant change to the magnetic flux density,
measured as constant voltage across the antenna probing the magnetic field. The ratio
between the mean of the measured signal and the current slope was computed and used as

m.
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CHAPTER 5

Tiva-C CPA Implementation

This Chapter covers the implementation of CPA and the Kalman Filter used to analyze
the coupling of magnetic flux and voltage measurements to measure power consumption.
An experiment was performed where measurements were taken of the electromagnetic em-
anations and supply current of a microcontroller while it was performing DES encryption.
These measurements were analyzed using different implementations of CPA including one
that utilizes the Kalman Filter. The Results of each CPA implementation are then presented
and compared.

This chapter will cover the implementation details as follows. First, the Hamming
distance power model is validated for the targeted device. Then, the Experimental setup
used to take electromagnetic and voltage measurements is explained followed by the CPA
implementation applied to those measurements. Finally, the results of each implementation

will be presented and analyzed.

5.1 Power Model Validation

In order to know whether or not CPA is for a DES implementation on a specific device,
a correlation between the power consumption and the Hamming distance of the registers
of the device under test must be shown. A program was written in ¢ and loaded on a
Texas Instruments Tiva-C Series TM4C123G microcontroller to examine its register power
consumption. Some difficulties are present with the Tiva-C. The Tiva-C contains a pipelined
processor which means power is being consumed for multiple instructions at the same time.
Also, the registers and other hardware of the Tiva-C are smaller than FPGA’s which these
types of attacks are commonly demonstrated on. These difficulties make the Tiva-C a
challenging target for showing possible improvements to existing attacks like CPA.

Power measurements were taken to confirm the Hamming distance power model. The
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voltage was probed over a 10 Ohm resistor inserted between the USB ground wire and the
external power supply ground. Records of length 100000 were taken at a rate of 50 GS/s.
Oscilloscope was triggered using a GPIO pin. One thousand records were taken using
each Hamming distance 0 through 32. The Program running on the microcontroller was
essentially the pseudo-assembly program shown in 5.1. In this program the GPIO trigger,
accumulator, and branch instructions are independent of the values stored in R1 and RO,
so they should have the same effect on every trace indifferent to the Hamming distance
being tested. Also, examining the move instructions on line 9 and 10 using 2.3, where R
is RO before instruction execution and D is RO afterwards, the Hamming distance for both
instructions should be the same and equal to the Hamming weight of R1.

After measuring, traces were averaged over the 1000, 500, 250, and 125 records. The
beginning section of the record was not used in averaging because there were oscillations
due to the GPIO pin being switched. Examples of a signal trace and an averaged trace is
shown in figure 5.1 and 5.1 respectively. After averaging the traces, the mean voltage value

was calculated over different lengths of the trace.

Observations

The power vs Hamming distance graph shows a positive correlation between voltage and
Hamming distance. When averaging over 1000 measurements and 90000 samples Voltage is
strictly increasing with Hamming distance. A plot of the resulting voltage curve is shown in
figure 5.1. One intriguing result of the measurements is the slope of voltage for a Hamming
distance of 16 to 32 was about double that from 0 to 15. It would be interesting to look into
the cause of this difference and examine if it has some exploitation. Even though power has a
strictly positive correlation with Hamming distance, from the magnitude shown here and the
number of instructions needed to average we predict that the baseline CPA implementation

will not work, due to the resolution and number of samples taken.
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1 R1 = #DesiredHD ;0x0, Ox1, 0x3, 0x7, ..., OxFF were used
2 loop:
GPIO = 0
4 bl delayloop
GPIO =1
6 R2 = #0x0
innerLoop
8 add R2, #0x1
mov RO, R1
10 mov RO, #0x0
cmp R2, OxFFFF
12 beq loop

b innerLoop

Fig. 5.1: Psuedo assembly code of the program used to validate Hamming distance power
model

150

100 b

Volts
o

-50

-10G- b

-150 I I I I I I I I I
0

Samples 4

Fig. 5.2: Example trace of a power trace recorded while running the assembly program in
figure 5.1 with a Hamming distance of 0
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Fig. 5.3: Result of averaging 125 power traces used to test the Hamming distance power
model
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Fig. 5.4: The mean voltage of averaged traces vs the Hamming distance of register operations
being performed
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5.2 Correlation Power Analysis

The targeted Hamming distance must be affected by the key, but also be able to change
when a different plaintext is used.

