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ABSTRACT

Transparent Solar Panel Antenna Array

by

Taha Shahvirdi Dizaj Yekan, Doctor of Philosophy

Utah State University, 2016

Major Professor: Reyhan Baktur
Department: Electrical and Computer Engineering

This dissertation research presents a comprehensive study to answer the question of

“Can it be possible to integrate a high gain optically transparent antenna array directly on

top of solar cells?”. The answer to such question is extremely important in space exploration

where very small satellites have been extensively employed. Due to their small mass and size,

those small satellites create challenges for one to mount the antennas, and the challenge is

further increased when a high gain antenna is need for more communication capacity. Based

on feasibility studies, the dissertation concludes that it is possible to do such an integration,

and then proceeds to present the approaches for design and integration.

On the element level, the thesis presents research in assessing the effects between a

planar antenna integrated on the solar cell and the photovoltaic cell. A series of experi-

ments were designed to perform assessments for antennas operating from C to X bands.

It is concluded that a commercial triple junction space–certified solar cell normally would

decrease the gain of the antenna to 2–3 dB and is not affected by the working states of solar

cells. The shadow of the antenna casts on solar cells, however, is not significant (less than

2%). The thesis also provides a model of a common space solar cell that helps to explain

the gain loss. The model was validated by experimental data, and it was utilized to predict



iv

a possible custom design of solar cell where with a minimal design modification, it would

facilitate less gain loss of the antenna integrated on top.

On the array level, the research surveys different high gain antenna array design and

then focus on an optimal sub–wavelength reflectarray design. The final antenna array de-

sign is a 30 cm by 20 cm, X band (8.475 GHz) reflectarray that shows 94% transparency,

24 dB gain, and higher than 40% aperture efficiency. The design is then prototyped and

tested on actual solar panel. The measurement of the reflectarray placed on the solar panel

showed a gain of 22.46 dB and an aperture efficiency of 29.3%. While those results are con-

sidered excellent, the thesis continues to address the reasons for reduction of the antenna’s

performance due to the solar panel, through both theoretical analysis and experiments.

(103 pages)
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PUBLIC ABSTRACT

Transparent Solar Panel Antenna Array

Taha Shahvirdi Dizaj Yekan

A CubeSat is a very small satellite that has been achieving growing interests in space

exploration. The base unit of CubeSats 1U, which is a cube with 10 cm on each side.

In applications, CubeSats can be deployed as just 1U, or multiple unites can be stacked

together to form a larger CubeSat for extended functionality. Due to their small sizes, it is

challenging to fit antennas onto CubeSats because the antenna always fights for surface real

estate with solar cells. The challenge is further aggravated when an antenna is required to

have high gain such as more than 20 dB because the size of the antenna grows in accordance

to the gain.

This doctoral dissertation presents a comprehensive study to answer the question of

“Can it be possible to integrate a high gain optically transparent antenna array directly

on top of solar cells?”. The answer to such question is extremely important because it

solves the issue of allocating the antenna and solar cells on a CubeSat. After asserting

the feasibility of such an integration of antenna with solar cells, the thesis shows detailed

guideline on how to integrate a single transparent antenna element and antenna array on

solar panels.

On the element level, the thesis presents research in assessing the effects between a

planar antenna integrated on the solar cell and the photovoltaic cell. A series of exper-

iments were designed to perform assessments for antennas operating from 5 to 10 GHz.

It is concluded that a commercial triple junction space–certified solar cell normally would

decrease the gain of the antenna to 2–3 dB and is not affected by the working states of solar

cells. The shadow of the antenna casts on solar cells, however, is not significant (less than

2%). The thesis also provides a model of a common space solar cell that helps to explain
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the gain loss. The model was validated by experimental data, and it was utilized to predict

a possible custom design of solar cell where with a minimal design modification, it would

facilitate less gain loss of the antenna integrated on top.

On the array level, the research surveys different high gain antenna array design and

then focus on an optimal sub–wavelength reflectarray design. The final antenna array de-

sign is a 30 cm by 20 cm, X band (8.475 GHz) reflectarray that shows 94% transparency,

24 dB gain, and higher than 40% aperture efficiency. The design is then prototyped and

tested on actual solar panel. The measurement of the reflectarray placed on the solar panel

showed a gain of 22.46 dB and an aperture efficiency of 29.3%. While those results are con-

sidered excellent, the thesis continues to address the reasons for reduction of the antenna’s

performance due to the solar panel, through both theoretical analysis and experiments.
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CHAPTER 1

INTRODUCTION

A CubeSat is a very small satellite designed with modular components to have a min-

imum payload [1]. In general, a 1U (meaning one unit) CubeSat is a standard CubeSat

module, with a size of 10 cm x 10 cm x 10 cm and a weight of no more than 1.33 kg. A

1U CubeSat can be launched alone or multiple units can be stacked together to form nU

(n =2, 3, ) CubeSats (Fig. 1.a). For example, Fig. 1.b shows two 1.5U CubeSats, DICE

satellites launched by Utah State University (USU) [2], and Fig. 1.c is a structural illustra-

tion of USU’s RUNNER (Research Utility Nanosatellite for Near Earth object Rendezvous)

mission project, where a 6U CubeSat with deployed panels is constructed to study near

earth objects (comets, asteroids and other small bodies in the interior of the Solar System

which are 1.3 AU away from the Sun). Larger CubeSats extended mission capacity, but

have higher payload than 1U ones.

Antenna design for small satellite has its own challenge and has been an important topic

in CubeSat industry [3]. Integration of conformal antennas with solar cells has tremendous

value in CubeSat communication, as the antennas, when strategically integrated with the

solar cells, do not compete for the limited surface real estate and do not require mechanical

deployment. Thus, an effective conformal integration yields a low CubeSat payload and

a reliable communication. There have been four main types of conformal integrations re-

ported: (1) antennas integrated under solar cells [4–8]; (2) antennas integrated on the same

plane with or on the side wall perpendicular to solar cells [9–12]; (3) antennas integrated on

top of solar cells [13–18], and (4) parts of the solar cells function as antenna [19–22]. As the

first and forth types of integrations require custom–designed solar cells so that the antennas

can function properly, the focus of this doctoral thesis research is only on the third type of

antenna where all components can be off–the–shelf, which is favored in a CubeSat payload.

Accordingly, the objective of this dissertation is to present optically transparent antennas
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(a) (b)

(c)

Fig. 1.1: CubeSat: (a) 1U (Right) and 3U (Left) . (b) USU’s 1.5U DICE. (c) USU’s 6U
RUNNER.

that can be placed on top of solar cells. The design has a fair degree of independence from

the solar cell and can be designed in modular fashion. This type of antenna can be applied

either as the individual radiating element for 1U Cubesats, or designed into arrays for larger

CubeSats, where there is more solar panel area to host antennas.

This dissertation is organized following a multiple–journal–publication–format, which

means each chapter is composed of a journal or conference papers. Chapter 2 to 4 focus

on element level integration. Chapter 2 and chapter 3 are experimental assessments on

how the integrated antenna and solar cell affect each other at 5 GHz and 10 GHz range,

respectively. Chapter 4 is an analytical model of a typical space solar cell. The model helps

to explain the gain reduction of the antenna due to the solar cell underneath, and has been

shown to be validated through experimental data. The model also predicts a possible future

co–design of solar cell and integrated antenna.
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Compared to a single element antenna, high gain array antennas offer many advantages

in expanding communication capacity. But the integration with solar panels has been

limited by the surface area of CubeSats to host those larger antennas. With larger CubeSats

(such as 6U and 9U CubeSats) and deployed solar panels are becoming more common, it

is feasible to integrate antenna arrays with CubeSat solar panels. NASA’s ISARA is one

of such successful integrations, where a Ka band antenna array was integrated with the

backside of the solar panel [23]. The challenge is, this technology cannot be applied to cases

where both sides of a solar panel have solar cells. Such a solar panel is becoming popular

and is important for various missions. Chapter 5 presents an alternative design to ISARA,

where a low profile, optically transparent reflectarray is integrated directly on top of solar

cells. The transparency of the antenna is higher than 90%, which is the highest to date, and

the reflectarray design promises more than 22 dB gain and 29% aperture efficiency. The

chapter presents the reflectarray design, initial prototyping using circuit board material,

measurements, and measurements of the array when integrated on a functional solar panel.

The results are good and the reasons for minor gain reduction for the measurement results

are analyzed and explained. The targeted application of such an integrated reflectarray is

for is for Near Earth Network (NEN), however, the design can be conveniently scaled to

other space networks.

Chapter 6 is an additional study, where the objective is achieving polarization recon-

figurability of an integrated solar cell antenna. Although the study is for an element, the

method can be extended to array level.
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CHAPTER 2

AN EXPERIMENTAL STUDY ON THE EFFECT OF COMMERCIAL TRIPLE

JUNCTION SOLAR CELLS ON PATCH ANTENNAS INTEGRATED ON THEIR

COVER GLASS

Abstract

A patch antenna integrated on the cover glass of a commercial space–certified solar cell

is examined. Test fixtures were fabricated to study the antenna designed at 4.9 GHz when

there is an active solar cell under the antenna. It is found that the solar cell affects the

input impedance of the antenna and causes a 2-3 dB gain reduction. Repetitive tests were

performed to confirm that the effect from solar cells on the antenna remained the same

regardless of the working states of the solar cell, type of cover glass, or the assembly of the

solar panel.

2.1 Introduction

Integration of antennas with solar cells has important applications for small satellites

[1], deep space exploration [2], and self-powered ground sensors [3]. Such an integration

can be particularly valuable for a CubeSat (a very small satellite designed with modular

components to have a minimum payload) [4] as the antennas, when effectively integrated

with the solar cells, do not compete with solar cells for the limited surface real estate.

There have been four main types of integrations reported: (1) antennas integrated under

solar cells [1, 5–7]; (2) antennas integrated on the same plane with or on the side wall

perpendicular to solar cells [8–10]; (3) antennas integrated on top of solar cells [11–18], and

(4) parts of the solar cells function as antenna [19–21] (the antenna in [7] also belongs to this

category as the solar cell above the antenna acts as a parasitic elements of the antenna).

The third type of integration is of particular interest and promise to a CubeSat system
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as the antenna topology, especially when it is small or optically transparent, facilitates a

possible modular design. Accordingly, it is important to understand the interaction between

the solar cell and the antenna. The impact of the antenna on the solar cell can be estimated

with relative ease. One may evaluate the shadow or blockage caused by the antenna on the

solar cell to determine the reduction in the solar cell’s efficiency. The experimental set-up

for such a study is also straightforward. For the effect of the solar cell on the antenna

integrated on top, the reported results are limited. The objective of the research in [14,15]

was on the transparency or bandwidth of the antenna, and hence, there is no report on the

effect of the solar cell. The dielectric resonator antenna in [13] was reported to have little

effect on the solar cell, however, there was not sufficient information given on the specific

solar cell, and hence the conclusion from [13] may not be applicable to satellite solar cells.

