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ABSTRACT

Decision Making Using Trust and Risk in Self-Adaptive Agent Organization

by

Kamilia Ahmadi, Master of Science

Utah State University, 2013

Major Professor: Dr. Vicki H. Allan
Department: Computer Science

Self-organizing, multi-agent systems provide a suitable paradigm for agents to manage

themselves. We demonstrate a robust, decentralized approach for structural adaptation in

explicitly modelled problem-solving agent organizations. Based on self-organization princi-

ples, our method enables the agents to modify their structural relations to achieve a better

completion rate of tasks in the environment. Reasoning on adaptation is based only on the

agent’s history of interactions. Agents use the history of tasks assigned to their neighbors

and completion rate as a measure of evaluation. This evaluation suggests the most suitable

agents for reorganization (Meta-Reasoning). In the first part of this research we propose

Selective-Adaptation method. Our Selective-Adaptation has four different approaches of

Meta-Reasoning, which are 1) Fixed Approach, 2) Need-Based Approach, 3) Performance-

Based Approach, and 4) Satisfaction-Based Approach along with a Reorganization method,

which needs less data but makes better decisions.

Interaction between agents is one of the key factors in Multi-Agent societies. Using

interaction, agents communicate with each other and cooperatively execute complex tasks

which are beyond the capability of a single agent. Cooperatively executing tasks may

endanger the success of an agent by selecting poor choices for peers. Therefore, agents need

to have a better evaluation mechanism in selecting peers. Trust is one of the measures
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commonly used to evaluate the effectiveness of agents in cooperative societies. Since all of

the interactions are subjected to uncertainty, the risk behavior of agents is considered as

a contextual factor in decision making. In the second part of this research we propose the

concept of adaptive risk and the use of recommendation-based trust in our adaptive society.

We also introduce the agent’s strategy and propose an algorithm which helps agents to

make decision in an adaptive society using adaptive risk and recommendation-based trust.

(79 pages)



v

PUBLIC ABSTRACT

Decision Making Using Trust and Risk in Self-Adaptive Agent Organization

Kamilia Ahmadi

Interaction between agents is one of the key factors in multi-agent societies in order to

cooperatively execute complex tasks which are beyond the capability of a single agent. In

the self-adaptation society, agents try to keep best neighbors around themselves. Agents

use history of past iterations to evaluate their neighbors and locally modify their struc-

tural links. Main characteristics of this model are its decentralization, dynamicity and no

need of external control. This research at first deals with implementing self-adaptive agent

organization. Then it focuses on evaluating cooperation peers in decision making. Trust

as an evaluation mechanism lies at the core of all interactions in the agent organizations.

Agents build trust about a target based on their direct experiences and third party recom-

mendations. Since agents have different perception of trust, context of decision should be

taken into account. Uncertainty is one of the main contextual factors that affect agents’

decisions. The aim of the second work is helping agents have better evaluation in decision

making utilizing recommendation-based trust and adaptive risk.
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CHAPTER 1

INTRODUCTION

Multi-agent systems consist of intelligent agents and their environment. Intelligent

agents, which can be software agents, robots or humans, interact with their environment

and accomplish actions in order to reach their goals. Agents are autonomous, self-interested

and goal-driven, which makes them capable of solving problems. Multi-agent systems are

designed to solve problems that are beyond the individual capabilities or knowledge of each

single agent. Therefore, cooperation between them is necessary for achieving goals. Agents

have two main capabilities. The first capability is autonomously deciding what actions to

take that will lead them toward their own goal. The second capability is interacting with

other agents in the environment. Since the multi-agent systems we consider are designed for

cooperatively solving problems, the notion of interaction between agents is a central point

for the design of multi-agent applications. Interaction allows them to find each other and

exchange information. Interaction also includes social activities like cooperation, negotiation

and argumentation in terms of reaching their goal [1–3].

As computing systems get larger, their complexity and the number of components

increase. This makes it difficult for designers to anticipate all the needs of the whole system

at design time. The need for self-management is essential to the success of such large,

complex systems. Autonomous systems, capable of decentralized self-organization, have

been proposed as a solution to managing complex computing systems that must deal with

node failure [4–7]. Responding to their own history, individual agents exhibit the ability to

adapt to changing circumstances and have the ability to evaluate reorganization options and

decide when reorganization is necessary. Social interactions and success in jointly solving

problems determine desirable structure. Expected properties of a self-organization system

are as follows:
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• Adaptation needs to be performed without external control: Agents autonomously

establish and prioritize relationships within the organization.

• Adaptation is performed in a decentralized fashion: Multi-agent systems are dis-

tributed in nature. Thus, adaptation should also be distributed. All interactions

between agents are local and all members control their own relationships. The system

is robust against failure because there is not a central point of management or power

in the system.

• Adaptation needs to be dynamic: Adaptation is a continuous activity of the system.

Agents gradually make the changes, and self-management is expected to evolve with

time.

One of the desirable properties of multi-agent systems is the autonomy of the entities.

Autonomy makes the predictability of other agents’ behavior impossible, both because of

the difference in goals and the methods to achieve the goals. When the behaviors are at

cross purposes, there is increased vulnerability to the system due to optimistic promises.

The goals of one agent may negatively impact the achievement of the goals of another agent.

Thus, some sort of societal control is needed in a society of autonomous agents, as is true

in human societies. The term soft security refers to security which protects from harm

in unobtrusive ways [8]. Soft security deals with preventing the repetition of undesirable

behaviors. Trust as soft security is one of the most successful social controls in human

societies.

From a local point of view, trust lies at the core of all interactions in the agent system.

A task assigned to an agent may have components which need to be done by another

agent. An agent will ask another agent to complete part of the task (delegation) based

on both capabilities and availability. Cooperation between agents requires each agent to

rely on other agents’ capabilities and competency to achieve goals. However, cooperation

may jeopardize an agent’s success by relying too heavily on the statements and actions of

its neighbors [9–12]. Determining which agents to select for delegation of tasks is a very

complicated decision for agents. The agent should have a clear evaluation of the partners
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they choose. Therefore, the concept of trust is one the fundamental necessities in the

society and resolves some of the uncertainty in interactions. Agents build trust about their

neighbors and use trust to make decisions about partners.

In the global point of view, trust works as a social control mechanism. Agents who

repeatedly fail to complete promised tasks lose the chance of cooperating in tasks and are

socially excluded from activities. This creates a form of supervision on the whole system in

which all entities are involved [13].

In choosing a partner, trust is an important consideration, but the perception of trust

differs from agent to agent. Agents do not necessarily agree on the definition of poor

behavior as it is dependent on context. In addition, agents may be willing to risk a lesser

result if their circumstance is tolerant to failure or their partner options are limited. Risk and

uncertainty exist in all interactions of societies with non-deterministic behaviors. Most trust

models do not pay much attention to the context of the organization in which interactions

take place. The risk attitude of an agent as well as the rewards and costs associated

with actions are key factors in decision making, and must be considered as part of the

context of the decision. Situations like this necessitate having a mechanism that would

allow individualized evaluation of risk in the environment. Risk-seeking agents can handle

a higher amount of uncertainty, while risk-averse agents are more cautious. While trust is

necessary for successful delegation and social control, it is not sufficient on its own due to

the context based nature of many decisions agents make [14,15].

The first part of this research deals with implementing self-adaptation in agent organi-

zation along with proposing four different methods namely: Fixed Approach, Need-Based

Approach, Performance-Based Approach and Satisfaction-Based Approach. These methods

are strategies of agents for adaptation. Since one of the purposes of self-adaptation is ro-

bustness against failure, we test our model with two types of shocks to see the effectiveness

of our self-adaptive system under unexpected circumstances.

The second part of this research focuses on studying the behavior of agents in this

adaptive society (built in the first part). We propose an algorithm for decision making which
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allows agents to utilize the concepts of trust and adaptive risk. Often risk is categorized

by three different categories: risk-seeking, risk-neutral and risk-averse [16–19]. The concept

of Adaptive Risk we propose, which introduces a range for risk behaviors. In addition,

adaptive risk gives agents the opportunity of updating their risk measure based on the

effectiveness of prior decisions. Also we propose the concept of Agents’ Strategy, which is

a strategy to helps them with prioritizing tasks in their work queue. Furthermore, agents

have the opportunity of updating their strategy. We use a Recommendation-Based Trust

model, which has been frequently used for studying the concept of trust in multi-agent

systems [13,18,20–22].
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CHAPTER 2

EFFICIENT SELF-ADAPTING AGENT ORGANIZATION

1

2.1 Abstract

Self-organizing multi-agent systems provide a sui paradigm for agents to manage them-

selves. We demonstrate a robust, decentralized approach for structural adaptation in explic-

itly modelled problem solving agent organizations. Based on self-organization principles,

our method enables the agents to modify their structural relations to achieve a better com-

pletion rate of tasks in the environment. Reasoning about adaptation is based only on the

agent’s history of interactions. Agents use the history of tasks assigned to their neighbors

and completion rate as a measure of evaluation. This evaluation suggests the most suitable

agents for reorganization (Meta-Reasoning) and then updates relations (Reorganization)

with the target neighbors. Our Selective-Adaptation has four different approaches of Meta-

Reasoning, which are 1) Fixed Approach, 2) Need-Based Approach, 3) Performance-Based

Approach, and 4) Satisfaction-Based Approach for Meta-reasoning part and a Reorganiza-

tion phase, which needs less data but makes better decisions

2.2 Introduction

A multi-agent system consists of interacting intelligent agents and their environment.

Agents can be software agents, robots, or humans. Multi-agent systems solve problems that

are difficult or impossible for an individual agent to solve alone. In multi-agent systems,

1 Ahmadi K. and Allan V. H (2013).
Efficient Self-Adapting Agent Organizations.
In Proceedings of the 5th International Conference on Agents and Artificial Intelligence, pages 294-303
DOI: 10.5220/0004261902940303
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interaction between agents is one of the important factors, which allows them to find each

other and exchange information [2, 3].

