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ABSTRACT

An Electromagnetic Coupling Model for Side-Channel Analysis

by

Michael L. Schena, Masters of Science

Utah State University, 2016

Major Professor: Ryan Gerdes, Ph.D.
Department: Electrical and Computer Engineering

This thesis presents an EM coupling model used to enhance power, side-channel mea-

surements used in CPA. The Kalman filter is used to combine measurements of magnetic

flux density with voltage or current traditionally used to measure power consumption. The

DES encryption algorithm is used to evaluate CPA using EM coupled power measurements

compared to traditional power measurements.

(56 pages)
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PUBLIC ABSTRACT

An Electromagnetic Coupling Model for Side-Channel Analysis

Michael L. Schena

Data encryption is important for secure digital communications. While the algorithms

used to encrypt data are fairly secure, the physical devices used to run them can be vul-

nerable. Sensitive information that can be used to decrypt data can be discovered through

analyzing some of the physical attributes of these devices. Things like the power consumed

by a device or the time it takes a device to perform encryption can be used to obtain this

sensitive information. This thesis presents a way to us electromagnetic waves produced by

a device to enhance one’s ability to use the power consumed by a device to gain sensitive

information.
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CHAPTER 1

Introduction

The research presented in this thesis aimed to develop an electromagnetic coupling

model to improve the accuracy of power consumption measurements for side channel anal-

ysis. The intent of this coupling model is to improve power measurements through noise

reduction. The Kalman filter is used for integrating EM signals into power measurements.

It was chosen for its capability of handling multiple signals and its design for removing the

zero mean Gaussian noise that is common in physical systems [1].

Experiments were performed to evaluate EM coupling as a noise reduction technique

for side channel power analysis. The main noise reduction technique used in side channel

analysis is averaging multiple traces of the same operation. To analyses the noise reduction

of EM coupling, CPA will be performed on traces obtained from a crypto-device with and

without EM coupling. In addition, both of these implementations will utilize trace averag-

ing. The number of traces used for averaging will be varied to compare the contributions

of EM coupling to noise reduction.

DES was the first encryption algorithm to be approved and accepted by the United

States government and is still used in many applications today [2,3]. It is considered to be an

extremely secure encryption algorithm [4]. Although from a theoretical standpoint DES is

cryptographically secure, It physical implementations have been shown to leak information

through side channels and to be vulnerable to attack [5, 6]. For these reasons DES was

chosen as the targeted encryption algorithm.

Two implementations of DES were implemented on embedded style devices, one mi-

crocontroller and one FPGA, and were analyzed using Correlation Power Analysis (CPA).

Some preliminary work was done to assess the devices vulnerability to power analysis and

then CPA was performed on measurements taken from the devices. Results of the vulner-

ability of these DES implementations and the effects of EM coupling will be presented.
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CHAPTER 2

Background

This chapter covers the background necessary for the development of the EM coupled

power model for CPA. The targeted encryption algorithm, DES, used to evaluate the CPA

implementation is described. Then, side-channel analysis, power analysis, and CPA are

described, giving the relationship the power consumption side-channel and DES. Finally, a

general explanation of the Kalman Filter is presented; in chapter 3 the specifics of how the

Kalman Filter is used to integrate EM emanation and current measurements to obtain a

noise reduced power consumption measurement will be presented.

2.1 Data Encryption Standard

DES is an interoperability standard that describes the functions and formats used to

communicate DES encrypted data from one computer to another [3]. DES is symmetric

encryption algorithm that utilizes a shared, secret key. The algorithm was approved by

NIST as FIPS PUB 46 in 1977 and was reaffirmed every five years as the standard the last

of which was in 1993 [7]. DES is still in use in many applications and has been used to

examine other side-channel analysis techniques (put refs here stupid!). It was the choice

for this research because it is so well known and has been documented to be vulnerable to

CPA.

2.1.1 Description

DES operates on a 64-bit input referred to as the plaintext and produces a 64-bit

output referred to as the cyphertext. First the plaintext is passed through the Initial

Permutation (IP) then split into 32-bit halves L0 and R0. These halves are passed through

16 rounds where Rn is passed through the Feistel Function and combined with Ln by an

XOR function. At the end of each round Ln+1 is set to Rn and Rn+1 is set to the output of
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the XOR function. After the 16th round the halves are swapped then passed through the

Final Permutation (FP) which is an actually the inverse of the IP.

Each of the 16 rounds utilize a different subkey for the Feistel Function. These 48-bit

subkeys are generated from the key using 2 permutation functions, PC-1 and PC-2, along

with a circular shift. The key is first passed through PC-1 where it is reduced from 64-bits

to 56-bits and permuted according to a set standard function. From there to produce the

subkey for the nth round each 28-bit half is circular shifted left by n-bits and passed through

PC-2, another set permutation function. The output of PC-2 is then the 48-bit subkey for

the nth round. It is important that if any subkey is known the majority of the key can be

recovered.