In addition, the form factor of the antenna may present pressure on the solar cells if they

were to fly in space. A more comprehensive research by Shynu et al. [12] presented a

solar cell model, simulated and measured antenna’s parameters with and without solar cell.

Because the study was performed on one single relatively large (larger than one side of

a CubeSat) bare (i.e. without cover glass) solar cell, the results may not be applied to

antennas integrated with other types of solar cells with different cover glass. In addition,

commonly, the conductive layer of a solar cell is its electric positive plate [7]. Therefore,

the designs where the integrated antenna uses the solar cell as ground may induce unknown

compatibility issues.

Quantifying and presenting a reliable estimation of how commonly used CubeSat solar

cells effect the antenna design not only impact communication link budget and payload,

but also provide design guidelines for integrated solar cell antenna arrays. In addition, it

is a common practice to bond solar cells with their cover glass using transparent adhesive.

The effect of such adhesive has not been studied yet. The objective of this study is to

provide a consistent assessment on the performance of the integrated antenna due to the

solar cell beneath it while the two are electrically separated. This includes repetitive tests,

experiments with different cover glass and solar panel assembly, and examining the antenna
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against different states of active solar cells.

2.2 Method

A commercial space solar cell always has a cover glass on top of the photovoltaic layer

as protection. The existence of the cover glass is the design basis of the integrated patch

antenna, where the cover glass acts as the dielectric substrate of the antenna.

2.2.1 Test Fixtures

To assess the effect of the solar cell on the antenna’s performance, we prototyped a

two-cell solar panel composed entirely of all space certified off–the–shelf components. The

size and the material of the solar panel is compatible with a standard 1U CubeSat (i.e. it

is a cube of 10 cm on each edge.). Two fixtures to study the effect of the solar cell on the

antenna integrated on top, are shown in Fig. 2.1 and Fig. 2.2, where one fixture has a

functional solar cell (Fig. 2.1) and the other one does not have (Fig. 2.2). The cross section

view of the fixture with solar cell and antenna is illustrated in Fig. 2.3. From bottom to

top, the layer information is as follows. The first layer is a copper plate that serves as the

base of the solar panel and the ground for electronics. A thin Kapton sheet (orange colored

sheet in Fig. 2.1) with a thickness of tk = 0.0508 mm is placed on top of the ground, and

then two triple-junction space-certified solar cells from EmCore [22], are connected together

and mounted on top of the Kapton sheet. The Kapton sheet is to electrically isolate the

bottom of the solar cell, which is a metal coating and is the electrical positive of solar cells,

from the RF ground. The height of solar cells is hs = 0.15 mm. On top of each solar cell

is a AF32 cover glass [23], which is a standard space-certified material for solar cells in a

deep space environment because of its very high optical transparency and high temperature

tolerance. The height of the AF32 glass is h = 1 mm, the glass is pre-cut by the manufacture

to cover the solar cell seamlessly. The dielectric constant (εr) and loss tangent (tanδ) of

the AF32 glass are 4.5 and 0.015, both being measured at X band [17]. Finally, a patch

antenna is screen printed on the AF32 cover glass with silver based conductive ink (124-46

by Creative Material). It is obvious that the antenna uses the cover glass as its substrate,
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and the copper plate as the ground. It should be noted that, although there is only one solar

cell with an antenna printed on its cover glass in the illustration (Fig. 2.3), the antenna

integration is not limited to such a specific configuration. One may integrate antennas on

each solar cell when needed.

For the fixture without solar cells (Fig. 2.2), the assembly is, from bottom to top, the

copper plate, AF32 glass, and antenna. Because the Kapton sheet is very thin and casts

negligible impact on the antenna’s performance, we did not include the sheet in this fixture.

One may include the sheet in the fixture without solar cells as long as it is carefully handled

so that there are no air bubbles between the sheet and copper plate. In the fixture with

solar cells (Fig. 2.1), the solar cells help to squeeze the air out. Both fixtures are then

fastened on with four nylon clips machined in house.
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Fig. 2.1: Patch antenna printed on AF32 cover glass with functional solar cells under it.
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Fig. 2.2: Patch antenna printed on AF32 glass without solar cells.
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Fig. 2.3: Cross section view of the fixture with solar cell and integrated antenna.

2.2.2 Antenna Geometry

Fig. 2.4 is an illustration of the geometry of the antenna integrated on a cover glass

of the two-cell solar panel. The size of the solar panel, which is also the ground plane, is

defined by WG and LG. The parameters LS and LC , together with WG demonstrate the

geometry of the cover glass, which is the same as the solar cells examined in this project.

The spacing between the two solar cells can be easily determined from LG − 2LS . The

design parameters for the patch antenna fed by a 50 Ω inset microstrip line are W , L, Sg,

Si, Wf and Lf . The antenna and microstrip line, operating at 4.9 GHz, were designed with

Ansys’ HFSS by considering the cover glass as the antenna’s only substrate (i.e. the antenna

integrated on the assembly shown in Fig. 2.2). The values of these design parameters are
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presented in Table 2.1. While printing the antenna on the cover glass with conductive ink,

we repeated the printing process multiple times to ensure the thickness of the conductor

is sufficiently higher than the microwave skin depth (i.e. 0.91 µm for the silver ink at 4.9

GHz).

WG

LS

LG
W

L

Lf

Sg

Si

Wf

LC

LC

135o

135o

Fig. 2.4: Geometry of the antenna integrated on a cover glass of the two–cell solar panel.

2.2.3 Measurement Setup

Performance of the antenna integrated on the AF32 glass with and without solar cells

was examined using standard tests in an anechoic chamber. When the antenna is integrated

on solar cells (Fig. 2.1), it is measured at different status of the solar panels such as without
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Table 2.1: Geometrical parameters of the antenna on AF32 cover glass.

Parameter Value (mm) Parameter Value (mm)

LG 83 W 18
WG 69 Sg 0.9
LS 39.5 Si 4.6
LC 7.5 Wf 1.9
L 14 Lf 13.4

illumination or being illuminated by an artificial light. The two solar cells on the fixture in

Fig. 2.1 were connected in series and have an output connector as shown. The connector

not only allows us to measure the solar cells’ output under illuminations, but also enables

tests where we connect different resistive loads to the panel and then measure the antenna’s

performance.

2.3 Results and Discussions

2.3.1 Effect of the Solar Cell on the Microstrip Feed Line

As the patch antenna under study is excited using an inset feed microstrip line, it is

important to first examine whether or not the solar cell affects the feed line. In order to do

so, a 50 Ω microstrip line is designed and printed on a cover glass using the same assembly

as the test fixture in Fig. 2.2. After being measured without solar cells (Fig. 2.5), the

cover glass with printed microstrip line was measured on solar cell (Fig. 2.6), using the

same assembly as in Fig. 2.1. The measured scattering parameters of the microstrip line

are plotted in Fig. 2.7. From the measured S11 with and without solar cells, it is seen that

the microstrip line is matched to the 50 Ω coax terminal at both cases, although matching

is better when there is no solar cell. The S21 measurements indicate that there is loss

when solar cell is present. This is understandable as the solar cell is a lossy substrate at

RF frequency [12]. Overall, at the frequency of interest (4.9 GHz), the impedance of the

microstrip line can be regarded as not being affected by the solar cell.
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Fig. 2.5: Examination of the microstrip feed line on AF32 glass.
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Fig. 2.6: Examination of the microstrip feed line on AF32 glass with solar cells under it.

2.3.2 Effect of the Solar Cell on the Antenna

The antenna described in section 2.2.2 was tested with and without solar cells using

the fixtures in Fig. 2.1 and Fig. 2.2. The measured reflection coefficient is presented in
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Fig. 2.7: Measured scattering parameters of the microstrip feed line on AF32 glass with
and without solar cells under it.

Fig. 2.8. It is seen that the solar cell affected the input impedance of the antenna and

its resonant frequency, shifting it from 4.89 GHz to 5.15 GHz. The reasons for the shift

of frequency is studied in more detail in section 2.3.6, and the conclusion on the change

of input impedance is obtained because of the test results on the feed line in section 2.3.1

where the impedance of the feed line was not affected by the solar cell. As a result, the

antenna was tuned to achieve better impedance matching. The tuned antenna was then

measured for its radiation pattern using a spherical scanner in an anechoic chamber. Fig.

2.9 presents the measured radiation pattern of the antenna with and without solar cells.

Each radiation pattern is normalized to its co-polar maximum to see whether the solar cell

affects the shape of the radiation pattern. It is seen that the shape and the cross-polar level

of the antenna is not affected by the solar cells. The solar cell, as a lossy substrate beneath

the cover glass for the antenna, has caused a decrease on the antenna’s gain. In order to

assess the gain loss of the antenna in a more reliable manner, we performed repetitive tests,

where five identical antenna designs were printed on five AF32 cover glass with the same
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dimension and then the gain of these antennas were measured with and without the solar

cells (the same two fixtures as described previously). The measured values of the antenna’s

gain are listed in Table 2.2. It is seen that, other than the No. 2 antenna, the gain difference

between antenna with and without solar cells is consistent, and is somewhere between 2 and

3 dB. The data from the antenna No. 2 could be due to the printing procedure.
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Fig. 2.8: Effect of solar cells on the S11 parameter of the patch antenna.

Table 2.2: Repetitive tests: effect of the solar cell on the antenna’s gain.

Antenna Number 1 2 3 4 5

Patch w/o Solar Cell Gain (dB) 6.1 4.9 6.5 5.84 6.1

Patch with Solar Cell Gain (dB) 3.12 3.32 3.37 3.37 3.32

Gain Difference (dB) 2.98 1.58 3.1 2.47 2.78
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Fig. 2.9: Radiation pattern of patch antenna with and without solar cells under it. (a)
E-plane pattern for the patch with solar cells. (b) H-plane pattern for the patch with solar
cells. (c) E-plane pattern for the patch without solar cell. (d) H-plane pattern for the patch
without solar cell.

2.3.3 Repetitive Tests on Plexiglass as the Cover Glass

The examinations presented in the previous two sections were repeated by replacing

the AF32 with off-the-shelf Plexiglass (εr = 2.6, tanδ = 0.0057 at 1 MHz) that is easy to

handle. This test is to ensure that the results from the previous two studies are not specific

to a certain cover glass material. We kept the text fixtures the same as ones in Fig. 2.1 and



17

Fig. 2.2, but changed the cover glass to Plexiglass. Accordingly, we modified the antenna

geometry and the feed line. The geometrical and design parameters corresponding to Fig.

2.3 and 2.4 are listed in Table 2.3. It is again seen that impedance of the antenna with

solar cell under it has been affected by the solar cell, and we have to tune the antenna to

achieve a better matching. The measured S11 data for the antenna with (after being tuned

for the impedance matching) and without solar cells are plotted in Fig. 2.10. It is seen that

in the two cases, the antenna resonated at 5 and 4.83 GHz respectively. The normalized

radiation pattern is plotted in Fig. 2.11, and the same conclusion drawn in 2.3.2 stands for

this study. The gains of the antenna with and without solar cells were measured to be 2.4

and 5 dB, yielding a difference of 2.6 dB, which is consistent with the results in 2.3.2.