Social interaction and success in jointly solving problems determines a desirable struc-

ture for the organization of agents. The task environment contains a stream of tasks requir-

ing some services, and agents need to provide these services by providing required resources.

The number of links and the specific connections are designed to minimize communication

overhead and facilitate task completion.

Autonomous systems, capable of de-centralized self-organization, have been proposed

as a solution for managing complex computing systems that must deal with node failure and

dynamic problem characteristics. Responding to their own history of interactions, individual

agents exhibit the ability to modify the organizational structure. Our adaptation method

is based on the agents forging and dissolving relations with other agents. Agents use the

history of tasks assigned to their neighbors and the degree of successful completion of these

tasks as a measure of evaluation. The system evaluates existing links for possible increase or

decrease in the overall performance. After finding the target neighbors for reorganization,

the agent may decide to change the two-way relationship with them or replace the target

agent with another agent for probable improvement [4, 6].

Various approaches promote self-organization, like reward-based mechanisms for self-

ish agents [7], stigmergy (indirect coordination through the environment) [5], reinforce-

ment mechanisms, and cooperative actions of agents. Each of these approaches has ad-

vantages and disadvantages, but none of them directly deals with organization structure.

Self-organized systems are decentralized, without any external control. Such autonomic

systems are more robust as there will not be a single point of failure.

2.3 Previous Work

Hubner et al. introduced the MOISE framework [23]. MOISE is a top-down framework

which utilizes a group of expert agents for reorganization. The expert group is in charge of

monitoring the system and finding the deficiencies of current structure; this group also has

the capability to propose changes and the authority to implement them. In this model, a
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group of complex agents have management and reorganization capabilities and the rest of the

agents are just simple working agents. This framework does not satisfy our requirements to

have a decentralized adaptation which involves all agents in management and reorganization

processes.

Bou et al. introduced ISLANDAR model [1]. In this model, a group of central authority

agents regulate norms of the organization. These norms guarantee the accomplishment

of the goals of the organization. This central management also constantly modifies the

organizational structure in order to satisfy the predefined norms of the system. First of

all, this model is centralized, which is not in keeping with our ideal model. Furthermore,

as the system grows in size, defining the norms becomes more complex because the central

authority agents need a lot of information to consider all possible situations of the system.

Finally, not all of the agents are involved in the adaptation process.

Hoogendoorn used a model named AGR [5]. In AGR, the organization is considered as

a graph in which agents are nodes and the relationships between them are the edges of the

graph. A central authority tries to identify the bottleneck of the system. The adaptation

process aims to improve performance of the system by duplicating the roles and associated

links of agents to increase capacity in certain areas. The problem of this model is not only

its centralized behavior, but also its lack of a mechanism for removing redundant links.

In the Barton work, the network structure is composed of agents with a given skill set

and connections between agents [24]. Tasks requiring a set of skills are introduced into the

system. Agents communicate with other agents through links in their surrounding network,

which is the agent’s local neighborhood. A set of agents form a coalition to complete

each task. In this model, all completed tasks have equal utility, while uncompleted tasks

have zero utility. Agents attempt to reorganize themselves to improve the utility of the

system. Barton evaluates several approaches in this work. Egalitarian approach establishes

connections between agents with relatively few connections. Inventory approach connects

agents possessing a needed skill in the neighborhood. Structural approach seeks to connect

agents with the largest number of connections. This model differs from our model in that a
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tree of services (subtasks)is not considered for modelling tasks. We have different types of

dependency links between subtasks, which are nodes on the tree. This model permits only

one kind of relationship between agents, while we have different authority links between

agents. Based on the links they have, each agent has different roles and different duties

along with access to various amounts of information.

Miralles structures the problem as a set of resources that work together to share data

[25]. A separate meta-level is in charge of adaptation. A peer can potentially contact any

other agent, but typically, it interacts with a small number of them. Agents reorganize in

response to changes in connection quality or information flow. Each connection is limited in

terms of the number of units of data that can be sent in a time step. Having a meta- level

in charge of management contradicts with the decentralized property that is a desirable

property of the system.

Kota et al. represent the task environment as a dynamically incoming stream of tasks

requiring multiple services [4, 6]. There is sequential dependency between tasks. Kota

represents tasks as a tree of service instances (SIs) in which the parent SI must be completed

before the child SI. Figure 2.1 demonstrates a tree of task dependencies. Nodes represent a

service instance (SI). Arrows represent a dependency relationship. A tuple represents the

services (skills) required and the amount of computation needed for each of the five SIs.

Since finishing the task requires multiple services, agents pass the task between themselves

in order to complete all of the services required. The Kota model assigns tasks to the

agents randomly, and the assigned agent utilizes its neighbors including subordinates, peers,

superiors and acquaintances to accomplish the task. The task is complete when its entire

tree of SIs has been executed.

In the Kota work, agents are known to each other with three levels of relationship:

(a) acquaintance (knowing existence, but having no interaction), (b) peer (low frequency of

interaction) and (c) superior-subordinate (preferred interaction). The superior-subordinate

relation is an authority relation as it depicts the authority held by the superior agent over the

subordinate agent. The peer relation is present between agents who are equal in authority
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Figure 2.1: Diagram of the task tree.

Figure 2.2: Organizational structure.

with respect to each other. The type of relationship between agents determines both the

task allocation the amount of information agents know about each other. Structure of the

organization regulates the interactions between agents. Figure 2.2 shows an example of the

organizational structure of agents. Agents (nodes) keep track of their own service(s) (shown

in parentheses), the services of their subordinates (shown in braces as a possibly nested set

of services), and the services of peers (shown in square brackets).

In the Kota model, every agent has a fixed number of services it can provide and a

known computational power. Thus, an agent is of the form Ax =< sx, cx > where sx ⊆ S

(S is the complete list of services) and cx is the agent’s capacity in terms of computational

units in a time step. An agent prefers to allocate the subtasks to its subordinate agents as

subordinate agents give priority to tasks assigned by the superior. An agent is always try
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Figure 2.3: Process of assigning a task to an agent.

to execute an SI if it contains the service and available computational power. If it is not

possible for the agent to execute that SI, it can delegate it to one of its neighbors.

Figure 2.3 shows the process of assigning a SI. Each agent can respond to only one

request per time-step. Therefore, agents store requests in a waiting queue. Requests in a

waiting queue are considered in a first-come, first-served basis. Each task has a deadline

associated with it. If the agent spends time on a task that is not finished, it does not get

reward and the agent wasted its resources. If it does not attempt the task, there is no

penalty as there was no wasted effort. Also, each task has an estimated amount of expected

time. The utility of the task decreases if it takes more than the estimated expected time.

Equation 2.1 shows the relationship between utility and time. Here t stands for time.

earnedUtask = AssignedUtilitytask − (ttakentask − texpectedtask ) (2.1)

When an agent is consistently looking for another agent to perform a given service, it is

motivated to reorganize to form a direct relationship with an agent providing that service.

This process is called adaptation. This process seeks continuously to improve the profit of

the system. Agents can adapt only locally and change only their own links. Though based

on local adaptation by the agents, the method should lead to the benefit of the organization
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as a whole. The Adaptation process consists of two main parts, named Meta-Reasoning

and Reorganization. Meta-reasoning decides about which agents should be considered by

agentx for reorganization. The number of agents considered for reorganization at time t,

kt, is computed as showed in Equation 2.2.

kt = max


1

(Lx−lx)
R

acqtsx × changedx,t−1

kt−1

(2.2)

In Equation 2.2, Lx is the computational capacity of the agentx, lx is the current load on

the agent and R is the reorganization load coefficient, denoting the amount of computational

units consumed by an agent while changing a single relation. acqtsx represents the number

of acquaintances of agentx, changedx,t−1 denotes the number of changed relations of agentx

in the previous iteration and kt1 denotes the k value used in the previous iteration. Based

on Equation 2.2, at least one of the agentx’s neighbors is considered for reorganization

in each iteration. The second term, which is (Lx−lx)
R , indicates that reorganization can

consume the remaining computational capacity of agentx in current iteration, regardless of

the need for that much reorganization. The third term, acqtsx × changedx,t−1

kt−1
, estimates the

number of relations which should be considered for reorganization based on the history of

past iterations.

After finding the value of kt, agentx randomly picks kt agents from the list of its

neighbors including its peers, subordinates and acquaintances for reorganization. In the

Reorganization part of the Kota method, agentx evaluates its relations with considered

agents in the Meta-Reasoning part. This evaluation considers changing those relations to

another type of relation in order to increase profit. Figure 2.4 shows the possible actions

between two agents, dependent on the current relationship. Then agentx evaluates the

utility of each of the possible actions. After calculating the utility of each action, agentx

selects the best reorganization action.

One of the deficiencies of the Kota method is the lack of a suitable task scheduling
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Figure 2.4: Diagram of possible actions.

algorithm; tasks are assigned to agents randomly. Randomly assigning tasks increases the

load on the assigned agent when it cannot provide needed capabilities. Figure 2.3 shows

the process of finding a capable agent in such a case. This approach adds communication

cost to the system and keeps the assigned agent busy finding a capable agent. Therefore,

an intelligent way of task scheduling is needed in order to improve the profit and reduce the

cost. Other deficiencies include randomly choosing neighbors for reorganization in Meta-

Reasoning part and complex method for evaluating possible actions in the Reorganization

process.

2.4 Our Proposed Model

In this research, we adopt the structural constraints of the Kota research [4], but focus

on the deficiencies of its model. In our method, Selective-Adaptation, each agent selects

agents among its neighbors based on different approaches. The adaptation part of Selective-

Adaptation method is composed of two parts which are Meta-reasoning and Reorganization.