Feistel Function

In each of the 16 rounds, the Feistel function takes Rn and the nth round subkey

as inputs. In the Feistel function Rn is expanded through what is called the Expansion

Permutation, which expands the 32-bit half to 48-bits. These 48-bits are then combined

with the subkey through an XOR function. This is the point where sensitive key information

has entered into the encryption algorithm. In later sections how this information is taken

advantage of will be explained. The XOR output is then divided into 8 6-bit words that

are sent through what are called Switch Boxes or SBoxes. The combined output of these

SBoxes is the output of the Feistel Function.

SBoxes

Each of the 8 SBoxes is a 4-by-16 array of 4-bit outputs. One entry of the array is

chosen as the output by indexing the array with the 6 input bits. From the input, bits 0

and 5 determine the row while bits 1 through 4 determine the column. The SBoxes are

important for CPA, described in later sections, because their output is determined by both

the plaintext and the key but also a change of any one bit of input can result in multiple

bits of output changing, which is favorable for producing distinct correlations between these

bits and power consumption.
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2.2 Side-Channel Analysis

Side-Channel Analysis is a branch of cryptography that analyses a crypto-system

through physical attributes that leak information, which are referred to as side channels [5].

Some known side channels for DES are power consumption, scan chain [8], and electromag-

netic emanations [9]. A high level block diagram of a crypto-system is shown in figure 2.2.

Because crypto-systems make use of sensitive information to perform their operations, the

sensitive information can affect the performance of the physical devices performing these op-

erations. When sensitive information affects physical attributes of the crypto-system, these

changes can be measured through side channels and then analyzed to potentially reveal

sensitive information. If the analyzed crypto-system’s side-channels directly or indirectly

correspond to the system’s sensitive information then a side-channel attack against that

system is feasible.

2.2.1 Correlation Power Analysis

CPA is a side-channel attack that correlates the power consumption of a device when

performing operation on data containing sensitive information. An example of CPA was

described, attacks were mounted, and results were presented for both DES and its successor

AES in [5]. For DES a register load operation, at the end of the first round or the beginning

of the sixteenth round, can be targeted. CPA correlates the power consumption, of the

crypto-device at that time, with the Hamming distance between some initial or reference

value and a new or final value being stored in the register. Hamming distance is used

because it is assumed that it correlates well with power consumption. The final value being

stored must depend on both the desired sensitive information and some known variable

value. If these criteria are met actual power measurements can be correlated with expected

Hamming distances to infer the sensitive information contained in the data.

Equation 2.1 is the Pearson correlation coefficient that is used to calculate the cor-

relation between the Hamming distance and the power consumption given as h and p re-

spectively. The sample version of this equation used to compute the correlation for actual

measurements is given in 2.2. The Hamming distance for a power trace i and guess g is
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CryptosystemData Input Data Output

Sensitive Information

Side Channel
(leaked information)

Fig. 2.1: A block diagram overview of a crypto-system that is vulnerable to side-channel
analysis

given by hgi with hg being the mean Hamming distance for that guess, over all n power

traces. The value pi(tj) is the power trace i at some targeted sample time tj for which

p(tj) is the mean, again over all n power traces. The standard deviation of the Hamming

distance and power consumption is shg and sp(tj) respectively.

ρh,p =
cov(h, p)

σhσp
(2.1)

rgh,p =

∑n
i=1(h

g
i − hg)(pi(tj)− p(tj))
(n− 1)shgsp(tj)

(2.2)

The process for guessing a key using power measurements and CPA is as follows. First,

exhaustively guess the sensitive bits that are to be targeted. From those guesses, for each

of the known variable data used, compute the expected Hamming distance of the register

operation under test. Then using 2.2 correlate the measured power with the expected

Hamming distance for each guess. The guess with the highest correlation is considered the

most likely guess.
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Hamming Distance

Hamming distance is a measure of the difference between two binary data values. The

equation for Hamming distance HD between some reference value R and a new value D is

shown in 2.3. In 2.3 the XOR between R and D results in a binary number where a bit

is 1 if the corresponding bit in R is different than that in D. Then the Hamming weight

function HW is a count of the bits that are one in its input. This results in the Hamming

distance being the count of bits in D that differ from their corresponding bit it R.

HD = HW (R⊕D) (2.3)

Hamming distance is expected to correlate with the power consumption, because the more

bits are changed in a register the more power it will need to transition those bits. In the

typical CMOS device, this added power consumption comes from both the cost of charging

capacitances to the new static value and the dynamic cost of switching transistor states.

A model for the relation between Hamming distance and power consumption in CMOS

devices was developed and tested in [5]. Hamming weight and Hamming distance have

been assumed or analyzed in [9–12] and has result positively.

2.3 Kalman Filter

The Kalman Filter is a widely used noise reduction filter; when the applied models

and parameters are correct, it promises statistically optimal filtering [1]. This provides a

useful tool for CPA because noise introduced to power measurements can greatly affect the

correlation performance. Also, The Kalman Filter has been used for utilizing the informa-

tion from multiple types of measurements to approximate a single desired parameter or to

produce some other aggregate parameter [13–15]. This is why it was chosen for the practi-

cal purposes of this work that entails combining magnetic flux measurements with supply

current measurements to better approximate a device’s power consumption. The rest of

this section will layout general Kalman filter method that was used in the implementation

of experiments for this thesis.
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2.3.1 Process Model

In order to use the Kalman Filter to approximate the state of some process a model

of the process and the measurements of said process must be made. The equations 2.4 and

2.5 give discrete models for the process state xk and its measurements zk. In the Process

Model the vector u represents the known control inputs to the system and those inputs

are transformed into the process state space by the matrix B. The Process state vector

xk hold the observed and unobserved parameters of the process that are being modeled.