Table 2.3: Geometrical parameters of the antenna on Plexiglass.

Parameter Value (mm) Parameter Value (mm)

L 19.1 Si 5.9
W 23.5 Wf 3.8
Sg 1.9 Lf 12.1
h 1.3

2.3.4 Effect of the Working Status of the Solar Cells

One of the questions frequently being asked for antennas integrated with solar panels

is whether or not the working status of the solar cells affects the antenna. In other words,

whether the current in the electrodes of working solar cells affects the antenna. To address

this question, we measured S11, radiation pattern, and the gain of the antenna on a solar

cell (Fig. 2.1), when the solar panel was illuminated by an artificial light with varying

intensity. We have also measured these parameters by opening, shorting, and connecting

different resistive loads to the connector of the solar panel. The tests were repeated for

both cases where the AF32 and Plexiglass were used as cover glass. From the test results,

there was no significant difference observed for the antenna’s performance (S11, radiation
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Fig. 2.10: Repetitive test: Effect of solar cells on the S11 parameter of the patch antenna.

pattern, gain) at different status of the solar cells. In particular, the decrease due to the

solar cell on the antenna’s gain remained the same (2-3 dB) regardless of the working status

of the solar cells.

2.3.5 Effect of Solar Panel Geometry

To understand whether the assessment on the gain loss of the antenna due to the solar

cell is dependent on the solar panel geometry (i.e. number of solar cells, orientation of solar

cells), the following simulative studies have been performed. From the experimental results,

we entered the fixtures in Fig. 2.1 into HFSS by modeling the solar cell as a Ge substrate

with added conductivity (σ). Then we adjusted σ until achieving 2.5 dB gain loss of the

antenna from the case where there is no solar cell (Fig. 2.2). After that, the structure is

altered into a one-cell solar panel as in Fig. 2.12 while keeping all the parameters the same

except the size of the panel and number of solar cells. It is found that the gain loss on



19

  −30 dB

  −20 dB

30

210

60

240

90

270

120

300

150

330

180 0

  −30 dB   −20 dB

30

210

60

240

90

270

120

300

150

330

180 0

  −30 dB

  −20 dB
30

210

60

240

90

270

120

300

150

330

180 0  −30 dB

  −20 dB

30

210

60

240

90

270

120

300

150

330

180 0

(a) (b)

(c) (d)
Co-polar
Cross-polar
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patch with solar cells. (c) E-plane pattern for the patch without solar cell. (d) H-plane
pattern for the patch without solar cell.

the antenna due to the solar cell is still within 2-3 dB range for an antenna that operates

around 4.9 GHz.

In addition, from experiments, the orientation of the solar cells (or the orientation of

the antenna relative to the solar cell, such as in Fig. 2.12.a and Fig. 2.12.b) has shown very

small or little effect on the antenna.
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(a) (b)

Fig. 2.12: Antenna integrated on a single solar cell. (a) Orientation 1. (b) Orientation 2.

2.3.6 Effect of Air Gap or Adhesive Layer

The results in 2.3.2 showed that the solar cell shifted the resonant frequency of the

antenna upwards, contradictory to the previous results [12]. This is mostly due to the

possible air gaps between solar cell and the AF32 cover glass. In Shynu’s study [12], the

solar cell is a bare cell without cover glass. Therefore, the solar cell may increase the overall

effective permittivity of the substrate for the antenna, and accordingly lower the resonant

frequency. To verify the effect of the air gap, which is possible in our assembly as solar cell

and glass were clipped together, we entered the fixture in Fig. 2.1 into HFSS, and added an

air layer between the solar cell and the glass. The antenna geometry is kept the same as in

Table 2.1 and it resonates at 4.87 GHz when there is no solar cell (Fig. 2.2). The effect of

the air layer is summarized in Table 2.4, where hair is the thickness of this layer and fr is

the resonant frequency. It is seen that when there is no air gap, the solar cell shifts the fr

downward. When an air layer is present, even if it is very thin such as 50 µm, fr is shifted

to be higher than the case when there is no solar cell.

In space solar cell manufacturing, it is a common practice to use a highly transparent

Table 2.4: Effect of air gap and adhesive layer.

hair(mm) fr(GHz) hadhesive(mm) fr(GHz)

0 4.68 0 4.68
0.05 5.02 0.05 4.78
0.1 5.22 0.1 4.83
0.15 5.4 0.15 4.89
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adhesive layer to bond a solar cell with its cover glass. An example of such adhesive is Dow

Corning 93-500 Space Grade Encapsulant 115 Gram (g) Kit [24], which has a dielectric

constant of 2.59 at 100 kHz. While recognizing that this εr may be different at 5 GHz,

we used it for study purposes and the results are summarized in Table 2.4, with hadhesive

being the thickness of the adhesive layer. It is seen again that the inclusion of an adhesive

material, which is necessary in space application, between cover glass may affect the resonant

frequency of the antenna. Most adhesive has lower εr than the cover glass, and therefore, the

solar cell and the adhesive shift the resonant frequency to opposite directions. Depending

on the material and thickness of the adhesive, the final resonant frequency of the antenna

may not be affected (e.g. when adhesive is between 0.1 mm and 0.15 mm according to

Table 2.4) or shifted slightly up or down from the case when there is no solar cell.

2.4 Conclusion

The paper presents a series of detailed experimental studies to quantify the effect

of a real–world active space solar cell on a solid patch antenna integrated on it. Test

fixtures, with RF ground electrically isolated from the solar cells, were fabricated to study

the frequency response, input impedance, radiation pattern, and gain of a patch antenna

designed at 4.9 GHz when there is an active solar cell under the antenna. It is found that

the solar cell affects the input impedance of the antenna, and more importantly, reduces the

gain of the antenna for 2-3 dB. The shape of the radiation pattern and cross-polarization

level are not affected by the solar cells. Solar cell alone may shift the resonant frequency

of the antenna downward, however, such conclusion claimed by previous study may not be

applicable in space applications as it is a common practice that solar cells are bonded with

cover glass with an adhesive layer, which normally has a smaller dielectric constant than

cover glass. Therefore, the combined effect on the resonant frequency from the solar cell

and adhesive may not be dramatically different from when the antenna is designed on the

cover glass only. In addition, it is found that the effect of the solar cells on the antenna

does not vary for the different working states of the solar cells. In other words, the DC

current in the electrodes of the solar cells has little effect on the antenna performance. On
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the reliability side, three types of repetitive tests were performed. First, five repetitive tests

were performed on AF32 cover glass. Next, a Plexiglass substrate was used as the cover

glass, and we saw the gain decrease of the antenna due to solar cell was consistent. Finally,

the antenna was studied on a single solar cell, and the effect of the solar cell on the antenna

remained the same as the prior tests. Although the experiments were performed at 4.9

GHz, it is reasonable to expect a similar result for frequencies around 5.0 GHz, which may

be the next frequency of interest for CubeSat community. In summary, it has been shown

consistently that one needs to expect a 2-3 dB gain reduction of a patch antenna operating

at the vicinity of 5.0 GHz when being integrated on top of a common commercial triple

junction solar cell. This will provide an important design consideration and entry to the

link-budget for CubeSat missions.
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CHAPTER 3

AN X BAND PATCH ANTENNA INTEGRATED WITH COMMERCIAL

TRIPLE–JUNCTION SOLAR CELLS

Abstract

An X band patch antenna was integrated on top of the cover glass of commercial space–

certified solar cell and was studied for understanding the interaction between the solar cell

and the antenna. It was found that the solar cell acts as a lossy substrate for the antenna

and reduces the gain of the antenna by about 2 dB, and such a reduction remains consistent

for different working states of the solar cell. The patch antenna reduces the efficiency of

the solar cells because it blocks light, however, at 10 GHz, the impact of a patch antenna

alone to the solar cell’s efficiency is less than 1%.

3.1 Introduction

CubeSats, due to their modular design, low cost, and versatility, are receiving increased

interest in space missions [1], and consequently, designing a reliable and effective antenna

system compatible with CubeSat specifications is in demand. Considering disadvantages

such as being mechanically expensive of deployed wire antennas, and limited surface real

estate of a CubeSat (Fig. 3.1), it is favorable to integrate planar antennas with CubeSats

solar cells. Integrations of antennas under or around solar cells have been reported [2–6].

This paper is to present our study in printing a 10 GHz antenna directly on top of the

solar cell and examination of how solar cells and the antenna affect each other. Due to

the high operational frequency, the size of the antenna is small and the effect on the solar

cell’s efficiency is manageable. The study also provides a baseline for extending the printed

antenna to optically transparent meshed antenna [7] as well as a completion for previously

reported integration [8], where a patch antenna with its own substrate was placed on solar
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cells. While the study in [8] has its own merit, this paper examines a modular printing of

the antenna on all off–the–shelf space–certified components that are convenient for a flight

mission.

3.2 Antenna Geometry and Test Fixtures

The assembly of the integrated solar cell antenna is as shown in Fig. 3.2. The geometry

information is as follows. From bottom to top, there are a copper layer as the ground

followed by a Kapton layer, solar cell, and cover glass with antenna printed on top. The

Kapton layer is very thin (∼ 0.06 mm) and it is used to isolate the metal coating on the

bottom of the solar cell from the ground because the metal layer is the electric positive of

the photovoltaic cell. The cover glass is common for space solar cells to protect them from

complex environment, and can be conveniently utilized as the dielectric substrate for the

antenna.

In order to assess how solar cells affect the printed patch antenna, we prototyped two

fixtures as shown in Fig. 3.3, where the fixture in Fig. 3.3.a has two functional solar cells

Solar Cells

Fig. 3.1: 1U CubeSat schematic (10×10×10 cm3).



27

W

LS

WG

LG

WS

L

WfLf

Si

Sg

(b)

Copper Ground
Kapton

Solar Cell Solar Cell
Cover Glass Cover Glass
Antenna

h
hsc
hk

(a)

(c)

xz
y

x
z
y

Fig. 3.2: Proposed fixture geometry: (a) Fixture layers. (b) Top view. (c) Side view.

connected in serial, and the one in Fig. 3.3.b does not have solar cells. A cover glass with

a printed antenna is then tested on the two fixtures for comparisons. The size and material

information of the fixture are as follows. Emcore’s triple junction bare cells [9] and a glass

(AF32 [10]) with high optical transparency (93%) and high temperature resistance are used.

The dielectric constant and loss tangent of the AF32 glass are 4.5 and 0.015 at X band.

The design frequency is 10 GHz and the values for parameters marked on Fig. 3.2 are listed

in Table 3.1. The antenna was designed using HFSS and screen printed multiple times

using silver conductive ink [11] on the glass to ensure that the thickness of the antenna is

significantly higher than the microwave skin depth.