The relation of an agent and its neighbors is based on the two-way task passing. Most of

the time agents utilize the capabilities from their neighborhood subordinates and peers;

however, there are some cases in which agent’s needs are not fulfilled using its peers and

subordinates. Therefore, an agent passes the request back to its superior. Its superior is in
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charge of finding a suitable agent for this request.

Figure 2.3 summarizes the task passing mechanism; it shows how an agent and its

neighbors cooperate in executing different parts of tasks. We term service-providing agents

(which are not currently connected as a peer or superior/subordinate) as outsideHelpers.

Since the goal of adaptation is promoting relations with agents who are useful to it, we

need to consider outsideHelpers. In this model, we use the term neighbors for peers and

subordinates of agentx. In our system, an agent’s activities includes executing tasks, man-

agement (communications, evaluation of neighbors, task passing and updating neighbor

information) and Reorganization. Load refers to the computational units used to perform

an agent’s duties.

2.4.1 Meta-Reasoning

In Meta-Reasoning, each agent determines the number of agents from its neighborhood

which should be considered for reorganization. Determining this number is critical because

evaluating too many agents wastes the resources of the current agent. In addition, the

agent needs to find out which neighbors to consider for reorganization. Meta-Reasoning

used in this research is a history-based process and utilizes different approaches namely

Fixed Approach, Need-Based Approach, Performance-Based Approach and Satisfaction-

Based Approach. We discuss these approaches in the following subsections.

Fixed Approach

In the Fixed Approach, agents have an opportunity to evaluate their relationship with

their neighbors in all iterations. Our experiments show that the cost of reorganization is one

of the most important factors that affect profit of the system. In order to increase the profit,

each agent needs the most useful neighbors. The best neighbors are the ones that result in

a higher utility for the system. In order to make reasonable decisions about reorganization,

the reorganization load coefficient, R, has been defined in [4]. Evaluating many relationships

might exhaust the resources of the agent. Thus, agentx has to restrict the set of its neighbors

to consider for reorganization. Agents are recharged with computational power every d
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time steps. They use the recharge interval to estimate how much of the resource can

be consumed in any iteration. Since fuel costs are not negligible, the use of fuel should

be wisely monitored. “InitialComp” variable keeps the amount of initial computational

power of agent. Since agents firstly execute their assigned tasks in each iteration and then

they go to the reorganization phase, the remaining computational power of each iteration

after executing tasks can be used on reorganization. By dividing the amount of remaining

computational power by R, the number of agents that can be considered for reorganization

is determined and stored in kt. Equations 2.3 and 2.4 show the process of determining

kt. In these Equations, i stands for current iteration and “RemainedComp” indicates the

remaining computational power of iteration.

RemCompi = InitialCompi − loadi (2.3)

kt =
RemainedCompi

R
(2.4)

The number of agents to be considered for reorganization, kt, should be divided between

neighbors and outsideHelpers of agentx. For this division, we use the fraction Wf to deter-

mine the proportion of agents in each category based on Equations 2.5 and Equations 2.6.

numOutsideHelpers = min

count(outsideHelpers)Wf × numAgents
(2.5)

numNeighbors = kt − numOutsideHelpers (2.6)

We found that the system reached highest profit when Wf = 0.3. Thus, 30 percent of agents

we consider for reorganization are from outsideHelpers and the rest are agentx’s neighbors.

Figure 2.5 shows the pseudocode of the Fixed Approach algorithm.
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Figure 2.5: Pseudocode of Fixed Approach.

The strategy of agentx in selecting the suitable outsideHelpers and neighbors is differ-

ent. Agentx calculates earned utility of all of them and ranks them by this attribute. The

more utility they have earned, the better rank they have. Agentx tries to replace some of

its inefficient neighbors, but makes a stronger link with outsideHelpers which were helpful

in the past.

Need-Based Approach

In the Need-Based Approach, at each iteration, agentx estimates the number of links

it needs to reorganize using two parameters from past iterations: 1) the number of relations

considered for reorganization, and 2) the number of relations changed in past iterations.

By dividing the number of relations changed by the number of relations considered, agentx

can estimate how many of its past predictions have been accurate. Therefore, kt estimates

the number of agents which need to be considered in the current iteration (t) based on

Equation 2.7.

kt =

∑t−1
i=t−hChangedRelationsi∑t−1

i=t−hConsideredRelationsi
∗ numNeighbors (2.7)

After deciding the number of agents to be considered, (kt), agentx needs to divide kt between

its neighbors and outsideHelpers using Equations 2.5 and 2.6. By testing different values

for Wf , the system reaches the highest profit where Wf=0.3. Neighbors and outsideHelpers
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get their rank based on their earned utility for agentx. Figure 2.6 shows the pseudocode of

this approach.

Figure 2.6: Pseudocode of Need-Based Approach.

Performance-Based Approach

In the Performance-Based Approach, we utilize a measure of performance to decide

which agents to consider for reorganization. Each task in the system has an assigned

utility. When an agent is assigned a task, this agent can earn the whole utility of the task.

Therefore the possible utility agentx can earn is the sum of the utilities of all tasks it has

been assigned as shown in Equation 2.8.

possibleUtility =
∑

task∈Queue

AssignedUtility(task) (2.8)

Sometimes agents cannot earn that amount of possible utility due to the features like dead-

line violations and slowness in completing tasks. The amount of utility earned in comparison

with the possible utility available can be a good measure of performance for agents.

performance =

∑t−1
i=t−h earnedUtilityi∑t−1
i=t−h possibleUtilityi

(2.9)

Equation 2.9 shows the measure of performance for each agent based on its history of earning

utility. In Equation 2.9, i stands for any previous iteration, and t indicates current iteration.
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The history variable, h, indicates the number of past iterations to consider. Variable h is

in the range of [1, t − 1], where h = t − 1 considers the history of all iterations so far, and

h = 1 uses only the history of the last iteration.

In this approach, agentx, finds the performance for all of its neighbors and outside-

Helpers. Then agentx selects Wi ratio of its worst neighbors in terms of performance along

with Wo ratio of its best outsideHelpers in terms of their performance. For setting the values

of Wi and Wo, we tested the system with different values and compared the results. In this

case, system reaches highest profit in Wi=0.25 and Wo=0.15, which means that 25 percent

of least efficient neighbors of agentx along with 15 percent of best outsideHelpers have been

selected. If agentx does not have any outside helpers, it just considers its neighbors for

reorganization. Figure 2.7 shows the Performance-Based Approach.

Figure 2.7: Pseudocode of Performance-Based Approach.

Satisfaction-Based Approach

In the Satisfaction-Based Approach, agents decide on the adaptation based on satis-

faction. As we mentioned earlier, the relation of an agent and its neighbors is based on

subtask passing. Each agent is satisfied with a relation when the corresponding agent is
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able to service most of the agent’s requests; the stronger neighborhood in terms of providing

requests, the more satisfied the agent is.

satisfaction =

∑t−1
i=t−h numProvidedRequests∑t−1

i=t−h numRequsts
(2.10)

When an agent accepts a subtask request, it means that it has the potential to accomplish

that subtask. To compare agents in the neighborhood, we define a measure of satisfaction

as shown in Equation 2.10. In this equation, i stands for iteration and t indicates current

iteration. Variable h is in the range of [1, t− 1] as before. In Satisfaction-Based Approach,

agentx calculates the satisfaction of all its neighbors and its outsideHelpers. Based on this

measure, agentx selects Wi ratio of its least satisfactory neighbors to be considered for

reorganization. If there are any outsideHelpers, agentx needs to select Wo ratio of its most

satisfactory outsideHelpers for reorganization too. Values of Wi and Wo are set same as

Performance-Based Approach. Figure 2.8 illustrates the pseudocode this approach.

Figure 2.8: Pseudocode of Satisfaction-Based Approach.

For some of the approaches, we need to set the value of h. Our experiments show that

considering total number of past iterations (h = t− 1) is too much history and considering

the history of last iteration (h = 1) may give a little insight about the past. We tested
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Figure 2.9: Pseudocode of Reorganization part.

different values for h and our experiments show that in h = 30 system reaches highest

profit.

2.4.2 Reorganization

The second part of our Selective-Adaptation is Reorganization. Reorganization enables

an agent to change its relations with some of its neighbors (kept in “AgentsToConsider” list)

which are identified in the Meta-Reasoning step. In this phase, agentx evaluates all of the

possible types of relation for each member of “AgentsToConsider” and changes the relations

in order to achieve a higher utility. For each agenti in this list, agentx takes the best action

among possible actions based on the current relationship and a measure computed from

some evaluation functions. Figure 2.4 demonstrates possible actions for two agents based on

their current relation. Figure 2.9 shows the pseudocode of the reorganization part. For each

agenti in this list, agentx takes the best action among possible actions based on the current

relationship and a measure computed from some evaluation functions. Figure 2.9 shows the

pseudocode of the reorganization part. Reorganization changes the current relation type

Rc to a new relation type Rn. Note that if the selected action is “NoAction” then Rn =Rc

(which means that relation will not change and this action does not have utility and cost).

The most important part of the reorganization approach is evaluating the utility of possible

actions and choosing the best one.

Kota method’s evaluation function uses parameters like: 1) the number of subtasks

assigned by agentx to agenty, 2)the number of subtasks delegated by agentx to agenty, 3)
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the total number of time-steps that agentx existed, 4) the number of time-steps that agentx

and agenty had a superior-subordinate relation or peer relationship, 5) the number of time-

steps out of the total time that agentx had waiting tasks, 6) the total number of subtasks

agentx assigned to other agents and 7) the communication cost due to the delegations

from by agentx to agenty. Kota method’s evaluation function is overly complex. Selective-

Adaptation needs less data but makes good decisions. The profit of an agent from the

action actd is:

profit(actd) = Utility + Load (2.11)

Based on Equation 2.11, the profit of each action consists of two terms, Utility and Load.