The matrix F represents how the process develops from one timestep to the next. In a

trivial example where the process state vector has two parameter that are assumed to be

constant F would be given by 2.6, a two by two identity matrix. This example may seem

unimportant, but if the parameters are relatively constant with a small enough time step

it may be appropriate to model them this way. The measurement vector zk holds the

observations of system parameters and the matrix H describes how the system parameters

relate to the measurement values. wk and vk are the process noise and measurement noise

respectively. Both are assumed to be zero mean Gaussian random variables. Estimating the

variance of these noise variables is part of deriving a Kalman Filter for any specific system.

xk = Fxk−1 +Buk + wk (2.4)

zk = Hxk + vk (2.5)

F =

 1 0

0 1

 (2.6)

2.3.2 Filter Update Equations

From the process model the Kalman Filter produces its estimation and correction

equations shown in 2.7 and 2.8 respectively. Equation 2.7 estimates the system state x̂k|k−1

with all the information known up to and including timestep k− 1. Then, 2.8 corrects that

estimate using the new information of zk measured at timestep k. To correct the estimation

2.8 multiplies the difference between the estimated state and the measured state known as



8

the residual by the Kalman Gain Kk to determine how much estimate needs to be corrected

based on the measurement. To filter a set of measurements the process of estimating and

then correcting is repeated for each timestep.

x̂k|k−1 = Fx̂k−1|k−1 +Buk (2.7)

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1) (2.8)

2.3.3 Filter Parameters

In order to use the Kalman Filter the Kalman Gain must be computed for each time

step. Equation 2.10 gives the update equation for Kk that depends on the Covariance

Matrix P and Measurement Noise Covariance R. In equations 2.9 Pk|k − 1 is estimated

using the previous Covariance Matrix and the Process Noise Covariance. The Process

Noise Covariance used here Qk is a time varying approximation based on measurements.

The details of how the noise parameters R and Qk were determined will be given in the

implementation chapter. Finally the Covariance Matrix is updated based on the Kalman

Gain that was computed for this time step. The equations 2.9-2.11 shows that KK is based

on the variance of both process and measurement noise and represents a ratio of uncertainty

between the state estimation and state measurement.

Pk|k−1 = FPk−1|k−1F
T +Qk (2.9)

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 (2.10)

Pk|k = (I −KkH)Pk|k−1 (2.11)

2.3.4 Rauch-Tung-Striebel

The RTS smoother was first developed in [17]. It is a smoother based on Maximum-

Likelihood that can be added to the Kalman Filter. RTS consists of two passes, a forward

pass that is the original Kalman Filter where the a-posteriori and a-priori state vectors and
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covariance ˆxk|k, ˆxk|k−1, Pk|k, and Pk|k−1 are stored for a backward pass. In the Backward

pass ˆxk|n is computed as shown in 2.12. This computation uses a new Gain factor Ck

determined by the a-posteriori and a-priori covariance. The RTS smoother was applied

when filtering data in this research.

ˆxk|n = ˆxk|k + Ck( ˆxk+1|n − ˆxk+1|k) (2.12)

Ck = Pk|kF
T
k+1P

−1
k+1|k (2.13)

Pk|n = Pk|k + Ck(Pk+1|n − Pk+1|k)C
T
k (2.14)
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CHAPTER 3

Kalman Theory

This chapter covers the details of the specific Kalman Filter used for the implemen-

tation of an EM coupled CPA attack. The main intention of this filter is to improve the

power measurement by removing as much measurement noise as possible. To improve the

noise reduction, the RTS smoother was used after the forward pass of the Kalman Filter is

completed as described in chapter 2. There are multiple methods by which sensor measure-

ments can be combined using a Kalman Filter [16]. In this work measurement were simply

combined through the observation matrix. The process model and noise estimation used to

apply the Kalman Filter to EM coupled power measurements in this work are described in

this chapter.

3.1 Electromagnetic Coupling

Power analysis is a type of side channel analysis that gains leaked information from

the power consumption of a device. Figure 3.1 shows an EM coupled model for measuring

the power consumption of a targeted device. In this model the device is assumed act like

a wire for the purposes of EM measurements. In order to couple a devices EM emanations

to its power consumption the relation between current and magnetic flux is used. δB
δt is a

proportional measure of δI
δt where B is the magnetic flux and I is current. The infinitely

long wire approximation, B = µ0I
2πr , is used. The antenna used to probe the device measures

the change in magnetic flux density B [18].