In order to eliminate the interaction between the SMA connector with the antenna,

the fixture is such that the connector is under the ground plane (Fig. 3.3.c). We have

also printed antennas with two orientations: parallel and perpendicular. In the parallel
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orientation (Fig. 3.3.a), the length (L in Fig. 3.2) side of the patch antenna is parallel to

the width of the solar cell. In this case, the direction of the surface current on the patch is

parallel to the copper electrode lines of the solar cell [12]. The other orientation is denoted

as perpendicular (Fig. 3.3.d). After printing an antenna on an AF32 glass, the glass is then

assembled on the test fixture and fastened with nylon clips.

3.3 Results

The antenna with an orientation as explained in section 3.2 was put on the fixture

without solar cells for measurements and then the procedure was repeated on the fixture

with solar cells. The measurements were performed using Agilent’s PNA network analyzer

and NSI’s spherical scanner in a near–field anechoic chamber. Frequency response, normal-

(a)  (b)

(c)  (d)

 Output port of solar cells

Fig. 3.3: Prototyped fixture: (a) Fixture with solar cells. (b) Fixture without solar cell.
(c) Backside of the fixture. (d) Perpendicular orientation of the printed patch antenna.
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Table 3.1: Geometrical parameters of the antenna and the fixture.

Parameter Value (mm) Parameter Value (mm)

h 1 W 9
hsc 0.15 L 6.7
hk 0.058 Wf 1.9
WG 75 Lf 10
LG 97 Si 0.95
WS 39.5 Sg 2
LS 69

ized radiation pattern of the antenna were measured for both orientations and presented in

Figs. 3.4–3.7. Table 3.2 lists the absolute gain of the antenna with and without solar cells

underneath.

3.3.1 Effect of Solar Cells on the Antenna

From Fig. 3.4 and Fig. 3.5, it is seen that the solar cell acts as a lossy substrate. As

the dielectric constant of the solar cell is normally higher than the cover glass, one expects

a resonant frequency shifts downward whereas Fig. 3.4 and Fig. 3.5 show an upward shift.

This is because of the air bubbles between the solar cell and cover glass that is inevitable

when using nylon clips as discussed in [13]. The solar cells show little effect on the shape

of the radiation pattern and the cross polarization level (Fig. 3.6 and Fig. 3.7). The gain

reduction of the antenna due to the lossy solar cells can be read from Table 3.2 and is

slightly higher than 2 dB. The results in the Table 3.2 were obtained through repeated tests

that showed consistent data. This gain loss also remained consistent for different cover glass

material or thickness, as long as it is thick enough to support an effective antenna radiation

and thin enough not to excite higher modes.

3.3.2 Effect of Working States of Solar Cells

To verify the antenna’s performance under different working states of the solar cells,

the antenna with solar cells under it was measured while the solar cells were terminated



30

9 10 11 12
-30

-25

-20

-15

-10

-5

0

Ant_w sc
Ant_w/o sc

|S
11

|(
dB

)

Frequency (GHz)

Fig. 3.4: Reflection coefficient of parallel orientation.

9 10 11 12
-15

-10

-5

0

|S
11

|(
dB

)

Frequency (GHz)

Ant_w sc
Ant_w/o sc

Fig. 3.5: Reflection coefficient of perpendicular orientation.



31

0o

30o

60o

90o

120o

150o

180o
210o

240o

270o

300o

330o

-50
-40
-30
-20
-10

0

-50
-40
-30
-20
-10

0

Co-pol (Ant_w sc)
Co-pol (Ant_w/o sc)
X-pol (Ant_w sc)
X-pol (Ant_w/o sc)

dB

0o

30o

60o

90o

120o

150o

180o
210o

240o

270o

300o

330o

-50
-40
-30
-20
-10

0

-50
-40
-30
-20
-10

0

dB
Co-pol (Ant_w sc)
Co-pol (Ant_w/o sc)
X-pol (Ant_w sc)
X-pol (Ant_w/o sc)

(b)

(a)

Fig. 3.6: Normalized radiation pattern of parallel orientation: (a) y–z plane. (b) x–z
plane.



32

Table 3.2: Measured antennas’ gain.

Orientation Parallel Perpendicular

Ant w sc Gain(dB) 4.1 3.9

Ant w/o sc Gain(dB) 6.4 6.1

Gain Difference (dB) -2.3 -2.2

with different loads at the output port (Fig. 3.3.c) and under different illumination. No

visible effect was noted on the antenna’s resonant frequency (Fig. 3.8), radiation pattern

(Fig. 3.9), or gain for different status of solar cells.

3.3.3 Effect of the Antenna on Solar Cells

To assess the effect of the patch or the blockage of the patch on the solar cells, a series

of tests were performed in a controlled environment to measure solar cell’s output voltage,

power, and I–V curve. Before each test, the solar cells were cleaned with alcohol and an

ionizer was turned on near the test bench for air purifying. The measurement setup consists

of artificial light, pyrometer, computer–controlled variable resistor, and multimeter. The

test procedure is that first a bare solar cell was measured, then a clear cover glass was placed

on the solar cell to repeat the tests, and finally a cover glass with printed antenna on top was

placed on the solar cell for measurements. The results are summarized in Fig. 3.10 only for

the antenna with parallel orientation because the other orientation was found to have the

same effect. The efficiency of the bare solar cell is calculated accordingly and summarized

in Table 3.3. The efficiency of the bare cell is lower than factory data [9] because it has

stayed on shelf for more than seven years. From Fig. 3.10 and Table 3.3, it is seen that the

antenna together with the cover glass reduces the output power and efficiency of the solar

cell, however, as a 10 GHz patch antenna has a small size, the efficiency reduction due to

the antenna alone on a solar cell with cover glass is only 0.6%. This provides an important

entry in the link and power budget consideration for a CubeSat mission.
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Table 3.3: Measured solar cell efficiency.

Name Bare Cell + Glass + Patch

Efficiency (%) 21 18 17.4

3.4 Conclusion

This paper examines the interaction between a commercial space solar cell and the

patch antenna printed on top of the cover glass of the solar cell. The operational frequency

is 10 GHz, and therefore, the size of the antenna is small enough not to cast significant

shadow on the solar cell. It was found that the solar cell reduced the antenna’s gain to

about 2 dB and did not affect the shape of the radiation pattern. The working states of

the solar cell was also found to have little effect on the antenna. In other words, the DC

current in the electrodes of the solar cells does not affect the antenna’s performance. The

same conclusion holds for the different orientation of the antenna on the solar cell. When

the solar cell’s performance was explained, it was found that the antenna together with the
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cover glass reduced the efficiency of the solar cell. But, the antenna alone has only 0.6%

effect on the solar cell, and therefore, providing support in integrating antenna directly on

solar panels of CubeSats to save surface real estate.

References

[1] M. Swartwout, “The first one hundred CubeSats: a statistical look,” JoSS, vol. 2, pp.
213–223, 2014.

[2] M. Tanaka, Y. Suzuki, and K. Araki, “Microstrip antenna with solar cells for mi-
crosatellites,” Electron. Lett., vol. 31, no. 1, pp. 5–6, 1995.

[3] S. Vaccaro, J. R. Mosig, and P. de Magat, “Making planar antennas out of solar cells,”
Electron. Lett., vol. 38, no. 17, pp. 945–947, 2002.

[4] O. Yurduseven and D. Smith, “A solar cell stacked multi-slot quad-band PIFA for
GSM, WLAN and WiMAX networks,” IEEE Antennas Wireless Propag. Lett., vol. 23,
no. 6, pp. 285–287, 2013.

[5] R. Caso, A. DAlessandro, A. Michel, and P. Nepa, “Integration of slot antennas in
commercial photovoltaic panels for stand-alone communication systems,” IEEE Trans.
Antennas Propag., vol. 61, no. 1, pp. 62–69, 2013.

[6] M. Mahmoud, R. Baktur, and R. Burt, “Fully integrated solar panel slot antennas for
small satellites,” in Proc. 15th Annual AIAA/USU Conf. on Small Satellites, Logan,
UT, Aug. 2010.

[7] T. W. Turpin and R. Baktur, “Meshed patch antennas integrated on solar cells,” IEEE
Antennas Wireless Propag. Lett., vol. 52, pp. 693–696, 2009.

[8] S. V. Shynu, M. J. Roo-Ons, , M. J. Ammann, S. J. McCormack, and B. Norton,
“Integration of microstrip patch antenna with polycrystalline silicon solar cell,” IEEE
Trans. Antennas Propag., vol. 57, no. 12, pp. 3969–3972, 2009.

[9] [Online]. Available: http://www.emcore.com

[10] [Online]. Available: http://www.schott.com

[11] [Online]. Available: http://www.creativematerials.com

[12] T. Shahvirdi and R. Baktur, “Analysis of the effect of solar cells on the antenna inte-
grated on top of their cover glass,” in IEEE Antennas and Propagation Society Inter-
national Symposium (APS 2015), Vancouver, BC, 2015, pp. 1522–3965.

[13] T. Yekan and R. Baktur, “An experimental study on the effect of commercial triple
junction solar cells on patch antennas integrated on their cover glass,” Progress In
Electromagnetics Research C, vol. 63, pp. 131–142, 2016.

http://www.emcore.com
http://www.schott.com
http://www.creativematerials.com


38

CHAPTER 4

ANALYSIS OF SOLAR CELLS’ EFFECT ON THE INTEGRATED ANTENNA

4.1 Effect of Ag Electrode Lattice in a Commercial Space Solar Cell on a Patch

Antenna Integrated on Top of It

Abstract

A solar cell normally has a conductive electrode lattice embedded with its semiconduc-

tor layer. In space solar cells, in particular, those lattices are commonly made from Ag and

are between the layer of solar cell junctions and cover glass. This paper examines the effect

of those Ag lattice in space solar cells on the patch antenna integrated on the cover glass.

It is found that as solar cell is a lossy material at GHz frequency range, the lattice helps to

shield the antenna from the lossy layer and hence minimize its gain reduction due to the

solar cells underneath.

4.1.1 Introduction

Integrating planar antennas on top of solar cells has enormous potentials in space

explorations [1, 2]. Two questions rise directly from an attempt of such an integration: (1)

what is the effect of the antenna on the solar cell’s efficiency? and (2) how much is the

impact of the solar cell on the antenna’s properties. The first question can be addressed

easily by measuring a solar cell’s efficiency with and without an antenna placed on top of

it. The second question depends heavily on the material and geometrical characteristics of

the solar cells. There are many vendors that supply solar cells, and many research groups

fabricate their custom designed solar cells. But, most of those solar cells have one thing

in common, i.e. they all have a metal electrode lattice to conduct current. Therefore, it is

important to study how these lattices affect the antenna design.
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In our study EMcore’s (www.emcore.com) space certified triple junction solar cells are

of main interest for a simple reason that these solar cells are among the most commonly

used ones in space industry. The geometry of a typical triple junction solar cell of EMcore is

as follows (Fig. 4.1). From bottom to top are a metal backing layer, Ge based photovoltaic

layer, a layer of metal (Ag is the most commonly used material) electrode lattice, and

a cover glass. AF32 (εr = 4.5) is a commonly used cover glass manufactured by Shott

(www.schott.com). When integrating a patch antenna on top of such a solar cell, the cover

glass acts as the substrate and the bottom metal layer as ground plane for the antenna.