This equation is used for both forming and removing a relation. In forming a desirable

relation, the sign of Utility is positive. As any new relation adds some load to the agent,

the sign of Load is negative. The signs are reversed in the case of removing a relation.

In forming a relation, to estimate the utility for agentx in the process of changing the

relation with agenty (from Rc to Rn), two terms are used: 1) the average utility agentx

earned from agents which were in the same relation type as Rn which is called URn and 2)

the average utility agentx earned from agenty which is called UavgNewAgent.

Utility forminRelation =
URn +UavgNewAgent

2
(2.12)

Equation 2.12 shows this approach. For example, if agentx wants to make a peer

relation with agenty, it calculates the average earned utility of its peers so far URn along

with the average utility earned form agenty (UavgNewAgent). This equation says that for

having relation type (Rt) with agent (ay), the experience of agentx from that type of relation

(Rt) and the history of functionality of agent (ay) affect the decision. In a case of removing

a relation, for calculating Utility, we use Equation 2.12 too, but the value of UavgNewAgent

will be set as zero.

LoadOnEachAgent = M + C +R (2.13)

The second term of Equation 2.11 is Load and includes different types of loads as shown in
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Equation 2.13. M is the management load of having a new relation, C is the communication

cost and R is the reorganization load coefficient.

Table 2.1: Loads and costs of ax related to different relations

M C R

ax is peer of ay Mpeer Cpeer Rpeer

ax is subordinate of ay - Csubordinate -

ax is superior of ay Msuperior Csuperior Rsuperior

We used the general term M and C in Equation 2.13, however, the management load

and communication cost depends on the type of relation between two agents. Each agent

estimates the amount of M and C based on its history of this type of relation if known.

Table 2.1 summarizes all the loads that agentx (ax) experiences in changing a relation with

agent ay.

2.4.3 Task Scheduling

One of the deficiencies of the Kota method is its inefficient task scheduling algorithm

as it assigns tasks to agents randomly. Random task assignment increases the load on the

assigned agents when they are not capable. In this case, the assigned agent needs to go to

the process of finding capable agent as depicted in Figure 2.3. Random assignment also adds

communication cost to the system and keeps the responsible agent busy finding a capable

agent among its neighbors. It wastes resources which the agent could use on executing

tasks. Therefore, an intelligent way of task scheduling is crucial. In Selective-Adaptation,

the system tries to find the most suitable agent for task assigning. Pseudocode of Task

Scheduling is outlined in Figure 2.10.
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Figure 2.10: Pseudocode of task scheduling.

To find the most suitable agent for each task, we consider: 1) computational capacity

of agents, 2) queue length of agents (how busy the agents are) and 3) similarity of services

(how many of the services needed for the task can be provided by the agent). The most

desirable agent is the one which has the highest computational capacity and similarity of

services. In addition, it needs to have a small queue length because if the system assigns

a task to a busy agent, the task may wait a long time for execution. Since the goal of the

system is to reach a higher profit, wasting time in the queue while there are other agents

in the system which can execute the task is not reasonable. The length of the queue is

determined by the summation of the cycles required of each task in the queue. Finding

the most suitable agent is the duty of the “findSuitableAgent” function in line 4 of the

pseudocode depicted in Figure 2.10. This function aims to find an agent which is the best

based on the rank of Equation 2.14.

ranki = α1 × CCi + α2 ×QLi + α3 × SSi (2.14)

In the Equation 2.14, CC stands for computational capacity of each agent, QL indicates

queue length and SS stands for similarity of services. An agent which gets the highest rank

will be selected as the most suitable agent. Our experiments reach the highest profit when

these terms had an equal effect (α1= α2= α3).
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2.4.4 System Evaluation

We evaluate the effectiveness of models based on the performance of their organization

based on Profit, which is the summation of the profits of all of the individual agents. We

examine the amount of profit per iteration using Equation 2.15 in order to determine if any

improvement is achieved. Thus, for finding the profit we need to compute the amount of

utility has been earned and total cost of that iteration. The earned utility by a given agent

will be found using Equation 2.1. For finding total cost, Equation 2.16 is used. Equation 2.16

shows that costs in the system include reorganization cost and communication cost.

Profit = UtilityEarned − TotalCost (2.15)

TotalCost = ReorganizationCost + CommunicationCost (2.16)

Reorganization cost includes evaluating relationships and changing relationships. The pro-

cess of assigning a task to an agent requires sending and receiving messages to/from that

agent. Therefore, these processes also require inter-agent communication which adds to the

total cost of the organization.

2.5 Experiments and Results

For our experiments, we compare the results of Selective-Adaptation with other meth-

ods. For each method, we averaged the results for 100 simulations of 1000 iterations each.

2.5.1 Effect of Task Scheduling

Figures 2.11 shows the effect of task scheduling on the various adaptation approaches.

From top to bottom a) Fixed Approach, b) Need-Based Approach, c) Performance-Based

Approach and d) Satisfaction-Based Approach. As it can be seen intelligent approach of

task scheduling helps all of the approaches reaching higher profits.
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Figure 2.11: Effect of task scheduling.
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2.5.2 Profit over Time

As can be seen from Figure 2.12, results show the different approaches of Selective-

Adaptation in comparison with Kota method.

Figure 2.12: Profit of different approaches over time.

An identical reorganization part is used in all Selective-Adaptation approaches; there-

fore their different profit over time comes from their meta-reasoning approaches. It seems

that just using history of past iterations in Need-Based Approach is not effective enough

and this approach has the worst performance among all methods. Fixed Approach’s overall

behavior is similar to Kota but it has better profit due to utilizing intelligent way of select-

ing neighbors for reorganization. The Satisfaction-based Approach outperforms all other

approaches by considering a proper measure of satisfaction for decision making.

2.5.3 Shocks to the System

The aim of the adaptation method is to determine and apply changes in the organization

structure in order to improve the performance. Adaptation needs to respond to changes

in the environment in a self-organized manner. In order to see the behavior of adaptation

facing unpredicted events, we impose shocks upon the system.
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Agent Shock Experiment

Agents are associated with particular sets of services. These sets can be overlapping;

that is, two or more agents may provide the same service. Different tasks require different

amounts of time, and the load requirement is not uniform; therefore agents use a queue

to store tasks which are waiting for service. In our experiment with agent shock, every

200 iterations 1/5 of the agents are disabled. Because of this, disabled agents’ peers and

subordinates bear more load. They need to distribute disabled agents queue among other

agents which are capable of doing them. After 15 iterations, new agents will be added to

the system to replace the disabled agents. New agents (which need to be incorporated into

the organization structure) are added as acquaintances to all other agents. Figure 2.13

shows the effect of Agent Shock on different methods. Also, note the improvement due to

adaptation in comparison with the case without adaptation. From top to bottom a) Fixed

Approach, b) Need-Based Approach, c) Performance-Based Approach and d) Satisfaction-

Based Approach.

Task Shock Experiment

Tasks have some patterns in the dependency links between their subtasks. In this

way, the dependencies between the subtasks may follow some frequent orderings (resulting

from the dependencies internal to a pattern occurring in several tasks). For the shock

test, we defined four different patterns between tasks. Every 200 iterations, we change the

pattern to see the effect of the shock. Each agent creates its neighborhood based on the

needed capabilities. In the case of changing the pattern, agents face the lack of capability

among their neighbors. In such a case, as it can be seen in Figure 2.14, the profit of the

system decreases. In Figure 2.14 from top to bottom a) Fixed Approach, b) Need-Based

Approach, c) Performance-Based Approach and d) Satisfaction-Based Approach Agents’

queues become longer and all of the agents are busy with passing tasks in order to find

suitable agents for their assigned tasks.

After some iterations utilizing adaptation, the system compensates for what it lost

during shock time by making new neighborhood based on the new pattern. When the
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Figure 2.13: Effect of Agent Shock on different approaches.
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pattern changed, agents no longer had capabilities in their neighborhood and their superior

needed to find them acquaintances that could help. Since all agents are acquaintances to

each other, finding the right one to help takes the superior a long time. We decided that

the superior can keep a history of acquaintances that helped in the past and ask those for

assistance first; if they do not help, the superior finds other acquaintances to help. This

decreases the amount of communication in the system, enabling faster recovery from task

shock.

2.6 Conclusion and Future Work

In this paper, we propose a new method of adaptation which is called Selective-

Adaptation. We demonstrate a robust, decentralized approach for structural adaptation in

problem solving agent organizations. Our adaptation method is based on the agents forging

and dissolving relations with other agents. Agents use the history of past iterations as a

measure of evaluation. This method consists of two main parts which are Meta-Reasoning

and Reorganization. In the Meta-Reasoning, every iteration each agent selects some of its

neighbors for reorganization based on different approaches like 1) Fixed Approach, 2) Need-

Based Approach, 3) Performance-Based Approach, and 4) Satisfaction-Based Approach.

After selecting neighbors, the agent tries to find all of the possible actions between itself

and target agent based on the current relationship between them. Then the agent evaluates

all of the possible actions and selects the best one in terms of its estimated utility. This

method can successfully handle unexpected stress tests (shocks) to the system, along with

showing higher profit in comparison with other existed method of self-organization (Kota).

Possible future works include restricting agents’ resources like the amount of memory agents

can use for keeping information about others and network bandwidth.
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Figure 2.14: Effect of Task Shock on different approaches.