3.2 Process Model

The process model developed here represents a crypto-device and tracks the total power

of the device. The measurements represent the voltage over a shunt resistor inserted in the

ground line of the supply voltage and the change of magnetic flux density caused by current
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m

Fig. 3.1: EM Coupling model Vd measurements shown on left and EM probe model shown
on right

passing through the shunt resistor. The equations 3.1 and 3.2 give models for the process

state xk and its measurements zk. For this model it is assumed that the control vector input

u is null and so it and B are excluded. The Process state is represented as xk = [Vk Ḃk]T

where V and Ḃ respectively are proportional to I and İ from the EM coupling model. The

process model used here assumes Ḃ is constant and I is given by the previous value for I

plus İ times the timestep ∆t, which leads to process matrix given in 3.4. The measurement

is zk = [vk ḃk]
T where vk is a voltage measurement that is proportional to Ik by some

resistance value r and ḃk is the measured change in magnetic flux which is proportional to

İ by some coupling coefficient m. This results in the equation for H given by 3.3.

xk = Fxk−1 + wk (3.1)

zk = Hxk + vk (3.2)
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H =

 1 0

0 1

 (3.3)

F =

 1 rm∆t

0 1

 (3.4)

3.3 Filter Execution

The equations used execute the Kalman Filter are its estimation and correction equa-

tions shown in 3.5 and 3.6 respectively. Equation 3.5 estimates the system state x̂k|k−1 to

be [Vk−1 + ˙Bk−1∆t ˙Bk−1]
T where V and Ḃ come from the a-posteriori state vector xk−1|k−1.

Then, 3.6 computes the residual, the difference between xk|k−1 and zk. To correct the es-

timation 3.6 multiplies the difference between the estimated state and the measured state

known as the residual by the Kalman Gain Kk to determine how much estimate needs to

be corrected based on the measurement. To filter a set of measurements the process of

estimating and then correcting is repeated for each timestep.

x̂k|k−1 = Fx̂k−1|k−1 (3.5)

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1) (3.6)

For each timestep the Kalman Gain is computed based on the process and measure-

ment models, specifically F and H, developed in section 3.2, and Q and R, which will be

developed in section 4.3. Equation 3.8 gives the update equation for Kk that depends on the

uncertainty covariance Matrix P and Measurement Noise Covariance R. In equations 3.7

Pk|k − 1 is estimated using the previous Covariance Matrix and the Process Noise Covari-

ance. The Process Noise Covariance used here Qk is a time varying approximation based

on measurements. The details of how the noise parameters R and Qk were determined will

be given in the implementation chapter. Finally the Covariance Matrix is updated based

on the Kalman Gain that was computed for this time step. The equations 3.7-3.9 shows

that KK is based on the variance of both process and measurement noise and represents a
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ratio of uncertainty between the state estimation and state measurement.

Pk|k−1 = FPk−1|k−1F
T +Qk (3.7)

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 (3.8)

Pk|k = (I −KkH)Pk|k−1 (3.9)
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CHAPTER 4

DES Power Data Collection

To test the proposed EM coupling model developed in Chapter 3 magnetic flux density

and voltage measurements, referred to as power traces or records, of a crypto-device have

to be taken. This chapter describes the experimental set up used to record measurements

and some details of how the measurements were improved. To improve the quality of

magnetic flux density measurements, some EM shielding was constructed and placed around

the antenna probe along with the targeted component. After collecting the data some

preprocessing was done to align the records and determine the samples to target for CPA.

Aside from the power traces used for CPA, measurements were taken for the estimation

of process and measurement noise needed for the Kalman Filter implementation. Measure-

ments for the process noise were taken much like the CPA power traces but the key is varied

along with the plaintext. The Measurement noise was analyzed using an arbitrary function

generator in place of the cryptodevice. The function generator was used in order to have a

more precisely known signal to measure. All the Data collection is described further in the

following sections.

4.1 Data Collection

For execution of CPA on a device power traces of the device need to be recorded while

the device is performing it’s encryption algorithm on variable inputs (plaintext) using the

same sensitive information (key). For this experiment 1000 different plaintexts used for

encryption with the same key. In addition, 125 different power traces were taken for each

plaintext in order to be averaged, which is a common noise reduction technique used for

CPA. To automate the process a GPIO pin was lowered just before DES began and raised

again at the end. Also, a delay loop was used in between DES iterations to allow for data

transfer from the oscilloscope to a computer, which was storing the data.
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Collection of the power traces was done with a Techtronics MDO 4104-3 oscilloscope.

Each DES trace consisted of 5000000 samples taken at 625 mega-samples per second. Three

channels of the oscilloscope were used one for the power voltage, the EM antenna probe,

and a probe on the GPIO pin trigger. The voltage probe was placed above a 9.856 Ohm

shunt resistor on the ground line between the device and an external power supply. The

EM nearfield antenna was positioned above the shunt resistor, both within a Ferriday cage,

and its voltage signal was passed through a 10 Db amplifier before reaching the oscilloscope.

Examples of voltage and magnetic flux traces are shown in figures 4.1 along with the traces

after averaging over 125 traces in figures 4.1.

4.2 EM Shielding

Because of the nature of probing EM signals, noise is present from many external

signals. It was shown in [19] that shielding an EM probe is an effective way of reducing

noise from external sources. As in [19] a Faraday cage was constructed to shield the probe.