Although many studies presented measured dielectric constant of the photovoltaic layer [3],

we found that the effect of the lattice casts more impact on the antenna design. This

motivated an examination of these lattices as presented in this paper.

4.1.2 Effect of the Ag Lattice

In order to understand the nature of the lattice layer in terms of its effect on the

antenna design, three structures were studied. The first is as shown in Fig. 4.1 and as

explained in the introduction. The second geometry is an imaginary solar cell without the

lattice (Fig. 4.2), and the third one, which serves as a reference, is a patch antenna on the

cover glass backed by a ground plane (Fig. 4.3). Also, Fig. 4.4 shows the patch antenna

geometry and Table 4.1 lists the geometrical parameters used in this study. In addition,

initial experiments did not show much difference in the effect working status of the solar

cell on the antenna design, which means whether the junctions are active or not does not

AF32

Antenna

Ge , σ 

h

ssh

WgSg

Ag Electrode

Fig. 4.1: Geometry of a triple junction solar cell with an antenna integrated on top of it.
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Fig. 4.2: Antenna on a fictitious solar cell without electrodes.
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Fig. 4.4: Antenna geometry.

Table 4.1: Geometrical parameters of the antenna.

h hss Wg Sg
1 mm 0.15 mm 13.8 µm 754 µm

La Wa Lf Wf

14.18 mm 18.46 mm 15 mm 1.9 mm

dg di Lgr Wgr

0.94 mm 4.72 mm 44 mm 44 mm
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affect the antenna severely [4]. The solar cell layer in this study is treated simply as a layer

with the permittivity of Ge (εr = 16) and some conductivity (σ). The conductivity is due

to the conductivity of Ge and doping.

When the conductivity is zero (σ = 0), the S11 curve and gain of the antennas in

Figs. 4.1–4.3 are in Fig. 4.5 and Table 4.2. This result is as expected because in this case

the fictitious solar cell layer is just a dielectric substrate added under the glass layer, and

therefore yields higher antenna gain. The lattice, on the other hand, raises the ground for

the antenna, leaving only the glass as the substrate. When the conductivity of the solar cell

layer is as high as copper (σcu), the S11 and gain of the antenna in Figs. 4.1–4.3 overlap.

This is also understandable because now the solar cell layer is simply a metal layer that is

attached to the lattice.

A more interesting observation was made when the conductivity is between zero and

as high as a normal conductor. As soon as the conductivity is raised higher than 1, the

structure in Fig. 4.2 exhibits loss and the gain of the antenna reduces. The gain of the

antenna reduces for the configuration in Fig. 4.1 too, however, not as high as for the case

without the lattice. There is a point where the gain loss due to the solar cell layer reaches

its maximum. In our study, such a point occurs at σ = 104 S/m. At this point, when the

gain of the antenna without the lattice (Fig. 4.2) is 0 dB, the one with lattice (Fig. 4.1)

shows a gain of 1.81 dB as shown in Table 4.2, which is acceptable in many communication

link budget. This result can be explained as that the metal lattice layer has acted as a

shielding mechanism for the antenna from the lossy solar cell substrate. It does not fully

shield the antenna from the solar cell because it is not a solid metal, hence there is still

a gain reduction, but less than the case without a lattice layer. It should be noted that

Table 4.2: Effect of the lattice on the antenna’s gain.

σ (S/m) 0 104 σcu
Gain (w/o-lattice) 4.65 dB 0 dB 5.2 dB

Gain (w-lattice) 3.81 dB 1.81 dB 5.2 dB
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Fig. 4.5: Effect of the lattice on the frequency response.

although the presented results are only in C band, we did examine S and X bands, and the

results are similar to the ones at 5 GHz range.

4.1.3 Conclusion

The Ag electrode lattices in space solar cells may have been thought to be a disad-

vantageous factor for the antenna designs integrated on top. Such an assumption is under-

standable because often time one may wonder if the DC current on the lattice may affect

the antenna’s performance. Our study shows that the lattice actually shields the antenna

from the gain loss due to the conductivity of the solar cells. This gives rise to a possible

design modification for solar cells because if it is feasible to have solar cell’s lattice to be

denser, then the gain reduction for the antennas can be reduced.
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4.2 Analysis of the Effect of Solar Cells on the Antenna Integrated on Top of

Their Cover Glass

Abstract

A patch antenna integrated on the cover glass of a commercial space solar cell is ex-

amined. The effect of the solar cell on the gain of the antenna is analyzed and validated.

It is found that the solar cell casts 2-3 dB gain loss of the antenna when standard cover

glass is considered. This value provides an important design consideration when integrat-

ing optically transparent antennas on solar cells to save surface real estate of small space

vehicles.

4.2.1 Introduction

Integrating planar antennas, whether they are optically transparent or have a small

profile, directly on top of solar cells has been actively sought-after in the past decade [1].

The advantage of such an integration is clear–to reuse the surface space occupied in space

vehicles, especially small ones. Although a handful of research groups have reported different

integrations and results, the effect of solar cells on the antenna’s performance was never

addressed clearly and convincingly. The reason for that is perhaps due to the complexity

of different types of solar cells. In addition, we have not found a clear model or complete

geometrical information of solar cells. Quantifying and presenting reliable estimation of

such effect impact not only communication link budget, payload, but also provides design

guidelines for integrated solar cell antenna arrays. Consequently, the objective of this study

is to provide a solar cell model with detailed layer information, and an analysis that yields

a reliable estimation on the performance of the integrated antenna due to the solar cell.

As the composition of solar cells from different suppliers often varies, we have chosen

EMcore’s (www.emcore.com) triple junction space certified solar cells to be examined. The

results can be easily adapted to other types of solar cells.

The geometry of an EMcore’s typical triple junction solar cell is as follows. From

the bottom to top are a metal backing layer, photovoltaic layer, a layer of metal (Ag is
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the most commonly used material) electrode lattice, and a cover glass. AF32 (εr = 4.5)

is a commonly used cover glass manufactured by Shott (www.schott.com). To get more

information on the photovoltaic layer and details on the geometry, we examined such a

solar cell under a high-resolution electron microscope. The extracted information is as in

Fig. 4.6.a, where the active junctions are sandwiched between the Ag metal backing and

the electrode lattice, details of which is as seen in Fig. 4.6.b.

4.2.2 Analysis

It is clear from Fig. 4.6.a that Ge occupies more than 90% in a solar cell’s composition.

(a)

(b)

13.8 µm754 µm

Ge131

GaAs Buffer1.28
GaAs3
InP0.75

6.6 Ag

5.52 Ag

(µm)

Fig. 4.6: Illustration of the solar cell model: (a) Layer information. (b) Top view.
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Also, previously reported experiments did not show much difference in the effect of the

working status of the solar cell on the antenna design, which means whether the junctions

are active or not does not affect the antenna severely [4]. Therefore, in this study, the

solar cell layer is treated simply as a layer with the permittivity of Ge (εr = 16) with a

conductivity (σ) that is due to the intrinsic conductivity of Ge plus doping. The patch

antenna under study is then integrated on top of the AF32 cover glass and uses the Ag

backing of the solar cell as its ground plane (Fig. 4.6). The electrode lattice is not studied

at this time because the main goal is to determine the effect of the solar cell layer. The

geometrical parameters of the antenna are presented in Fig. 4.7 and Table 4.3.

As the first step, whether a complex surface wave due to the solar cell layer may be

present is examined. For a single layer dielectric slab backed by a ground plane, as long as

the thickness of the slab (h) satisfies (4.1), where λ0 is the free space wavelength, the power

coupled into the surface wave can be neglected [5]. For the case of solar cell, taking εr as

16 and frequency to be 5 GHz, it is clear that the thickness of the solar cell is thin enough

not to consider surface waves. Therefore, we conclude that the Ge layer is simply a lossy

substrate for the antenna that dissipate some power into heat.

h

λ0
≤ 0.3

2π
√
εr

(4.1)

It is easy to study the two extreme cases of the Ge layer when σ is 0 and as high as

(a) (b)

AF32

Antenna

Ge , σ 

h1

h2

WfWf

W

L

Si

Lf

Sg

WSS

LSS

Fig. 4.7: Antenna geometry: (a) Side view. (b) Top view.
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Table 4.3: Geometrical parameters of the antenna.

Parameter Value (mm) Parameter Value (mm)

h1 1 Lf 15
h2 0.15 Sg 0.94
L 14.18 Si 4.72
W 18.46 LSS 39.5
Wf 1.9 WSS 68.9

copper (σcu). In the first case, the solar cell acts as a lossless substrate, and in the second

case, a perfect ground. There will not be gain reduction of the antenna due to the solar

cell. The antenna’s gain reduces to its minimum when the sigma is somewhere in between.

When the thickness of the solar cell (h2) is in the order of 10 times of the skin depth

(δ), the solar cell layer can be considered as a good conductor. In this case, calculating the

conductivity from (4.2) at 5 GHz by setting n as 10 yields σ = 225,158 (S/m), which is in

the order of 105. When h2 is in the order of δ, which means the solar cell layer is fairly

lossy, σ is calculated to be 2,251 (order of 103) by setting n as 1. The highest loss should

occur when h2 is somewhere less than one skin depth.

δ =
1√
πfµσ

=
h2
n
⇒ σ =

n2

πfµh22
(4.2)

4.2.3 Validations

The dimensions of the antenna (Fig. 4.7.b) and material constants of the solar cell

model (Fig. 4.6) are simulated in Ansys’ HFSS. The gain of the antenna with respect to

different σ is as presented in Fig. 4.8. This result confirms the analysis that the antenna

suffers from severe gain reductions peaking at when σ = 104.