30

CHAPTER 3

DECISION MAKING USING RISK AND TRUST IN

SELF-ADAPTING MULTI-AGENT SYSTEMS

3.1 Abstract

Interaction between agents is one of the key factors in multi-agent societies. Using

interaction, agents communicate with each other and cooperatively execute complex tasks

which are beyond the capability of a single agent. Cooperatively executing tasks may en-

danger the success of an agent if it attempts to cooperate with peers that are not proficient.

Therefore, agents need to have an evaluation mechanism to select peers for cooperation.

Trust is one of the measures commonly used to evaluate the effectiveness of agents in co-

operative societies. Since all interactions are subject to uncertainty, the risk behavior of

agents as a contextual factor needs to be taken into account in decision making. In this

research, we propose the concept of adaptive risk along with agent’s strategy and propose

an algorithm which helps agents to make decisions in an adaptive society, utilizing adaptive

risk and recommendation-based trust. Our Trust-based decision making increases the profit

of the system along with higher task completion rate and lower task failure in comparison

with the no-trust model in which agents do not utilize evaluation mechanisms for choosing

their cooperation peers.

3.2 Introduction

multi-agent systems consist of intelligent agents and their environment. Intelligent

agents, which can be software agents, robots or humans, interact with their environment

and accomplish actions in order to reach their goals. Agents are autonomous, self-interested

and goal-driven, which makes them capable of solving problems. Multi-agent systems are



31

designed to solve problems that are beyond the individual capabilities or knowledge of each

single agent. Therefore, cooperation between them is necessary for achieving goals.

Agents have two main capabilities. The first capability is autonomously deciding what

actions to take that will lead them toward their own goal. The second capability is inter-

acting with other agents in the environment. Since the multi-agent systems we consider are

designed for cooperatively solving problems, the notion of interaction between agents is a

central point for the design of multi-agent applications. Interaction allows them to find each

other and exchange information. Interaction also includes social activities like cooperation,

negotiation and argumentation in terms of reaching their goal [2].

One of the desirable properties of multi-agent systems is the autonomy of the entities.

Autonomy makes a sure knowledge of other agents’ behavior impossible, both because of

the difference in goals and the methods to achieve the goals. When the behaviors are at

cross purposes, there is increased vulnerability to the system due to optimistic promises.

The goals of one agent may negatively impact the achievement of the goals of another

agent. Thus, some sort of control is needed in a society of autonomous agents, as is true in

human societies. The term soft security refers to security which protects agents (and the

system as a whole) from harm in unobtrusive ways [8]. Soft security deals with preventing

the repetition of undesirable behaviors. Trust as soft security is one of the most successful

social controls in human societies.

From a local point of view, trust lies at the core of all interactions in the agent system.

A task assigned to an agent may have components which need to be done by another agent.

An agent will ask another agent to complete part of the task (delegation) based on both

capabilities and availability. Cooperation between agents requires each agent to rely on other

agents’ capabilities and competency to achieve goals. However, cooperation may jeopardize

an agents’ success by relying too heavily on the statements and actions of its neighbors [18].

Determining which agents to select for delegation of tasks is a very complicated decision

for agents. The agent should have a clear evaluation of the partners it chooses. Therefore,

the concept of trust is one of the fundamental necessities in the society and resolves some
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of the uncertainty in interactions. Agents build trust about their neighbors and use trust

to make decisions about partners.

In the global point of view, trust works as a social control mechanism. Agents who

repeatedly fail to complete promised tasks lose the chance of cooperating in tasks and are

socially excluded from activities. This creates a form of supervision on the whole system in

which all entities are involved [13].

In choosing a partner, trust is an important consideration, but the perception of trust

differs from agent to agent. Agents do not necessarily agree on the definition of poor

behavior as it is dependent on context. In addition, agents may be willing to risk a lesser

result if their circumstance is tolerant to failure or their partner options are limited. Risk and

uncertainty exist in all interactions of societies with non-deterministic behaviors. Most trust

models [12, 16, 20, 26, 27]. do not pay much attention to the context of the organization in

which interactions take place. The risk attitude of an agent as well as the rewards and costs

associated with actions are key factors in decision making, and must be considered as part of

the context of the decision. Risk-seeking agents accept a higher amount of uncertainty, while

risk-averse agents are more cautious. While trust is necessary for successful delegation and

social control, it is not sufficient on its own due to the dependency of many of the decisions

to the contextual factors.

This research focuses on studying agents’ decision making in an adaptive society using

trust and risk. By “adaptive society” we mean that the organization of agents enables them

to modify their structural relations (adaptation) to achieve a better completion rate of tasks

in the environment. Adaptation is decentralized and involves all agents in management

and reorganization processes. Agents gradually make the changes and this process is a

continuous activity of the system. We propose a decision making algorithm which allows

agents to utilize the concepts of trust and adaptive risk. Often risk is categorized by three

different labels: risk-seeking, risk-neutral and risk-averse [12, 16–18, 20, 27]. The proposed

concept of adaptive risk introduces a range for risk behaviors. In addition, adaptive risk

gives agents the opportunity to update their risk measure based on the effectiveness of prior
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decisions. Also, we propose the concept of agents’ strategy, which is a strategy to help them

prioritize tasks in their work queue. Furthermore, agents have the opportunity to update

their strategy. We use a recommendation-based trust model, which has been frequently

used for studying the concept of trust in multi-agent systems [10,11,13,19,21,22].

3.3 Previous Work

Falcone and Castelfranchi attempt to represent trust as a mental structure of beliefs

by introducing a cognitive approach through trust evaluation [13]. The concept of trust is

broken down to different beliefs and the complex interaction between these beliefs builds the

body of trust. They define different dimensions of beliefs like competence, disposition, self-

confidence and fulfillment. They combine these beliefs to build a trust evaluation mechanism

for an entity. While their model is one of the richest models to have been proposed, it is very

complex to build the beliefs considering all their defined dimensions. Evaluating the beliefs

in order to build trust is another complicated procedure due to the necessity of cognitive

information. These problems make this model impractical in most situations.

Grandison and Sloman introduce the SULTAN model [28]. This model was developed

to support secure interactions in internet applications. Trust is specified as rules or policies

of the system, such as accessing the resources of the system or deciding to accept a user’s

authorization key. The decision is made based on the rules/policies and risk threshold,

which ultimately label some behaviors as distrusted and too risky. The problem of this

model is that all the knowledge about risk, rules, and history of trust is centralized within

the system. Therefore, it is not applicable to our decentralized adaptive model.

Griffiths employs a simple threshold-based decision-making approach that divides the

agents into four categories: trust, distrust, untrust and undistrust [29]. The author claims

that this categorization ensures a degree of trust for delegations. There are criticisms on

this model. Firstly, finding the optimal threshold for dividing the agents in four groups is

complex. Secondly, the threshold should not be the same in all circumstances and should

vary depending on the context of different situations. Finally, in this model, agents make

decisions using only threshold-based trust, rather than trust within the context of the
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decision. These problems make this model inapplicable to our proposed model.

Brunett uses recommendation-based trust in ad-hoc societies [9]. Direct experiences

are used to build trust. When an agent has no direct experience with a target, it uses

the experiences of other nearby agents to build trust in the target. In highly dynamic

societies, agents leave the community or newcomers join frequently. Therefore, building

trust based on experiences is not always feasible. Brunett proposes a stereotyping method

to build trust. Stereotyping tries to build trust based on predefined features for those agents

without relevant experiences. In decision making, agents consider the context of the decision

using concepts like risk, reward and cost of the action to satisfy the controls of the system.

Although this model satisfies some of our desired properties, there are some mismatches

with our proposed model. First of all, our model is a self-adaptive one, which adapts

itself based on history and has some sort of dynamicity. The focus of Brunett’s model

is on ad-hoc organizations, which does not make sense for most history-based decisions.

Furthermore, this model divides agents into three categories like risk-seeking, risk-averse

and risk-neutral, while we desire agents to have adaptive risk behavior across of range of

evaluations. Therefore, some approaches of Brunett’s model are not employable by us.

3.4 Our Proposed Model

Normally, people use trust to decide with whom to interact. A trust-based system

allows agents to select their interaction peers dynamically during execution. In this research,

the trust model we use is Recommendation-Based Trust, which has been frequently used

for studying trust in multi-agent system [12,16,19,20,22,29]. As we mentioned, considering

trust as the sole factor for decision making may not be reasonable in many situations. Here,

we propose that the context of the decision should also be considered and that risk (as an

important contextual factor) should be taken into account [9, 17, 18, 22]. In this research,

risk is modeled as a continuous measure, which results in having agents with a range of risk

behavior rather than just three distinct types (Risk Seeking, Risk Neutral and Risk Averse).

We also introduce the concept of adaptive risk, which gives the agents the opportunity to

change their risk behavior based on their experiences. Agents in our model adopt a strategy
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Figure 3.1: Structure of the task tree.

to affect the way they place tasks in their working queue. Finally, we propose an algorithm

for decision making in a self-adaptive society with a tree structure task domain which

utilizes trust and adaptive risk. Our self-adaptive society allows agents to evaluate their

cooperation peers and change their organizational link with them in a decentralized way.

With this mechanism of decision making, we aim to optimize total utility and number of

tasks completed, and minimize time wasted in unprofitable tasks, idle time and overhead.

3.4.1 Task Domain

In this model, a task is represented as a dynamically incoming stream of multiple

services. These services are considered as nodes (subtasks) of the tree. Each service instance

(SI) needs a known skill and computation time. There is sequential dependency between

subtasks, which means that the parent SI must be executed before its child SI. When all

of the nodes in the tree are executed, the task is complete [30]. Figure 3.1 shows the tree

structure of a task. There is a deadline and specified amount of utility associated with a

complete task. The utility of a task is the amount of reward the agent gets for investing

resources on this subtask and finishing it before its deadline. Since multiple agents cooperate

in executing a task, agents get reward for the parts they execute. Therefore total utility

of the task is divided between nodes. Reward associated with each node depends on the

amount of computation the node needs for execution and the number of nodes sequentially

dependant to the execution of this node. Utilizing the mentioned mechanism of dividing

reward, nodes with more children get slightly higher reward in comparison with the same
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node with fewer children (as explained before, children of a node must execute after the

execution of their parents). This policy increases the agents’ incentive for giving higher

priority to the subtasks with more dependants and minimizes waiting time of the dependants

of a special node. Details of the prioritization mechanism are explained in section 3.4.5.