The cage was a four by four by four inch cube, pictured in figure 4.2, constructed with two

mesh layers, one of Steel and one of Aluminum. Apertures had to be cut to allow for the

EM probe and device components to be connected while inside the Cage. The holes were

kept as small as practical. When in use, The Ferriday cage was connected to the external

power supply’s ground line below the shunt resistor.

4.2.1 Alignment

Alignment was performed on the records to compensate for the trigger jitter caused

by the oscilloscope’s edge triggering device. A matched filter was used as the alignment

technique where each record was aligned to a reference record from which the matched filter

was produced. A distinctive oscillating in the voltage signal, caused by raising the GPIO

trigger, was used as the matched filter and cross correlation was computed between the

Matched filter and each record. A peak and oscillations appeared in the cross correlation

output, example shown in figure 4.2.1, corresponding to the position of the voltage oscil-

lation in each signal. As apparent in Figure 4.2.1, the two first positive peaks are fairly
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Fig. 4.3: The Faraday Cage with EM probe and Shunt Resistor Inserted
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close in magnitude, so because the position is going to be used to create a relative offset

the minimum point of the negative peak was used. After finding these position they were

normalized by subtracting the position for the reference trace to determine the relative

offset. When averaging was performed as explained in chapter 5 each trace was shifted by

the offset index determined through this process.

4.3 Noise and Variance

The two sources of noise that are modeled in the Kalman process model are the process

and measurement noise given respectively as wk and vk in 3.1 and 3.2. When executing

the Kalman filter these two noise sources are expressed through Q and R that are used

to determine the Kalman Gain Kk for each timestep. These two parameters may need to

be estimated for each specific crypto-device, encryption algorithm, or measurement setup.

This section explains how for the experimental setup used in this thesis.

4.3.1 Process Noise

In order to approximate the Process Noise, the variance is measured across the process

operating on different inputs. The two inputs that affect the process are the plaintext and

the key. To measure the process noise one hundred and twenty five power and magnetic flux

traces were taken for each of one thousand plaintext, key pairs. Each of these sets of one

hundred and twenty five traces were then averaged. Then for each timestep, the covariance

between the voltage and magnetic flux of the thousand averaged traces was computed. The

result is a covariance matrix Qk for each timestep of the process. The resulting Q is shown

if figure 4.3.1.

In practice the process noise estimated using this method could be determined using a

device identical to the target device an attacker has access to beforehand. If fact, the process

noise estimation should be applicable for any identical device running the same encryption

algorithm, and so could be used for multiple attacks on separate devices. Although this

method takes a substantial amount of time and traces, because it can be done beforehand

and without access to the targeted device it does not increase the time of performing the



20

Cross Correlation Index #10 4

3.88 3.9 3.92 3.94 3.96 3.98 4 4.02 4.04

#10 5

-7

-6

-5

-4

-3

-2

-1

0

1

2

3

Fig. 4.4: Output of the cross-correlation between a matched filter and a record to be aligned

actual attack.

Qk = cov(vk,bk) (4.1)

vk = [v1,1(tk) v2,2(tk) · · · vn,n(tk)] (4.2)

bk = [b1,1(tk) b2,2(tk) · · · bn,n(tk)] (4.3)

Qk = cov(vk,bk) (4.4)

vk = [v1,?(tk) v2,?(tk) · · · vn,?(tk)] (4.5)

bk = [b1,?(tk) b2,?(tk) · · · bn,?(tk)] (4.6)

4.3.2 Measurement Noise

The variance of voltage and magnetic flux density measurement noise must be estimated

to successfully apply the Kalman Filter. The Variance of the estimated noise is used in

the R matrix used in equation 3.8; R is given by 4.7 where σV and σḂ denotes standard
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deviation of voltage and magnetic flux density measurement noise respectively. Also, they

must be determined separately because of differences in the measurement methods. The

Voltage measurements were taken with an oscilloscope probe connected to the shunt resistor

terminal. Differing from this, the Magnetic flux measurements were taken with an antenna

positioned above the shunt resistor. Also, the Magnetic flux signal was passed through a

10 Db preamplifier before being passed to the oscilloscope.

R =

 σ2V 0

0 σ2Ḃ

 (4.7)

In addition, the measurements are being averaged before being input to the Kalman

Filter and the estimated noise needs to reflect that. Because the noise is assumed to follow

a zero centered Gaussian distribution averaging should reduce the variance of measurement

noise present in the signal. To simulate this, while estimating the noise, multiple traces

were taken, then some number of them are averaged depending on how many traces per

plaintext are being averaged.

After implementing the filter with the estimated noise variances described in this sec-

tion, the filter was relying too much on zk for each Vk estimate, following within 10−6 volts

of the measurement at each timestep. There are a few possible reasons this discrepancy.

First, the physical set up was slightly different when taking the records for Noise estimation

than when taking DES power traces. This was because the arbitrary function generator

took place of both the crypto-device and the power supply, which reduced the number of

connections between the voltage process and the oscilloscope probe. Another reason could

be that the DES power traces had a DC offset whereas the Measurement Noise was esti-

mated using a constant zero volt signal. After considering these differences, the voltage

measurement standard deviation σV was increased to ten times the original estimate.