We now consider the electrode lattice. The lattice acts as a shielding mechanism that

decouples the antenna from the solar cell to certain degrees. Therefore, when σ is between

103 and 104, the gain of the antenna is the lowest, but the lattice keeps the reduction to

be between 2-3 dB. This is consistent with the σ measured by [3], and Fig. 4.9 shows our

measured antenna gain patterns with and without a solar cell under the AF32 cover glass.
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Fig. 4.9: Measured H-plane gain patterns of the antenna with and without a solar cell at 5
GHz.
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4.2.4 Conclusion

When integrating a patch antenna on the cover glass of a solar cell, the antenna suffers

from a gain reduction due to the solar cell. Most practical solar cells have a conductivity at

the order of 103 (S/m). Together with the electrode lattice in the cell, the gain reduction

of the antenna can be estimated to be 2-3 dB. This result is valid for 1–10 GHz for the

thickness of the standard solar cell cover glass.
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CHAPTER 5

REFLECTARRAY ANTENNA INTEGRATED ON TOP OF A SOLAR PANEL

Compared to a single element antenna, high gain array antennas offer many advantages

in expanding communication capacity. But the integration with solar panels has been

limited by the surface area of CubeSats to host those larger antennas. With larger CubeSats

(such as 6U and 9U CubeSats) and deployed solar panels are becoming more common, it

is feasible to integrate antenna arrays with CubeSat solar panels. NASA’s ISARA is one

of such successful integrations, where a Ka band antenna array was integrated with the

backside of the solar panel [1]. The challenge is, this technology cannot be applied to cases

where both sides of a solar panel have solar cells. Such a solar panel is becoming popular and

is important for various missions. The goal of this section is to present an alternative design

to ISARA, where a low profile, optically transparent reflectarray is integrated directly on top

of solar cells. The transparency of the antenna is higher than 90%, which is the highest to

date, and the reflectarray design promises more than 40% aperture efficiency. The targeted

application is for Near Earth Network (NEN), however, the design can be conveniently

scaled to other space networks.

The reflectarray of our interest consists of a ground plane, substrate (i.e. cover glass of

solar cells), and antenna elements printed on the substrate. It has elements with different

sizes, and is fed by a horn antenna (Fig. 5.1). The horn antenna can be easily replaced

by planar array feed. The element size (i.e. geometrical dimension) is carefully determined

to supply sufficient required phase to compensate the phase of the incoming wave from the

feed, and to provide the dedicated phase to have desired beam pointing angle. Equation

(5.1) calculates the required reflection phase ϕr by ith element on xy plane (Fig. 5.1) to

point the array beam to (φ0, θ0). In this equation, k0 is free space propagation constant,

(xi, yi) is the position of array element, di is the distance from the phase center of the horn

to the center of ith element, and N is an integer [2].



50

ϕr = k0(di − (xicosφ0 + yisinφ0)sinθ0)± 2Nπ (5.1)
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Fig. 5.1: Illustration of reflectarray antenna.

5.1 Examination of Two Types of Quasi Transparent Reflectarray Elements

Abstract

The paper examines two types of antenna elements suitable for a reflectarray design

that can be integrated on top of solar cells. The study presents the performance of the two

element designs for different substrate thickness and lattice sizes.

5.1.1 Introduction

The importance of integrating antennas with solar cells for small satellite application

is clear and a few results in element level integration has been presented [3,4]. On the array

level, NASA has shown an integration of a high gain array antenna on the opposite side
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of a deployed solar panel [1]. The goal of this paper is to present an alternative design to

ISARA, where a low profile, quasi-transparent reflectarray is integrated directly on top of

solar cells. The targeted application is for Near Earth Network (NEN), however, the design

can be conveniently scaled to other space networks.

5.1.2 Transparent Elements

Two types of antenna elements can be considered as best candidates for integration

on solar cells: (a) cross dipole, and (b) loop. Both are low profile and near transparent.

Fig. 5.2 depicts the geometry of the unit cell for the reflectarray, where an antenna element

(cross or loop) is printed on top of a cover glass and then backed by a copper ground plane.

The cover glass is chosen to be commercial AF32 glass that has high transmittance and

high temperature tolerance, making it desirable for space applications. The AF32 glass has

dielectric constant (εr) of 4.5 and loss tangent (tanδ) of 0.015 at X band [5]. The height

(h) of the AF32 substrate is critical in affecting the performance of the reflectarray, and

will be discussed in the next section of the paper. It is seen that both of the proposed

array elements (Fig. 5.2.b) are symmetric, and can easily excite both linear and circular

polarizations. As seen, the solar cells are not included in this stage of the design. In the

final implementation of this project, the solar cell is sandwiched between the cover glass and

ground. The effect of the solar cell in the reflectarray design can be extracted by entering

the solar cell model from the previous study [5] to the design simulation. The reflectarray

is simulated using Ansys’ HFSS by adapting periodic boundary conditions and Floquets

excitation with normal incident fields to extract element phase response for different lattice

sizes at 8.475 GHz.

Loop Cross Dipole 

L L

(a) (b)

AF32

Array Element

Ground Plane

hs

Fig. 5.2: Reflectarray element: (a) Layer information. (b) Antenna elements.
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Cross Dipole

A cross dipole is composed of two orthogonal dipole elements with length of L (Fig.

5.2.b). The width of cross dipole was chosen to be 0.25 mm. The reflection phase of the

element can be changed by adjusting its length. Fig. 5.3.a shows the reflection phase of

the cross dipole element with lattice size of half wavelength (λ/2) for different values of

h. Also, the symmetric shape of element results in having same electromagnetic response

under normal incident wave for TE and TM modes. Fig. 5.3.b is the reflection magnitude of

the unit cell. As seen in Fig. 5.3.a, when h is small, the provided phase is almost constant,

making it unsuitable for reflectarray design. This condition happens when radiation Q is

greater than element Q (under coupled) [6]. The value of h=1.5 mm is found to be the

critically coupled condition that happens when radiation Q is equal to element Q [6]. In

this case, the phase response is too sharp and there is nothing reflected back as seen from

Fig. 5.3.b, (near zero reflection). When h is greater than 1.5 mm, radiation Q is less than

element Q (over coupled) [6]. Then, the phase response is applicable for reflectarray deign.

Increasing h shows reduction of phase range but smoother phase variations. Considering all

of these, h= 2.5 mm was chosen in this study as a more optimal substrate thickness that

provides good trade–off between phase range and feasible phase curve.

Reducing cell periodicity to sub–wavelength can provide special features like reducing

loss and broadening the gain bandwidth and can be an effective method to design reflec-

tarray on lossy substrates [7]. As we already know that the solar cells are lossy [5, 8], we

studied the cross dipole unit cell for different sub–wavelenth lattice sizes as shown in Fig.

5.4. It is confirmed that working at the sub–wavelength shrinks the phase range and reduces

the loss at the same time.

Loop

The same study performed for the cross dipole, was carried out for a loop geometry

(Fig. 5.2.b). The reflection phase of the loop element is obtained by adjusting the loop

length while fixing its width as 0.25 mm. The same observation for the cross dipole was seen,

where h =1.5 mm being critically coupled condition and h = 2.5 mm being a reasonable
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substrate thickness to work with (Fig.5.5). Reflection phase and magnitude of the loop unit

cell with different lattice sizes are summarized in Fig. 5.6.
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Fig. 5.3: Cross dipole element: (a) Reflection phase. (b) |S11| response.
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Fig. 5.5: Loop element: (a) Reflection phase. (b) |S11|.
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Fig. 5.6: Reflection phase and magnitude of loop element for different lattice sizes.
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Comparison of Elements

Fig. 5.7 shows phase responses of the two elements for different lattice sizes. It is seen

that both elements are suitable for array design when the lattice size is λ/2 or λ/3. When

the lattice size is reduced to λ/4, the phase range of cross dipole is limited (less than 270

degree) and cannot provide sufficient phase range required for array design. Loop unit cell,

however, still works well for a λ/4 lattice. It is also observed that the loss levels for both

elements are approximately the same for the same lattice size.
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Fig. 5.7: Reflection phase of cross dipole and loop elements.

5.1.3 Conclusion

The paper reported two types of transparent and low profile array elements. The effect

of the substrate height was discussed at the 8.475 GHz (NEN radio band). Reflection phase

and magnitude of each element for different lattice sizes were studied and compared. It has

been shown sub–wavelength loop element (λ/4) shows superior performance compared to

the cross dipole.
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5.2 Design of Two Transparent X Band Reflectarray Antennas Integrated on

a Satellite Panel

Abstract

This paper presents an integration of highly transparent X band reflectarrays on the

cover glass of solar panels. Optimal unit cell element, effect of the solar cell on the antenna,

feed consideration, and final design data are presented. The overall transparency and aper-

ture efficiency of the design are more than 90% and 40% respectively, and measured results

of the antenna without solar panel underneath match those design data well. When the

antenna is integrated on the solar panel, it is seen that there is slightly more than 1 dB

gain reduction, which is reasonable, and factors that lead to gain reduction were analyzed

in detail.

5.2.1 Introduction

Integrating high gain conformal array antennas with solar panels of small satellites,

in particular Cube Satellites (CubeSats) has enormous advantages, especially in expanding

mission capacities of CubeSats. NASA’s ISARA is one of such successful integrations, where

a Ka band antenna array was integrated with the backside of the solar panel [1]. Transparent

array antenna integrated directly on solar cells, is not only an alternative to ISARA, but

also a novel extension as it promises a more flexible solution. Two types of direct integration

of reflectarrays with solar cells have been presented to date [9,10]. Moharram et al.’s design

is to create holes in the acrylic cover glass of solar cells to achieve required phase shift, and

the reported aperture efficiency is 25.18% [9]. As the acrylic cover glass is relatively thick,

together with the holes, it blocks about 15% of the light. The design in [10] is printing a

Ka band reflectarray on the solar cell cover glass. While [10] is a plausible approach that

does not require custom designed cover glass, the reported aperture efficiency of 29.8% and

optical transparency of 85% need to be further improved. This paper presents an alternative

design to [9] and [10] where reflectarrays of transparency higher than 90% are printed on

space certified solar cell cover glass at X band for much smaller panels (i.e. 300 mm by 300



57

mm maximum to fit on a 3U or 6U CubeSat) with improved aperture efficiency.

5.2.2 Reflectarray Geometry and Transparent Element Design

Fig. 5.8 is an illustration of the proposed reflectarray (Fig. 5.8.a) and assembly infor-

mation (Fig. 5.8.b), where the reflectarray elements (copper) are printed on a commercial

space certified glass AF32 that has very high optical transmittance (≥ 90%) and tempera-

ture tolerance. The solar cells are sandwiched between AF32 and a copper ground plane. As

seen, each solar cell has its own cover glass that hosts array element or elements, facilitating

a very low–cost modular design and fabrication process. The AF32 glass has a measured

permittivity of 4.5 and loss tangent of 0.015 at X band. Two candidates (Fig. 5.8.c), a

cross dipole and a square loop, were examined in terms of reflection magnitude and phase

for unit cell size of λ/2 and λ/4, where λ is the free space wavelength at 8.475 GHz (Near

Earth Network frequency). Both candidates are of low profile that will only block minimal

percentage of light, and symmetric to enable both linear and circular polarizations.

Optimal Element Design

In this study (full-wave simulation using HFSS), the width (w in Fig. 5.8.c) of the

(a)

(b)

L

(c)
Loop Cross Dipole 

L L w

w

Ground
Solar CellSolar Cell Solar Cell

AF32AF32 AF32

Array Element

h

Fig. 5.8: Proposed integration: (a) Reflectarray. (b) Layer information. (c) Array Elements.
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cross dipole and loop was chosen to be 0.25 mm, and the reflection phase of the element

can be changed by adjusting its length (L in Fig. 5.8.c). The height (h) of the cover glass

was chosen to be 2.5 mm by considering the trade–offs between the phase range and phase

variation that can be practically realized. It was found that both elements promise reduced

loss at sub-wavelength lattice size compared to λ/2 one (Fig. 5.9.a), and this is consistent

with [11]. The cross dipole, however, cannot provide minimum 270 degree required phase

range (Fig. 5.9.b). Therefore, the loop element with λ/4 unit cell was chosen for the

reflectarray design.