If a subtask is completed after the deadline, the agent does not get a reward and the

resources spent on the subtask have been wasted. To motivate progress, the reward of the

task decreases if the finishing time exceeds what is expected for the task, known as expected

time. Equation 3.1 shows the relationship between utility and time. Here t stands for time.

earnedUtask = AssignedUtilitytask − (ttakentask − texpectedtask ) (3.1)

Note that expected time differs from deadline. Expected time is the average estimated

time for finishing the task. If the agent cannot finish the task by the expected time, the only

punishment is decreasing its expected reward. This mechanism aims to reward a sooner

finishing time, which is better for the system. Deadline is the last chance for the agent to

accomplish the task and get the reward.

3.4.2 Self-Adaptive Agent Organization

Agent organization regulates the interaction between agents by defining various types

of relationship links. These links specify the type of relationship between agents. There

are four levels of relationship between agents listed in order of importance: (a) superior

(obligation to satisfy), (b) subordinate (preferred delegation), (c) peer (low frequency of

interaction) and (d) acquaintance (knowing existence but having no interaction). Acquain-

tances are strangers to each other, peers have equal authority and the superior-subordinate

relationship depicts the greater authority of the superior over the subordinate. The type of

relationship between agents specifies the amount of information they have about each other

and shows the preferences of agents in the task-passing mechanism. Figure 3.2 shows an

example of the organizational structure of agents.

Agents have a set of skills and known computational capacity needed for executing
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Figure 3.2: Example organizational structure.

Figure 3.3: Task passing mechanism.

tasks and management computations. Since finishing a task requires cooperation between

multiple agents, a task-passing mechanism allocates tasks to different neighbors. Based on

its relationship with a neighbor, agentx prefers to allocate tasks first to its subordinates,

then to peers and finally to its acquaintances. Figure 3.3 demonstrates this task passing

mechanism.

When an agent is consistently looking for another agent with a specific skill, it is

motivated to reorganize to form a direct relationship with an agent providing that service.

This process is called adaptation. This process seeks to improve the profit of the system.
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Agents can adapt locally, though based on local adaptation by the agents, the method leads

to the benefit of the organization as a whole. The adaptation process consists of two main

parts, named meta-reasoning and reorganization. Meta-reasoning determines which agents

should be selected among an agent’s neighbors, and reorganization evaluates and changes

the organizational link with selected agents. This adaptation process aims to promote the

relation type of helpful agents (based on history) and demote the relationship of agents who

have shown less collaborative contribution in the neighborhood. Meta-Reasoning evaluates

neighbors using the Satisfaction Measure. Each agent is satisfied with a relation when

the corresponding agent is able to service most of the agent’s requests; the stronger the

neighborhood in terms of servicing requests, the more satisfied the agent is, as shown in

Equation 3.2.

satisfaction =

∑t−1
i=t−h numProvidedRequests∑t−1

i=t−h numRequsts
(3.2)

When an agent accepts a subtask request, it means that it has the potential to accom-

plish that subtask. In this equation, i stands for iteration and t indicates current iteration.

Variable h is in the range of [1, t − 1] and shows the amount of history that should be

considered. In this approach, agentx ranks its neighbors based on the satisfaction measure.

Then it selects some of its least satisfactory subordinates and peers along with some strong

acquaintances for the reorganization process.

Reorganization enables an agent to change its relations with some of its neighbors,

which are identified in the Meta-Reasoning step. For each agenty in this list, agentx takes

the best action among possible actions based on the current relationship and a measure

computed from evaluation functions. Figure 3.4 demonstrates possible actions for two

agents based on their current relation.

However, creating a new relation brings an amount of load to the system; it gives the

system the opportunity to earn utility via this new relation. In the case of removing a

relation, the system gets rid of the load of that relation while not earning utility any more.

Evaluation functions estimate the amount of utility and load associated with changing
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Figure 3.4: Diagram of possible actions.

a current relation Rc (between agentx and agenty) to new relation Rn. Loads consist of

management load, communication load and load of changing the relation, and are estimated

based on history. Utility is estimated based on past experiences with the type of relation

Rn and the effectiveness (in term of earned utility) of agenty. For example, if agentx wants

to make a peer relation with agenty, it calculates the average earned utility of its peers so

far, along with the average utility earned from agenty. This means that the experience of

agentx with that type of relation (Rn) and the history of functionality of agenty affect the

decision [30].

3.4.3 Recommendation-Based Trust

Consider the case in which agentx needs to build trust in agentz. To evaluate the

amount of trust to extend, agentx needs to use experiences. A requestor agent seeks bids

from possible provider agents, and contracts with a selected agent to complete a task. This

experience between the requestor and the selected agent allows the requestor to evaluate

the selected agent based on how well it accomplishes its promise. Experiences that are

related can be direct or from third parties. Although direct experience has a stronger effect

on the process of building trust, agentx may want to take into account the experiences

provided by third parties. Recommendations of other agents help agentx to have better
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judgment in building trust about agentz. Suppose that in agentx’s direct experience with

agentz, agentz was late or could not accomplish the given promise. Therefore, the bad

experience of agentx affects its trust in agentz. But when agentx considers third-party

recommendations of agentz, the effect of bad experience is adjusted. In addition, having

other members’ opinions helps agentx judge agentz from different points of view. The

number of recommendations agentx needs to build trust in agentz depends on the risk

behavior of agentx. Risk-averse agents need more recommendations and more positive

recommendations than risk-seeking ones. Recommenders are picked from among categories

below:

• agents that most recently interacted with agentz

• superiors of agentz

• agents that have the most interaction with agentz

Then, agentx combines the experiences for determine the amount of trust for agentz.

3.4.4 Adaptive Risk

In our model, risk is a number in the range of [0, 2], where 0 represents a fully risk-averse

agent, 1 represents a risk-neutral agent, and 2 represents a risk-seeking agent. This allows

a continuum of risk behavior rather than categorizing agents into only three options. This

risk measure affects all the decisions each agent makes. Each agent gets a Risk Random

Initial Value (RRIV ) as its risk measure in the initialization phase. RRIV is in the range

of [0, 2]. We use a random initial value for risk to have agents with various risk behaviors

in the model. Each agent has the opportunity to update its risk behavior based on its

experiences (history) and current resources. The measure of earned utility and measure of

loss are factors which agentx considers in updating its risk measure.
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• Measure of Earned: This measure is calculated from Equation 3.3. and shows a

percentage of earned utility.

MeasureofEarned = (
SumEarnedUtility

SumPossibleUtility
) (3.3)

The possible utility is the sum of all utility of the tasks accepted by agentx. SE is

considered a percentage of earned utility. Generally, agents with high earnings have

a good social standing and a higher acceptability of risk.

• Measure of Loss: This measure is calculated from Equation 3.4. The possible utility is

the sum of all the tasks offered to agentx. Both Lost and Possible utility are based on

accepted tasks by agentx. Measure of Loss is considered a percentage of lost utility.

Normally, agents who lose a lot try to be more cautious.

MeasureofLoss = (
SumLostUtility

SumPossibleUtility
) (3.4)

3.4.5 Reprioritization Algorithm using Agent’s Strategy

Each agent can only accept one request per time-step. Therefore, agents store requests

in a waiting queue. To estimate the expected finish time of the requested task, agentx needs

to prioritize its queue and find the estimated time based on the anticipated task’s place in

the queue. Factors which affect prioritization include:

• Deadline (D): Passing the deadline results in getting zero reward and wasting ex-

pended resources.

• Utility (U): Expected utility of completing the task (incentive for doing the task).

• Strength of Relationship (SR): Strength of relationship with requestor. An agent

could give higher priority to requests from superiors or from additional relationships

that an agent wants to encourage (such as a peer or subordinate that is deemed

valuable).
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For special taski, agents use (D (deadline), U (utility), SR (strength of relationship))

to specify priority for the task based on Equation 3.5.

MeasureOfPriority = α1 ×D + α2 × U + α3 × SR (3.5)

Each agent has a different weighting scheme (α1, α2, α3). We call this triplet the

strategy of agent, which specifies the order of importance of each factor. Some agents may

pay more attention to gaining utility than other factors. Some may worry about deadline

(keeping their promises). Other agents focus mainly on satisfying their superiors to keep

their relationship strong. We try various combinations of behaviors to see what is more

profitable. Furthermore, agent strategy can evolve. The update policy is based on copying

the strategy of one of the successful agents in their neighborhood. Various factors influence

the measure of success which is utilized.

3.4.6 Decision-Making Algorithm

In task passing, agentx can pass the task to different levels of neighbors including

subordinates, peers, superiors and acquaintances. In each level of neighbors, there may

be agents who claim they can help (volunteer to do the task). Volunteers provide their

suitability with three estimations, which include their best case, average case and worst case

time estimation of accomplishing the task. To find the optimal agent among volunteers,

agentx needs to consider factors like trust of volunteers, their estimation of finishing time,

and its own risk measure. The main application of trust is identifying who to interact with.

The risk measure and the volunteers’ estimated times provide the context of the decision

which agentx is going to make. Decision making involves these steps:

1. Agentx sends request for estimation of task completion to its subordinates

• Subordinates who are capable of doing the task reply to agentx, with their best,

average and worst case estimation time of doing the task along with the prob-

abilities of finishing the task in the estimated time. (The approach of making

estimations is explained later of the current section).
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• Agentx removes from consideration subordinates whose responses are dominated

by other agents.