Coupling Coefficient

The magnetic flux density traces used to estimate the measurement noise were also

used to estimate the coupling coefficient m necessary for equation 3.4. The signal being
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measured was EM emanations from the shunt resistor with a constant slope current signal

passing through it. This should result in a constant change to the magnetic flux density,

measured as constant voltage across the antenna probing the magnetic field. The ratio

between the mean of the measured signal and the current slope was computed and used as

m.
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CHAPTER 5

Tiva-C CPA Implementation

This Chapter covers the implementation of CPA and the Kalman Filter used to analyze

the coupling of magnetic flux and voltage measurements to measure power consumption.

An experiment was performed where measurements were taken of the electromagnetic em-

anations and supply current of a microcontroller while it was performing DES encryption.

These measurements were analyzed using different implementations of CPA including one

that utilizes the Kalman Filter. The Results of each CPA implementation are then presented

and compared.

This chapter will cover the implementation details as follows. First, the Hamming

distance power model is validated for the targeted device. Then, the Experimental setup

used to take electromagnetic and voltage measurements is explained followed by the CPA

implementation applied to those measurements. Finally, the results of each implementation

will be presented and analyzed.

5.1 Power Model Validation

In order to know whether or not CPA is for a DES implementation on a specific device,

a correlation between the power consumption and the Hamming distance of the registers

of the device under test must be shown. A program was written in c and loaded on a

Texas Instruments Tiva-C Series TM4C123G microcontroller to examine its register power

consumption. Some difficulties are present with the Tiva-C. The Tiva-C contains a pipelined

processor which means power is being consumed for multiple instructions at the same time.

Also, the registers and other hardware of the Tiva-C are smaller than FPGA’s which these

types of attacks are commonly demonstrated on. These difficulties make the Tiva-C a

challenging target for showing possible improvements to existing attacks like CPA.

Power measurements were taken to confirm the Hamming distance power model. The
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voltage was probed over a 10 Ohm resistor inserted between the USB ground wire and the

external power supply ground. Records of length 100000 were taken at a rate of 50 GS/s.

Oscilloscope was triggered using a GPIO pin. One thousand records were taken using

each Hamming distance 0 through 32. The Program running on the microcontroller was

essentially the pseudo-assembly program shown in 5.1. In this program the GPIO trigger,

accumulator, and branch instructions are independent of the values stored in R1 and R0,

so they should have the same effect on every trace indifferent to the Hamming distance

being tested. Also, examining the move instructions on line 9 and 10 using 2.3, where R

is R0 before instruction execution and D is R0 afterwards, the Hamming distance for both

instructions should be the same and equal to the Hamming weight of R1.

After measuring, traces were averaged over the 1000, 500, 250, and 125 records. The

beginning section of the record was not used in averaging because there were oscillations

due to the GPIO pin being switched. Examples of a signal trace and an averaged trace is

shown in figure 5.1 and 5.1 respectively. After averaging the traces, the mean voltage value

was calculated over different lengths of the trace.

Observations

The power vs Hamming distance graph shows a positive correlation between voltage and

Hamming distance. When averaging over 1000 measurements and 90000 samples Voltage is

strictly increasing with Hamming distance. A plot of the resulting voltage curve is shown in

figure 5.1. One intriguing result of the measurements is the slope of voltage for a Hamming

distance of 16 to 32 was about double that from 0 to 15. It would be interesting to look into

the cause of this difference and examine if it has some exploitation. Even though power has a

strictly positive correlation with Hamming distance, from the magnitude shown here and the

number of instructions needed to average we predict that the baseline CPA implementation

will not work, due to the resolution and number of samples taken.
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1 R1 = #DesiredHD ; 0 x0 , 0x1 , 0x3 , 0x7 , . . . , 0xFF were used

2 loop :
GPIO = 0

4 bl delayloop

GPIO = 1
6 R2 = #0x0

innerLoop

8 add R2 , #0x1
mov R0 , R1

10 mov R0 , #0x0
cmp R2 , 0xFFFF

12 beq loop

b innerLoop

Fig. 5.1: Psuedo assembly code of the program used to validate Hamming distance power
model
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Fig. 5.2: Example trace of a power trace recorded while running the assembly program in
figure 5.1 with a Hamming distance of 0
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5.2 Correlation Power Analysis

The targeted Hamming distance must be affected by the key, but also be able to change

when a different plaintext is used.

This CPA implementation targets two sets of instructions of the DES implementation

that handled the SBox output. Because the SBoxes produce 4-bit outputs every two SBoxes

different instructions are used to handle the upper nibble and lower nibble of the four output

bytes. Both of these code segments contain instructions that are suitable for being targeted

by CPA.

The section of code listed in figure 5.2 shows the assembly used handle the SBox

output that creates the upper half of each byte of Feistel function output. The important

instructions are listed on lines 11 through 13. Line 11 loads the SBox output into register

r0. Then, lines 12 and 13 shift the data left by 28 bits and back 24 bits to put it in the

correct position. The Hamming distance of r0 across both of these instructions equals two

times the Hamming weight of the SBox output.