The Effect of Solar Cells

The lossy nature of solar cells in reducing the antenna’s gain has been studied in [5,8,10].

Using the conductivity of common solar cells extracted by [5] and entering it together with

the electrodes in solar cells (i.e. silver lines parallel to the width of solar cells) to the full-

wave simulator, we obtained the effect of solar cells on the loop unit cell. Fig. 5.10.a and

Fig. 5.10.b show the effect of solar cells on the unit cell under normal incident TE and

TM plane waves, where the E field of TM wave being parallel to the electrodes and TE

being perpendicular. It is seen from Fig. 5.10.a that the solar cell has little effect on the

phase response, but it introduces loss (Fig. 5.10.b), which is expected. The phase response

is further examined for oblique incidences (Fig. 5.10.c and Fig. 5.10.d), and we see no

significant effect from the solar cell.

5.2.3 Reflectarray Design

We designed reflectarray at 8.475 GHz for two panels to beam at 22.7o. Panel I is for a

6U CubeSat and has a size of 200 mm by 300 mm. Panel II is 300 mm by 300 mm, and can

be either for a 9U CubeSat or a 3U CubeSat with folded deployable panel. The solar cells

are not included in this design because the solar cells are very thin and the computation

grids have to be small enough to capture the fine geometry of many solar cells on the panel.

Consequently, the simulator generates an extremely large number of grids and results in a

very expensive computation costs. As we can assess the effect of solar cells analytically, we
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did not include solar cells at this stage. The feed beam is tilted at 22.7o to avoid blockage

from the feed horn (Fig. 5.8). The focal distance F (Fig. 5.1) is one of the important design

parameters that directly affects array’s aperture efficiency. As shown in Fig. 5.11 for Panel

I and Figure 5.12 for Panel II , there is an optimum F that maximizes aperture efficiency,

which is a multiplication of the illumination and spillover efficiencies [12]. Considering the

optimal aperture efficiency and having an edge taper of -10 dB [13], gain of the feed horn

and the focal distance (F ) were determined to be: 12 dB, 135 mm for Panel I and 165

mm for Panel II. Fig. 5.13 and Fig. 5.14 show the required phase distribution of the loop

elements that have been truncated to the accuracy of 0.01 mm for the ease of fabrication.

Fig. 5.15 and Fig. 5.16 present normalized gain patterns of the two reflectarrays, and it is

seen that both side lobe and cross polarization levels are well below 20 dB.

5.2.4 Discussions and Results

Effect of Solar Cell

Based on the unit cell response, the array radiation efficiency can be calculated from

(5.2) [11], where |Γi| and |Ii| are reflection and illumination magnitude of the ith element.

We validated this formula by computing ηr (it is -0.64 dB from computation) for Panel II
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without solar cells and compared it with the full–wave simulation result of -0.51 dB. As the

agreement is very good, we used the formula and the unit cell response in the presence of

solar cell (Fig. 5.10), where |Γi| can be extracted, to compute the array gain and aperture

efficiency (ηap), which is the final measure of the effectiveness of the designed array antenna.

ηr =

∑
i(|Γi|2|Ii|2)∑

i |Ii|2
(5.2)
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Fig. 5.11: Aperture efficiency versus focal distance (F ) for Panel I.
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Fig. 5.15: Normalized gain pattern at E and H planes for Panel I.
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Optical Transparency

The optical transparency due to the reflectarray is computed from (5.3), where Ametal

and Apanel are the area covered by the printed metal and the area of the solar panel,

respectively.

Tant = (1− Ametal

Apanel
)× 100 (5.3)

In the case of presented loop antenna elements, the area covered by the metal is:

Ametal =
∑
i

4(Li − w)w. (5.4)

The overall transparency is determined by the transparency of the AF32 cover glass

and the transparency of the antenna. The estimation is straightforward.

Simulation Results

The performance of the designed reflectarray is summarized in Table 5.1, where the

effect of solar cells has been taken into account. It is seen that the transparency of the

antenna is close to 95%. As the cover glass is highly transparent, we can estimate that the

overall transparency is above 90%. It is also seen that the aperture efficiency of the antenna

is more than 40%, which is higher than most reported antenna arrays integrated with solar

cells.

Table 5.1: Reflectarray performance for both panels.

Panel Orientation Gain (dB) ηap (%) Tant (%)

I TE 23.83 40.2 94.54

I TM 24.24 44.2 94.54

II TE 25.67 40.9 94.62

II TM 26.06 44.8 94.62
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5.2.5 Measurement and Results

This section covers the design prototyping process, measurement setup, measurement

procedure, results, and discussions.

Prototyping Process

To validate the design, the reflectarray for Panel I was implemented on FR4 substrate,

which is lossier substrate compared to Rogers’ high frequency laminate and has the similar

electrical properties to AF32 glass. Such a choice was made because validating the initial

design on a FR4 is a much faster and cheaper method than directly on glass. As the chosen

FR4 has almost the same properties as glass, the design printed on glass is expected to be

similar to the one on FR4. The FR4 substrate has dielectric constant of 4.2, loss tangent

of 0.015, and height of 2.36 mm. The protoyped reflectarray has dimensions of 300 mm ×

200 mm as shown in Fig. 5.17.

A horn antenna is used to illuminate the reflectarray as shown in Fig. 5.1. The

feed horn (Fig. 5.18) was fabricated by using 3D–printing technique. The inner side of it

was sprayed by conductive ink. To launch the feed, a standard WR90 coax to waveguide

transition was used. The measured S11 of the designed horn antenna is shown in Fig. 5.19.

It is clear that the prototyped feed is matched well in the entire of X band.

Fig. 5.17: Prototyped reflectarray on FR4.
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Fig. 5.18: Prototyped horn antenna.

Measurement Setup

To measure the reflectarray, a fixture (Fig. 5.20) made of plastic was fabricated to

hold the reflectarray and horn antenna. The position of the horn with respect to the array

was adjusted and fixed on the fixture, and the reflectarray was fastened to the fixture by

using four plastic screws. The fixture has four legs that make it stable and robust during

the measurement.

A near–field NSI planar scanner was used to measure the reflectarray. Fig 5.21 shows

the measurement setup. First, the horn antenna was connected to the VNA port so that

reflectarray acts as transmitter, and a WR90 waveguide probe on the near–field scanner

samples the field radiated by the array. To have accurate results, the array should be

placed close to the probe so that it can capture the array near–filed data well. After fixing

the reflectarray in front of the probe, the planar scanner will sweep along x–y plane (e.g. the

plane parallel to the array surface). Then, the NSI software will do near–field to far–filed

transformation to produce far field patterns of the reflectarray.

As the aim of work is to integrate the reflectarray on the solar panel, we need to know
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Fig. 5.19: Measured S11 of fabricated horn antenna.

Fig. 5.20: Fabricated fixture.
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Fig. 5.21: Measurement setup.

Fig. 5.22: Multi-functional solar panel.

the solar panel well. Fig. 5.22 shows the used solar panel in our experiments which is

multi–functional solar panel used in space applications. It measures 355 mm × 203 mm,

which is bigger than the designed array, and includes 21 space–certified solar cells. Each
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solar cell has its own cover glass and a transparent adhesive (glue) was used to stick the

solar cell to the cover glass of the solar cell. The thickness of the solar panel is 6 mm and

the center of this particular panel is empty without any solar cell.

Measurement Procedure

Different experiments were carried out to examine the integrated reflectarray perfor-

mance. All of the experiments used the designed array (Fig. 5.23.a) and the measurement

setup (Fig. 5.21). Three measurements were performed:

• Measurement I: The first experiment was to mount the reflectarray prototyped on a

FR4 (top side of the FR4 is the array element, and bottom is metal cladding that acts

as ground (Fig. 5.23.a)) on the fixture and do the measurement.

The focal distance was set to 135 mm and the angle between horn antenna and

the array center was fixed to be 22.7o. This setup was also used for the following

experiments.

• Measurement II: To do the second experiment, the metal cladding of the reflectarray

in Fig. 5.23.a was removed and the surface of the panel was covered by aluminum

sheet. Then, the reflectarray (without cladding on the back) was placed on the panel

as shown in Fig. 5.23.b. It is clear that the aluminum sheet acts as the ground. The

thickness of the solar panel is 6 mm which would lead to a reduced focal distance and

consequently reduce the gain of the reflectarray.

• Measurement III: The setup for this experiment is same as the second one except for

at this time the aluminum sheet in between the FR4 and the solar panel was removed.

In this case, the ground of the solar panel would be the ground for the reflectarray.

To avoid damaging the solar panel, the screws were not tightened and it would result

in air bubble between array and the panel. Also, the copper tape was placed at the

panel center to fill out the center and be part of the ground plane. Like the second
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experiment, the focal distance decreased because of the panel thickness. Fig. 5.23.c

shows the integrated reflectarray on the solar panel.

(a) (b)

(c)

Fig. 5.23: Reflectarray in different measurement set—ups: (a) I. (b) II. (c) III.

Measurement Results

Fig. 5.24 shows the measured reflection coefficient of the reflectarray. It confirms

that the reflectarray is matched well. Fig. 5.25 shows the normalized radiation pattern

for measurement I. It is clear that the simulated pattern is in good agreement with the

measured one. The measured radiation patterns for measurements II and III are shown

in Fig. 5.26 and Fig. 5.27, respectively. Table 5.2 shows the measured gain and aperture

efficiency for the reflectarray in the three measurement set-ups. The gain and aperture
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Fig. 5.24: Measured reflection coefficient of the reflectarray.

efficiency from the measurements II and III are lower compared to the measurement I. The

reasons for this reduction are discussed in the next section. Despite of the expected gain

loss, the measured aperture efficiency of integrated reflectarray (measurement set-up III) is

highest to date when considering all the components used were commercial space–certified

material, rather than special lab–made ones.

Table 5.2: Measured gain and aperture efficiency for three measurement set-ups.