• Agentx updates trust value for the remaining subordinates based on the approach

explained in 3.4.3.

• Agentx uses trust to evaluate their responses (to what extent agentx can accept

their promises).

• Agentx maps the estimated times to utility. This mapping is based on Equa-

tion 3.1. Equation 3.1 simply says that an agent can get the whole defined utility

of the task if it finishes it before a certain time. After that, the amount of utility

the agent can earn decreases by passing time. Therefore, the different estimated

times can be mapped to different utilities.

• Agentx finds the optimal agent based on Expected Utility Theory (details are

explained later in the current section), which uses the agents’ answers (converted

to utility) and agentx’s risk measure to pick the best option.

2. If there is no capable subordinate, agentx goes through the same steps as above for

finding the optimal peer.

3. If there is no capable peer, agentx passes the task to one of its superiors. Then the

superior is in charge of finding capable agent.

4. If agentx’s superiors fail to find suitable agent, agentx tries to assign the task to the

first volunteer acquaintance.

5. If agentx cannot find a capable agent after all of the following steps, it adds the task

on the back of its queue.

Estimation Approach of Agents

For the estimations, each agent utilizes the reprioritization algorithm to find the antic-

ipated place of the task in its queue. The anticipated place of the task in queue requires the

agent to evaluate the amount of time the preceding tasks in the queue need. Furthermore,
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there are always barriers to reach that time. Agents may finish tasks slower than what

they anticipated due to unforeseen circumstances, such as another task with higher priority

arriving and moving the current task down the agent’s queue. Utilizing the occurrence his-

tory of these events and anticipated place of the requested task, each agent (queried agent)

gives three estimations along with the probability of those estimations occurring. In all of

the equations, the number of tasks in the queue is considered as n.

• Best case denotes the case where neither the preceding tasks in queue, nor the re-

quested task are delayed. Equation 3.6 shows the best case time and probability

estimations.

T (BestCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration

P (BestCase) = (1 − p(lateness))n
(3.6)

• Average case estimation allows half of the tasks to be delayed, while the other half is

not delayed.

T (AverageCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration
+
n

2
× T (lateness)

P (AverageCase) = Cn
n
2
× (p(lateness)

n
2 (1 − p(lateness))

n
2 )

(3.7)

• Worst case represents the case where all tasks, including the requested task, are

delayed by these barriers.

T (WorstCase) =

∑n
i=1 compNeededi

AvgAgentCompPerIteration
+ n× T (lateness)

P (WorstCase) = 1 − P (BestCase) − P (AverageCase)

(3.8)

Expected Utility Theory

Agents use expected utility theory to help make decisions under uncertainty [9,16–18,

20,26]. This theory is a way to balance risk versus reward using a mathematical formula. In

a case of having multiple choices, this theory allows agents to calculate the expected utility

of each case and select the one with the highest expected utility. Risk measure affects the
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way agents interpret the amount of utility [9,17,20]. Risk-seeking agents have an optimistic

attitude toward the reward, while risk-averse agents are pessimistic and undervalue the

actual reward of tasks. However, risk neutral agents are objective and see the actual reward

of an action. In our model, we have a range of [0, 2] for these three categories of agents

where [0, 1] represents risk-averse agents, 1 stands for risk-neutral agents and [1, 2] depicts

risk-seeking agents. In our model, an agent’s interpretation of utility (IU) is calculated with

Equation 3.9.

IU = RewardRiskMeasure (3.9)

When agentx wants to chose the optimal volunteer, it utilizes its risk measure and interprets

the utility of each volunteer’s estimations (best, average and worst case answers). Then

based on Equation 3.10, agentx evaluates different choices and selects the agent with the

highest expected utility according to the expected utility theory. In Equation 3.10, IU

stands for Interpretation of utility, P stands for probability and E(C) shows the expected

utility of each choice.

E(c) = IUBest × PBest + IUAverage × PAverage + IUWorst × PAverage (3.10)

3.5 Experiments and Results

3.5.1 Experiment Settings

To investigate the efficiency of our model in different situations, we introduced three

scenarios, each imposing different levels of workload to the system. We compute the total

capacity of the system as the maximum amount of work the system can accomplish when

using the full capacity of all agents. Using this computed capacity, we define the low

workload as 80% of the system capacity; and average and high workload as 100% and 120%

of the system capacity respectively. For each scenario, we repeat 100 simulations of system,

each performing for 1000 iterations. The results are averaged over the number of runs.
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3.5.2 Profit Comparison

We evaluate the effectiveness of proposed model based on the performance of the or-

ganization measured as the system profit. System profit for each iteration is computed as

the summation of the profits of all individual agents. We use Equation 3.11 to calculate

the profit of agents per iteration using the amount of earned utility and the total cost of

that iteration. Each agent can calculate its earned utility based on completed tasks using

Equation 3.1.

Profit = UtilityEarned− TotalCost (3.11)

TotalCost = ReorganizationCost+ CommunicationCost (3.12)

As Equation 3.12 shows, the total cost in the system includes reorganization cost and

communication cost. Reorganization cost is used for evaluating and management of rela-

tionships. The process of assigning a task to the agents and trust building requires sending

and receiving messages to/from the other agents. Therefore, these processes also require

inter-agent communication, which adds some cost to the total cost of the organization.

Our first experiment compares the profit of the system using two approaches. The

trust-based approach uses the decision making algorithm explained in 3.4.6. The no trust

approach utilizes the task delegation approach depicted in Figure 3.3. Both of the methods

respect the hierarchy of the agent organization for delegating tasks; they delegate the tasks

in the following order: subordinates, peers, superiors, and finally acquaintances. Figure 3.5

shows the percentage of possible profit of the system under different workloads.

As it can be seen, in all the three scenarios, trust-based approach increases the system

profit. In the low workload, the profit of the model in both approaches is higher than the

two other scenarios. The reason is that agents are not as busy as the other workloads;

so the failure rate of tasks is low. In this workload, the system has the least failed task

percentage and highest task completion rate compared to other workloads. In the high

workload scenario, the profit ratio (computed as percent of possible profit) of the system

in both approaches is the worst in comparison with other approaches because the amount

of workload is beyond the capability of agents. Figures 3.6, 3.7, and 3.8 show the queue
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Figure 3.5: Profit comparison under three different workloads.

length of the system under the three workloads along with their standard deviation. Less

standard deviation indicates even distribution of tasks among agents. In trust-based de-
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Figure 3.6: Queue length and standard deviation of trust-based and no-trust approaches in
low workload.

cision making, volunteers for doing a task need to make estimation about finishing time

of the proposed task. Since estimations are computed based on the queue length (details

explained in 3.4.6), estimated time of agents with longer queue is higher than those with

shorter queue. Therefore, busy agents (agents with longer queue) have less chance of win-

ning the competition, and this fact results in even distribution of tasks among agents. It is

clear to say that higher workload results in a longer queue length.
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Figure 3.7: Queue length and standard deviation of trust-based and no-trust approaches in
medium workload.
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Figure 3.8: Queue length and standard deviation of trust-based and no-trust approaches in
high workload.

3.5.3 Failed Task Comparison

Task failure minimization is one of the aims of using trust in evaluating cooperative

peers and selecting the best one for a particular task. A smaller task failure percentage

effectively increases the amount of earned utility of agents and better performance of the

system. In this experiment, we measure the accumulated task failure of the system under the

three workload scenarios. Figure 3.9 shows the behavior of the system in this experiment.
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Figure 3.9: Comparison of task failure rate of trust-based and no-trust approaches in dif-
ferent workloads.
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As it can be seen, the rate of task failure increases by raising the workload. For the high

workload, we have a highest rate of task failure in both trust-based and no-trust approaches.

As mentioned before, the reason is that the amount of workload is beyond the capability of

agents. In other situations, there is a gap between trust-based and no-trust approaches. In

all situations, trust-based approach helps in reducing the amount of task failure.

3.5.4 Contribution of various risk categories of agents

In this experiment, we study the contribution of agents in the whole profit of the

system. Increasing profit requires earning more utility, and utility directly depends on task

completion rate. The aim of this experiment is to see which risk category of agents is

more successful in winning the competition of task delegation. Since our agents have a risk

measure in the range of [0, 2], we divide agents based on their risk measure of each iteration

in three intervals [0, 0.66], [0.67, 1.32], and [1.33, 2]. The agents in the first interval is called

risk averse category of agents, the agents in the second interval are risk neutral agents, and

finally the rest are risk seeking agents. Figure 3.10 shows the contribution of the agents

under three workload of the system. Since in this model agents’ risk measure is adaptive,

agents’ contribution is categorized based on their momentary risk measure. For example in

iteration 400, the red dot shows the contribution of all of the agents which their current (at

the moment) risk measure is categorized in the neutral range. We have the same setting

for risk seeking and risk neutral agents.

As it can be seen from the results of these experiments (Figure 3.10), risk neutral

agents have a higher contribution in the whole profit of the system. It proves the idea that

being too risk seeking or too risk averse is not as successful as being moderate. Moderate

agents are more successful in getting tasks and have higher contribution in the profit of the

system. Depending on the situation, each type of agent can have slightly more contribution.

For example in low workload and high workload, risk averse agents have a slightly higher

contribution, but in medium workload it seems both category of agents have almost equal

contribution.
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Figure 3.10: Contribution of risk seeking, risk neutral, and risk averse agents under different
workloads.

3.5.5 Risk Changing Behavior

Risk measure affects agents’ decision making based on expected utility theory explained
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in 3.4.6. Adaptive risk is a proposed concept which lets the agents to update their risk

behavior based on their past experiences. Normally agents who have been successful in the

past have wider tolerance of risk and in contrast agent who lost a lot trying to be more

cautious. This adaptive behavior lets the agents to evaluate their decisions history and try

to make better decisions.