This CPA implementation targets two sets of instructions of the DES implementation
that handled the SBox output. Because the SBoxes produce 4-bit outputs every two SBoxes
different instructions are used to handle the upper nibble and lower nibble of the four output
bytes. Both of these code segments contain instructions that are suitable for being targeted
by CPA.

The section of code listed in figure 5.2 shows the assembly used handle the SBox
output that creates the upper half of each byte of Feistel function output. The important
instructions are listed on lines 11 through 13. Line 11 loads the SBox output into register
r0. Then, lines 12 and 13 shift the data left by 28 bits and back 24 bits to put it in the
correct position. The Hamming distance of r0 across both of these instructions equals two
times the Hamming weight of the SBox output.

The second section of code that handles the lower half of a byte output is shown in
figure 5.2. Here the instruction on line 4 loads the SBox output into rl. Then, on line 5
the 4 bites in rl are combined with r0 using an ORR instruction. In this case the ORR
instruction can be used, because the lower 4-bits of r0 is known to be all 0’s before the
instruction execution and equals the SBox output afterwards. This results in a Hamming

distance is equal to the Hamming weight of the SBox output.

5.2.1 Correlation Model Validation

To find the location where sensitive information is present in the power trace, Corre-
lation is performed for every sample point of the DES encryption using only the correct
Hamming distance for each trace instead of every guess. From the symmetry of the 16
rounds as seen in figure 4.1, one can infer the general location of the first round. Unfor-
tunately, no strong correlation peaks presented themselves in the expected area shown in
figure 5.2.1 or elsewhere. The correlation between correct Hamming distance and the entire

first half of DES execution is shown in figure 5.2.1.
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F89D0004 LDRB r0,[sp,#0x04]
FO000080 AND r0,r0,#0x80
1184 ASRS r4,10,#6
F89D0004 LDRB r0, [sp,#0x04]
F3C00080 UBFX r0,r0,#2,#1
4304 ORRS rd ., rd r0
F89D0004 LDRB r0,[sp,#0x04]
F3C006C3 UBFX r6,10,#3,#4
48EE LDR r0,[pc,#952] : @0x000007DC
EB001004 ADD r0,r0,r4 ,LSL #4
5D80 LDRB r0,[r0,r6]

0700 LSLS r0,r0,#28

0E00 LSRS r0, 10,424
F88D0000 STRB r0, [Sp,#OXOO]

Fig. 5.5: The instructions shown here load an SBox output into the upper four bits of each
Feistel function output byte

F89D0000 LDRB r0,[sp,#0x00]

49E1 LDR ri,[pc,#900] ; @0x000007EO0
EB011104 ADD ri,rl,rd ,LSL #4

5D89 LDRB rl,[rl,r6]

4308 ORRS r0,r0,r1

F88D0000 STRB r0,[sp,#0x00]

Fig. 5.6: The instructions show here load the SBox output into the lower half of the Feistel
function outputs. based on a six bit SBox input
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Fig. 5.7: Result of correlating every power sample point to the Hamming distance expected
of the SBox1 output for each plaintext
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Fig. 5.8: The power correlation for the correct SBox1 input in a window expected to contain
the targeted instructions
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Since the correlation did not result in a significant spike in the first round, some ex-
tra investigation of the DES timing was done. Extra triggers were inserted in the DES
implementation just before the targeted instructions. After taking traces with the added
triggers, the average difference between the original trigger and the new trigger was used to
approximate the location of target instructions in the power trace. In absence of a strong

correlation spike, this approximation was used for the further analysis.

5.3 Baseline Result

To obtain baseline CPA results, CPA was performed using all 1000 power traces aver-
aged over all 125 records. The target expected Hamming distance for each key guess was
determined, and the correlation between these Hamming distances and the power traces
were computed, on a window covering the target instructions power consumption. The 64
key guess correlations for the first SBox are plotted in figure 5.3.

For each guess, the maximum correlation value within the range around the target
instruction location is taken as that guess’ power correlation value. These values for each
guess and each SBox are shown in figure 5.3. For each SBox the guess with the maximum
power correlation value is considered the best guess for that part of the key. None of the

best guesses matched the actual key used in the encryption.

5.4 Electromagnetic Coupled Results

The same CPA process was repeated for the averaged voltage traces after being filtered
by the EM coupling Kalman Filter. The resulting correlation for all 64 key guesses for an
SBox is shown in figure 5.4. As before applying the Kalman Filter, no really significant
correlation is present. The key guesses, shown in figure 5.4, are made as before taking guess
corresponding to the maximum correlation. None of the partial key guesses produced by
CPA here are correct.