The second section of code that handles the lower half of a byte output is shown in

figure 5.2. Here the instruction on line 4 loads the SBox output into r1. Then, on line 5

the 4 bites in r1 are combined with r0 using an ORR instruction. In this case the ORR

instruction can be used, because the lower 4-bits of r0 is known to be all 0’s before the

instruction execution and equals the SBox output afterwards. This results in a Hamming

distance is equal to the Hamming weight of the SBox output.

5.2.1 Correlation Model Validation

To find the location where sensitive information is present in the power trace, Corre-

lation is performed for every sample point of the DES encryption using only the correct

Hamming distance for each trace instead of every guess. From the symmetry of the 16

rounds as seen in figure 4.1, one can infer the general location of the first round. Unfor-

tunately, no strong correlation peaks presented themselves in the expected area shown in

figure 5.2.1 or elsewhere. The correlation between correct Hamming distance and the entire

first half of DES execution is shown in figure 5.2.1.
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1 F89D0004 LDRB r0 , [ sp ,#0x04 ]
2 F0000080 AND r0 , r0 ,#0x80

1184 ASRS r4 , r0 ,#6
4 F89D0004 LDRB r0 , [ sp ,#0x04 ]

F3C00080 UBFX r0 , r0 ,#2,#1
6 4304 ORRS r4 , r4 , r0

F89D0004 LDRB r0 , [ sp ,#0x04 ]
8 F3C006C3 UBFX r6 , r0 ,#3,#4

48EE LDR r0 , [ pc ,#952] ; @0x000007DC

10 EB001004 ADD r0 , r0 , r4 , LSL #4
5D80 LDRB r0 , [ r0 , r6 ]

12 0700 LSLS r0 , r0 ,#28
0E00 LSRS r0 , r0 ,#24

14 F88D0000 STRB r0 , [ sp ,#0x00 ]

Fig. 5.5: The instructions shown here load an SBox output into the upper four bits of each
Feistel function output byte

1 F89D0000 LDRB r0 , [ sp ,#0x00 ]
2 49E1 LDR r1 , [ pc ,#900] ; @0x000007E0

EB011104 ADD r1 , r1 , r4 , LSL #4
4 5D89 LDRB r1 , [ r1 , r6 ]

4308 ORRS r0 , r0 , r1
6 F88D0000 STRB r0 , [ sp ,#0x00 ]

Fig. 5.6: The instructions show here load the SBox output into the lower half of the Feistel
function outputs. based on a six bit SBox input



32

Sample Point #10 5

2 4 6 8 10 12 14

H
am

m
in

g 
D

is
ta

nc
e 

C
or

re
la

tio
n

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25
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Since the correlation did not result in a significant spike in the first round, some ex-

tra investigation of the DES timing was done. Extra triggers were inserted in the DES

implementation just before the targeted instructions. After taking traces with the added

triggers, the average difference between the original trigger and the new trigger was used to

approximate the location of target instructions in the power trace. In absence of a strong

correlation spike, this approximation was used for the further analysis.

5.3 Baseline Result

To obtain baseline CPA results, CPA was performed using all 1000 power traces aver-

aged over all 125 records. The target expected Hamming distance for each key guess was

determined, and the correlation between these Hamming distances and the power traces

were computed, on a window covering the target instructions power consumption. The 64

key guess correlations for the first SBox are plotted in figure 5.3.

For each guess, the maximum correlation value within the range around the target

instruction location is taken as that guess’ power correlation value. These values for each

guess and each SBox are shown in figure 5.3. For each SBox the guess with the maximum

power correlation value is considered the best guess for that part of the key. None of the

best guesses matched the actual key used in the encryption.

5.4 Electromagnetic Coupled Results

The same CPA process was repeated for the averaged voltage traces after being filtered

by the EM coupling Kalman Filter. The resulting correlation for all 64 key guesses for an

SBox is shown in figure 5.4. As before applying the Kalman Filter, no really significant

correlation is present. The key guesses, shown in figure 5.4, are made as before taking guess

corresponding to the maximum correlation. None of the partial key guesses produced by

CPA here are correct.

Because neither of the CPA executions resulted in recovery of all or part of the secret

key, the process was not repeated for lesser numbers of averaged records. This did not result

in a full examination of the noise reduction of the developed EM coupling as desired. As



34

Sample Point #10 5

3.08 3.09 3.1 3.11 3.12 3.13

H
am

m
in

g 
D

is
ta

nc
e 

C
or

re
la

tio
n

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

Fig. 5.9: The baseline power correlation within the targeted window for all 64 possible
SBox1 subkey guesses
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Fig. 5.10: The maximum correlation between Tiva-C power consumption and each key guess
for every SBox. The maximum peak for each SBox is taken as the most likely guess
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Fig. 5.11: The EM coupled power correlation within the targeted window for all 64 possible
SBox1 subkey guesses using EM coupled power traces
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Fig. 5.12: The maximum correlation between Tiva-C power consumption and each key guess
for every SBox, using EM coupled power traces. The maximum peak for each SBox is taken
as the most likely guess
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referred to in section 5.1, the failure of CPA is most likely due to the small magnitude of

change in voltage per Hamming distance.
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CHAPTER 6

Basys-2 FPGA CPA Implementation

This chapter covers the application of CPA using the Kalman EM coupling method

to another crypto-device. For this experiment a Basys-2 FPGA was used to implement

and run a DES algorithm. The process of obtaining voltage and EM measurements was

repeated, as described in chapter 4, for the FPGA device’s power consumption.