In this experiment we divide agents to three categories based on their initial risk mea-

sure. First interval is [0, 0.66] which indicates risk averse agents. Second interval is [0.66,

1.32] and agents in this interval are risk neutrals. The rest of the agents (in [1.32, 2] inter-

val) are risk seeking agents. For each category of agents, we aim to see how agents change

their risk measure over time for one simulation run utilizing change bars. Basically, change

bar in iteration = t represents the amount of change in risk measure of the corresponding

category of agents in interval [t − 1, t]. For example change bars in Figure 3.11, show the

risk changing behavior of the agents which has been labeled as risk seeking initially over

time. We have the same story for Figure 3.12 and Figure 3.13.

Figure 3.11: Risk changing behavior of risk seeking agents.
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Figure 3.12: Risk changing behavior of risk neutral agents.

Figure 3.13: Risk changing behavior of risk averse agents.

Results show that agents which have been initially labeled as risk seeking, have higher

accumulation of change bars toward decreasing risk measure, while for the agents initially

labeled as risk averse is reverse. We can conclude that agents who started to be risk

seeking intend to decrease their risk measure more often, while agent who started to be

risk averse are more willing to increase their risk measure. For the agents initially labeled

as risk neutral, we have almost equal accumulation of change bars in both sides. This
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shows that although neutral agents experience change in their risk measure, they mostly

stay in the neutral range. In the previous experiment 3.5.4, we saw that moderate agents

(agents with the risk measure in the range of [0.66, 1.32]) had more contribution in the

profit of the system. On the other hand previous experiment showed moderate agents are

more successful than others in winning the competition of getting the tasks. Therefore,

it is obvious to see that agents tended to change their risk behavior toward being more

moderate.

3.5.6 Effect of Adaptive Risk

Risk directly affects decision making as explained in 3.4.6. Adaptive risk lets the agents

change their risk behavior. Successful agents have wider risk tolerance, and agents who fail

frequently need to be more cautious. Since functionality of agents is not constant over time,

agents change their risk to help them make proper decisions. Agents are updating their

risk measure based on the approach explained in 3.4.4. In order to see the effectiveness of

adaptive risk, we tested our model under two different situations. The first situation gives

the agents the opportunity of updating their risk behavior in each iteration. In the second

scenario, agents have the fixed level of risk in whole experiment. In each of the experiments,

we test the framework under three different workloads (high, medium, and low). Figure 3.14

summarizes the results of the experiments. Results demonstrate the usefulness of adaptive

risk in reducing task failure, better task completion rate and higher profit.
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Figure 3.14: Effect of adaptive risk in reducing task failure, better task completion rate and
higher profit.

3.6 Conclusion and Future Work

In this research, we proposed a decision making approach which gives the agents the

opportunity of evaluating their cooperation peers utilizing recommendation-based trust and

adaptive risk in a self adaptive society. The self-adaptive policy allowed the agents to

evaluate the effectiveness of their neighbors based on the history and promote or demote

the relationship with them in order to keep the most useful cooperative neighbors around

themselves. Each agent builds trust about another agent using the recommendation of

agents who had experience with the target. The experiences are direct and from third

parties for having a variation of opinions in order to build more accurate trust estimation.

Since perception of trust is not similar for all agents, context of the decision must be taken

into account. Uncertainty as one of the main contextual factors plays an important role

in decision making. In this model we proposed adaptive risk concept. This concept firstly
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gives the agents a range of risk behavior rather than dividing them in three categories as

risk seeking, risk neutral and risk averse. Secondly it gives the agents the opportunity

of updating their risk measures based on their resources and experiences. For satisfying

heterogeneity in the society, agents have different attitude toward reprioritizing their work

queue called agent’s strategy. This strategy mainly defines the agent’s preferences over

factors like earning utility, obligating to the tasks’ deadline and respecting the strength of

the relation with the requestor of agents. Besides reprioritization strategy of agents are

adaptive. Each agent has the opportunity of copying the strategy of successful agents in

its neighborhood. We tested our proposed method under three different workloads of the

system: low, average, and high workloads. Average refers to the workload which is equal to

the capacity of the system (total capability of agents). High workload is beyond the agents’

capability, and low workload is less than system’s capacity. In all the experiment, trust-

based decision making approach shows higher profit, less task failure, higher completion

rate of tasks, and even distribution of tasks among agents.

Possible future work includes using various reliability mechanisms to check the accuracy

of provided information for recommendation-based trust. There are many sources of false

data like correlated evidence and biased/extreme agents. Correlated evidence happens when

multiple agents have a single experience and use that in making opinion about trustee.

The receiver may consider them as different experiences, but actually they are the all the

same. A possible solution is the clustering of agents which are somehow related to each

other. Therefore two agents from one cluster probably share a common opinion about an

experience. Biased agents are another main source of false data. Normally when there is a

high chance of false data, there would be a big variance between provided opinions. There

are some suggested approaches for handling these situations like building reliability factor of

recommenders and gathering more and recent opinions. More opinions help on reducing the

variance of data. Recent data seems to be more accurate than old data especially in dynamic

societies. Agents should not rely on the recommendations which are basically reflect old

experiences. Another possible future work invloves giving incentive for recommenders to
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have mutual benefit between trustor and recommender. This mechanism increases the

incentive of recommenders to cooperate in order to get reward and can reduce the possibility

of biased or extreme opinions because of involving recommenders in delegation mechanism.
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CHAPTER 4

CONCLUSIONS

The first part of this research deals with implementing self-adaptation in agent or-

ganization. We demonstrate a robust, decentralized approach for structural adaptation in

problem solving agent organizations. Our adaptation method is based on the agents forging

and dissolving relations with other agents. Agents use the history of past iterations as a

measure of evaluation. We proposed a new method of adaptation which is called Selective-

Adaptation. This method consists of two main parts which are meta-reasoning and reor-

ganization. In the meta-reasoning, agents at each iteration select some of their neighbors

for reorganization based on different approaches namely 1) Fixed Approach, 2) Need-Based

Approach, 3) Performance-Based Approach, or 4) Satisfaction-Based Approach. After se-

lecting neighbors, each agent evaluates all of the possible actions and tries to promote or

demote the type of relationship between itself and the target agent. Since one of the pur-

poses of self-adaptation is to improve robustness against failure, we test our model with

two types of shocks to see the effectiveness of our self-adaptive system under unexpected

circumstances. This method can successfully handle unexpected shocks to the system.

Possible future work include restricting agents’ resources like memory and network

bandwidth. Agents should have a limited amount of memory which is used for keeping in-

formation about others. In addition, we use network bandwidth for our communication pur-

poses but we did not limit it. Another possible future work is changing this abstract model’s

task domain to real world problems like path finding or environment exploration. Dealing

with real world problems needs agents with more realistic skills. Testing the adaptability

and problem solving capability of this model under mentioned circumstances is considered

as an ideal future work of this model.

In the second part of the research, we proposed a decision making approach which
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gives the agents the opportunity of evaluating their cooperation peers utilizing recommen-

dation based trust and adaptive risk in a self adaptive society. Self adaptive society let the

agents to evaluate the effectiveness of their neighbors based on the history and promote

or demote relationship with them in order to keep the most useful cooperative neighbors

around themselves. Each agent builds trust about another agent using the recommendation

of agents who had experience with the target. The experiences are direct and from third

parties for having a variation of opinions in order to build more accurate trust estimation.

Since perception of trust is not similar for all agents, context of the decision must be taken

into account. Uncertainty as one of the main contextual factors plays an important role in

decision making. In this model, we proposed adaptive risk concept. This concept firstly

gives the agents a range of risk behavior rather than dividing them in three categories as

risk seeking, risk neutral and risk averse. Secondly it gives the agents the opportunity

of updating their risk measures based on their resources and experiences. For satisfying

heterogeneity in the society, agents have different attitude toward reprioritizing their work

queue called agent’s strategy. This strategy mainly defines the agent’s preferences over

factors like earning utility, obligating to the tasks’ deadline and respecting the strength of

the relation with the requestor of agents. Besides strategy of agents are adaptive. Each

agent has the opportunity of copying the strategy of successful agents in its neighborhood.

We tested our proposed method under three different workloads of the system: low,

average, and high workloads. Average refers to the workload which is equal to the capacity

of the system (total capability of agents). High workload is beyond the agents’ capability,

and low workload is less than system’s capacity. In all the experiment, trust based decision

making approach shows higher profit, less task failure, higher completion rate of tasks, and

even distribution of tasks among agents.

Another possible future work is using various reliability mechanisms to check the accu-

racy of provided information for recommendation-based trust. There are many sources of

false data like correlated evidence and biased/extreme agents. Correlated evidence happens

when multiple agents have a single experience and use that in making opinion about trustee.
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The receiver may consider them as different experiences, but actually they are the all the

same. A possible solution is the clustering of agents which are somehow related to each

other. Therefore two agents from one cluster probably share a common opinion about an

experience. Biased agents are another main source of false data. Normally when there is a

high chance of false data, there would be a big variance between provided opinions. There

are some suggested approaches for handling these situations like building reliability factor

of recommenders and gathering more and recent opinions. More opinions help on reducing

the variance of data. Recent data seems to be more accurate than old data especially in

dynamic societies. Agents should not confide on the recommendations which are basically

reflect old experiences. Another possible future work is giving incentive for recommenders

to have mutual benefit between trustor and recommender. This mechanism increases the

incentive of recommender to cooperate in order to get reward. Considering mutual benefit

can reduce the possibility of biased or extreme opinions because it involves recommenders

in delegation mechanism.
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