Because neither of the CPA executions resulted in recovery of all or part of the secret
key, the process was not repeated for lesser numbers of averaged records. This did not result

in a full examination of the noise reduction of the developed EM coupling as desired. As
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referred to in section 5.1, the failure of CPA is most likely due to the small magnitude of

change in voltage per Hamming distance.
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CHAPTER 6
Basys-2 FPGA CPA Implementation

This chapter covers the application of CPA using the Kalman EM coupling method
to another crypto-device. For this experiment a Basys-2 FPGA was used to implement
and run a DES algorithm. The process of obtaining voltage and EM measurements was

repeated, as described in chapter 4, for the FPGA device’s power consumption.

6.1 Correlation Power Analysis

The code listing in 6.1 shows the register being targeted for CPA. Every clock cycle the
output of the current DES round is loaded into the L and R registers, replacing the input of
the current round and becoming the input to the next round. This operation incurs power
consumption that is correlated to the Hamming distance between Rout and R. That power
consumption is the mechanism by which sensitive information is leaked, and so the CPA
implementation is targeted at that operation. Even though all of the bits are being loaded
into the same register, each of the SBox outputs are independent, and so these outputs are
targeted separately using the Hamming distance of only the four bits corresponding to their
output.

For each different plaintext and each potential partial subkey used to generate the power

traces of FPGA operation, the Hamming distance for this register load operation, when

reg [1:32] L, R;

always @(posedge clk)
L <= #1 Lout;

always @(posedge clk)
R <= #1 Rout;

Fig. 6.1: The CPA target register as implemented in the FPGA’s Verilog code. The register
is updated at the end of each DES round, which are completed within one clock cycle.
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occurring at the end of DES round one, was determined. Then for each power trace sample
point, the correlation between the power consumption and expected Hamming distance was
computed, for each subkey guess.

The resulting correlations were compared to determine the most likely subkey guess.
For each correlation, corresponding to a particular subkey guess, the maximum value was
taken from a range around the targeted register operation. Then for each SBox the most
likely guess is determined to be the subkey guess corresponding to the highest resulting
correlation value. The experimental results for both the baseline and EM coupling CPA

implementations are presented in the following sections.

6.2 Baseline Result

To obtain baseline CPA results, CPA was performed using 1024 power traces, corre-
sponding to different plaintexts, averaged over a total of 256 recorded traces each. The
target expected Hamming distance for each key guess was determined, and the correlation
between these Hamming distances and the power traces were computed, on a window cov-
ering the cycle in which the targeted register load operation occurred. The correlations for
the 64 partial subkey guesses corresponding to the first SBox are plotted in figure 6.2 and
again in 6.2, expanded to the targeted range.

For each guess, the maximum correlation value within the range around the target
instruction location is taken as that guess’ power correlation value. These values for each
guess and each SBox are shown in figure 6.2. For each SBox the guess with the maximum
power correlation value is considered the best guess for that part of the key. None of the

best guesses matched the actual key used in the encryption.

6.3 Electromagnetic Coupled Results

The same CPA process was repeated for the averaged voltage traces after being filtered
by the EM coupling Kalman Filter. The resulting correlation for the 64 partial subkey
guesses for the first SBox is shown in figure 6.3 and again in 6.3, expanded to the targeted

range. As before applying the Kalman Filter, no obviously significant correlation peaks are
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CHAPTER 7

Conclusion

The analysis of a Kalman filter based EM coupling did not show to be an improve-
ment to the CPA implementations analyzed. Both CPA implementations, baseline and EM
coupled, resulted in the same number of correct partial key guesses for each device CPA
was applied to. Also, a reduction of correlation magnitude was observed when comparing
the results of the EM coupled to the Baseline implementations. It is hard to tell if this
is the result of filtering out extraneous information, the targeted sensitive information, or
both but it is likely that a different process variance model could be helpful or necessary to
remove unwanted noise while retaining the targeted information.

There were some implementation difficulties that should be taken into account if consid-
ering further analysis of this Model. One of which is the small difference in power consump-
tion caused by different Hamming distances combined with limitations of the equipment
used to take the records. The voltage difference induced by different Hamming distances
were so small that it was unlikely to see any significant differences with the resolution of
measurements taken. Another challenge, that presented itself, was the uncertainty of the
timing of the targeted instructions. If a more precise timing had been known the power
correlation could have been examined more closely. Maybe within a smaller window some
level of improvement could have been shown in correlation of the correct key guess, due to

filtering.
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