6.1 Correlation Power Analysis

The code listing in 6.1 shows the register being targeted for CPA. Every clock cycle the

output of the current DES round is loaded into the L and R registers, replacing the input of

the current round and becoming the input to the next round. This operation incurs power

consumption that is correlated to the Hamming distance between Rout and R. That power

consumption is the mechanism by which sensitive information is leaked, and so the CPA

implementation is targeted at that operation. Even though all of the bits are being loaded

into the same register, each of the SBox outputs are independent, and so these outputs are

targeted separately using the Hamming distance of only the four bits corresponding to their

output.

For each different plaintext and each potential partial subkey used to generate the power

traces of FPGA operation, the Hamming distance for this register load operation, when

1 reg [ 1 : 3 2 ] L , R ;
2

always @ ( posedge clk )
4 L <= #1 Lout ;

6 always @ ( posedge clk )
R <= #1 Rout ;

Fig. 6.1: The CPA target register as implemented in the FPGA’s Verilog code. The register
is updated at the end of each DES round, which are completed within one clock cycle.
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occurring at the end of DES round one, was determined. Then for each power trace sample

point, the correlation between the power consumption and expected Hamming distance was

computed, for each subkey guess.

The resulting correlations were compared to determine the most likely subkey guess.

For each correlation, corresponding to a particular subkey guess, the maximum value was

taken from a range around the targeted register operation. Then for each SBox the most

likely guess is determined to be the subkey guess corresponding to the highest resulting

correlation value. The experimental results for both the baseline and EM coupling CPA

implementations are presented in the following sections.

6.2 Baseline Result

To obtain baseline CPA results, CPA was performed using 1024 power traces, corre-

sponding to different plaintexts, averaged over a total of 256 recorded traces each. The

target expected Hamming distance for each key guess was determined, and the correlation

between these Hamming distances and the power traces were computed, on a window cov-

ering the cycle in which the targeted register load operation occurred. The correlations for

the 64 partial subkey guesses corresponding to the first SBox are plotted in figure 6.2 and

again in 6.2, expanded to the targeted range.

For each guess, the maximum correlation value within the range around the target

instruction location is taken as that guess’ power correlation value. These values for each

guess and each SBox are shown in figure 6.2. For each SBox the guess with the maximum

power correlation value is considered the best guess for that part of the key. None of the

best guesses matched the actual key used in the encryption.

6.3 Electromagnetic Coupled Results

The same CPA process was repeated for the averaged voltage traces after being filtered

by the EM coupling Kalman Filter. The resulting correlation for the 64 partial subkey

guesses for the first SBox is shown in figure 6.3 and again in 6.3, expanded to the targeted

range. As before applying the Kalman Filter, no obviously significant correlation peaks are
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Fig. 6.2: The baseline power correlation for all 64 possible SBox1 subkey guesses
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Fig. 6.3: The baseline power correlation expanded to just the targeted window for all 64
possible SBox1 subkey guesses
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Fig. 6.4: The maximum correlation between FPGA power consumption and each key guess
for every SBox. The maximum peak for each SBox is taken as the most likely guess

present. The key guesses, shown in figure 6.3, are made as before taking guess corresponding

to the maximum correlation. None of the partial key guesses produced by EM coupled CPA

here are correct.
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Fig. 6.5: The EM coupled power correlation for all 64 possible SBox1 subkey guesses using
EM coupled power traces
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Fig. 6.6: The EM coupled power correlation expanded to just the targeted window for all
64 possible SBox1 subkey guesses using EM coupled power traces
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Fig. 6.7: The maximum correlation between FPGA power consumption and each key guess
for every SBox, using EM coupled power traces. The maximum peak for each SBox is taken
as the most likely guess
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CHAPTER 7

Conclusion

The analysis of a Kalman filter based EM coupling did not show to be an improve-

ment to the CPA implementations analyzed. Both CPA implementations, baseline and EM

coupled, resulted in the same number of correct partial key guesses for each device CPA

was applied to. Also, a reduction of correlation magnitude was observed when comparing

the results of the EM coupled to the Baseline implementations. It is hard to tell if this

is the result of filtering out extraneous information, the targeted sensitive information, or

both but it is likely that a different process variance model could be helpful or necessary to

remove unwanted noise while retaining the targeted information.

There were some implementation difficulties that should be taken into account if consid-

ering further analysis of this Model. One of which is the small difference in power consump-

tion caused by different Hamming distances combined with limitations of the equipment

used to take the records. The voltage difference induced by different Hamming distances

were so small that it was unlikely to see any significant differences with the resolution of

measurements taken. Another challenge, that presented itself, was the uncertainty of the

timing of the targeted instructions. If a more precise timing had been known the power

correlation could have been examined more closely. Maybe within a smaller window some

level of improvement could have been shown in correlation of the correct key guess, due to

filtering.
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