Name Gain (dB) Aperture Efficiency (%)

I 24.35 45.3

II 23.64 38.5

III 22.46 29.3

Discussions

It is seen that the measurement set-ups II and III yield lower gain and aperture ef-

ficiency for the reflectarray, and the reasons for this are the reduced focal distance, non–

uniformity, and solar cells. As discussed, the focal distance in set-ups II and III were

decreased by 6 mm. When the reflectarray is closer to the feed horn by 6 mm, the simula-
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Fig. 5.25: Normalized radiation pattern of measurement I: (a) E–Plane. (b) H–Plane.
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74

-40 -30 -20 -10 0 10 20 30 40
-60

-50

-40

-30

-20

-10

0 H-Plane

N
or

m
al

iz
ed

G
ai

n
Pa

tte
rn

(d
B

)

θ (deg)

Measured Co-Pol
Measured X-Pol

-40 -30 -20 -10 0 10 20 30 40
-50

-40

-30

-20

-10

0 E-Plane

N
or

m
al

iz
ed

G
ai

n
Pa

tte
rn

(d
B

)

θ (deg)

Measured Co-Pol
Measured X-Pol

(a)

(b)
Fig. 5.27: Measured radiation pattern of measurement III: (a) E–Plane. (b) H–Plane.
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tion results show that we should expect about 0.46 dB gain reduction. On the other hand,

the aluminum ground in the set-up II as shown in Fig. 5.23.b, is not uniform and there is a

possibility of having non–uniform air layer between the FR4 substrate and the ground that

can contribute to the gain reduction.

The gain in the set-up III is reduced by 1 dB compared to the set-up II. This is mainly

because of the solar cells as discussed in section 5.2.4 . Other factors that have possibly

contributed to the gain reduction are studied as follows. First of all, the solar panel used

in the measurement was a commercial product and was slightly different from the one that

we performed the design simulations (section 5.2.4). The main difference is that this solar

panel has solar cells with its own cover glass (very thin though) glued on each cell. We

had not considered the adhesive that can be lossy in our previous studies. Second of all,

when the FR4 was placed on the solar panel (Fig. 5.23.c), there is a high possibility of air

layer between two as we could not tight them to each other. To understand the effect of

these factors well, we did full–wave simulation for unit cell and reflectarray. The simulated

structure’s layer information is shown in Fig. 5.28. In the studied structure, the glue layer

was modeled as lossy layer with εr=2.6, tanδ=0.015, and height of 0.15 mm. The cover

glass was modeled with εr=4.5, tanδ=0.015, and height of 0.15 mm. The air layer was

considered with height of hair. It should be noticed that the same reflectarray (Fig. 5.23.a)

was used in this analysis and the focal distance was set to be 135 mm like the set-up I. It is

Ground

Glue

Cover Glass

Air 

FR4

Array Element

0.15 mm

0.15 mm

2.36 mm

hair

Fig. 5.28: The layer information of integrated solar panel reflectarray.
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worth to mention that the mentioned values above for the glue and the cover glass are only

estimated ones as we do not have access to the original data sheet of the panel. Table 5.3

shows the simulation results for different values of hair. The phase range was obtained by

the unit–cell simulation and gain was obtained by full–wave simulation of the array. The

set-up I (Only FR4 substrate) gives the simulated gain of 24.5 dB and phase range of 322.8o.

The simulation results confirm that air bubble can be a big factor in gain reduction. For

example, air layer with height of 0.4 mm can reduce the gain of the reflectarray by 0.5 dB.

The transparent adhesive (glue) may contribute to some loss, but not as much compared

to the air layer. Then, the rest of the gain reduction is from the lossy nature of solar cells

as discussed in previous sections.

Table 5.3: Simulated phase range and gain for different hair.

hair (mm) 0.1 0.4 0.8 1.2

Phase Range (deg) 309.2 294.3 279 253.6

Gain (dB) 24.43 24 23.4 22.4

5.2.6 Conclusion

Two transparent reflectarray antennas with transparency and aperture efficiency higher

than previous publications are presented. Detailed design method and data are presented.

To validate the design, one of the reflectarrays, which is suitable for integration on a 6U

CubeSat, was prototyped and measured with and without a multi–functional solar panel

for space use underneath the antenna. The measurements agree the design data and anal-

ysis. It is seen that the achieved reflectarray antennas are effective and highly transparent,

promising an application as high gain antennas for CubeSats.
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CHAPTER 6

POLARIZATION RECONFIGURABLE ANTENNA FOR SMALL SATELLITE

APPLICATION

Abstract

A polarization reconfigurable antenna design that enables integration with CubeSat

solar panels is presented. The antenna reconfigures between two polarizations by switching

pin diodes. The design method and results are presented.

6.1 Introduction

Increasing communication needs demand antennas with diversity [1], and accordingly

antennas with polarization reconfigurability through switching have been sought after. Al-

though the main application of antennas with polarization diversity has been in wireless

local area networks (WLAN), mobile satellite service and microwave tagging, such class of

antenna may be valuable in future space missions, in particular, Cube Satellites (CubeSat)

. A basic CubeSat is usually called 1U CubeSat (Fig. 6.1.a), and it is common to fly 1.5U

CubeSat such as the DICE spacecraft (Fig. 6.1.b) for enhanced mission capacity. Although

CubeSat often uses only one type of circular polarization (CP), having a polarization recon-

figurable antenna will be an enhancement and consistent with CubeSat philosophy where

smaller, cheaper and better are the basis principles.

It is straightforward to understand how a CubeSat’s mission capacity can be enhanced

by having multiple polarizations. As the size of a CubeSat is the biggest limiting factor,

being able to integrate a single antenna with polarization diversity with the solar panel will

be extremely valuable because one can solve two problems (1. a polarization reconfigurable

antenna, and 2. integration of antenna with the solar panel to save surface real estate) at

the same time. This paper presents an antenna topology that allows switching between two
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    (a)                                                   (b)       

Fig. 6.1: CubeSats: (a) 1U. (b) USU’s DICE.

circular polarizations and can be integrated with the solar panel of a 1U or 1.5U CubeSat.

Although there are various reported methods to integrate antennas with solar panels [2], the

antenna design of this work is based on cavity backed slot antenna because of its simplicity

and minimal impact on the solar cell, including no needs for custom designing solar cells [3].

6.2 Design

Fig. 6.2.a shows the top view of the antenna geometry. The cavity backed crossed

slot antenna is integrated with the solar panel of a 1.5U CubeSat; and therefore, the panel

dimensions are 10 cm × 15 cm. The antenna geometry is based on PCB technology, which

is a common base for CubeSat surface mount panel. On a PCB substrate, where top and

bottom layers are copper (Fig. 6.2.b), a cross slot (composed of two orthogonal slots) is

etched on the top layer to create a CP. The slot antenna is excited by a coaxial probe that is

placed on the center line of the cross, and the top and bottom layers need to be connected,

common to a cavity backed slot antenna design [4]. In order to suppress unwanted cavity

modes excited by the probe, instead of connecting the two layers through the side walls of

solar panel, a square walls of vias, a.k.a. substrate integrated waveguide (SIW) were created

around the crossed slot, just to be sufficient for the antenna while suppressing higher modes.
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    (a)                                                (b)        
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Fig. 6.2: Reconfigurable antenna geometry: (a) Top view. (b) Side view.

The antenna is designed to function at 2.3 GHz. During the simulation using Ansys’

HFSS, in order not to consume up computing time, the vias were first modeled as solid

conductor, and then converted to SIW using the previously reported method [5].

A CP is produced by the two slots and a 90 degree phase shift. A left handed CP

(LHCP) or a right handed CP (RHCP) can be achieved by adjusting the length difference

between the two orthogonal slots. When the slot length on y direction is longer, a LHCP

is obtained, and a RHCP is produced when the slot on x is longer than the other slot.

A Roger’s RT5880 (height 1.5 mm, dielectric constant 2.2 and loss tangent 0.009) was

chosen to be the PCB substrate. To create the length difference for the slots, two diodes

(SW1,SW2) were used as shown in Fig. 6.2.a. The diodes in this project are BAP65LX pin

diode manufactured by NXP (www.nxp.com). The on and off stages of the diode change

the length of a slot as follows (Fig. 6.3). When the diode is off, then it has appropriately no

impact on the slot. When the slot is on, it acts as a short to bridge the top layer conductor

across the slot. Such a short truncates the effective length of the slot from l1 to l2 or l4

(when considering the coupling between l2 and l3). In simulation, when the diode is on,

it was modeled by series resistance Rs = 0.5 Ω representing the switch loss and package

parasitic inductance Lp = 0.6 nH. When the diode is off, it was modeled by series capacitor

Cs = 0.5 pF and package parasitic inductance. As a summary, a LHCP is achieved by
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switching SW1 on and SW2 off, and a RHCP is achieved when SW1 is off and SW2 is on.

l
1 l

2

l
3

l
4

    (a)                                   (b)        

Fig. 6.3: Switch effect on the slot length: (a) Switch is off. (b) Switch is on.

6.3 Results

Fig. 6.4 is simulated S11 for the two polarizations. The impedance matching is achieved

by tuning the coax feed along the center line. Fig. 6.4 shows good impedance matching has

been achieved. The difference between the impedance bandwidth of the two polarizations,

is due to the fact that the solar panel is rectangle and does not have diagonal symmetry.

Fig. 6.4: Simulated S11 response.
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Fig. 6.5: Simulated AR.

 
 (b)

 
   (a)

Fig. 6.6: Simulated radiation pattern: (a) when SW 1 is on. (b) when SW 2 is on.

The axial ratio (AR) is plotted in Fig. 6.5 and is below 3 dB for both polarizations.

The simulated radiation patterns are presented in Fig. 6.6. Fig. 6.6.a shows that when

SW1 is on, a LHCP has been achieved on the boresight as the RHCP is 20 dB below the

LHCP. This is consistent with the achieved AR (Fig. 6.5). Fig. 6.6.b shows that switching

SW2 on gives rise to a RHCP.
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6.4 Conclusion

The paper presents a design that enables an integration of a polarization reconfigurable

antenna with the solar panel of a 1.5U CubeSat. The antenna geometry is based on a cavity

backed slot, and the polarizations are switched between LHCP and RHCP by using pin

diodes. The antenna properties (S11, AR and pattern) confirm that the proposed design

is capable of reconfiguring two CPs. Although the simulation is presented for a 2.3 GHz

antenna, the design can be easily adjusted to other S band or higher frequencies. Also, the

antenna design is not limited to 1.5 U, and can be adjusted to suit 1U to multi–U CubeSats.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

The dissertation reports comprehensive studies on effective integration antennas and

solar cells. It presents detailed design philosophy, prototyping method, measurements, and

assessments of interaction between the antenna and solar cells. The shadow of the antenna

casts on solar cells, however, it has been found that it is not significant (less than 2%). The

solar cell, as a lossy layer under the antenna, reduces the antenna’s gain to 2–3 dB from C

to X bands, but the gain reduction is expected to be less severe for higher frequencies. This

research also presents an analytical model of the most common commercial space solar cell.

The integration of the antenna with solar cells can be furthered at higher frequencies by

using the proposed model.

On the array level, the dissertation presents discussions and design philosophy of an op-

tically transparent reflectarray for solar panel integration. The design can be easily adapted

to 6U or larger CubeSats. As a sample design, a sub–wavelength (quarter wavelength) re-

flectarray with square loops as elements, which has been found to exhibit the most overall

superior properties both in terms of gain and optical transparency, is presented. The effect

of solar cells on the reflectarray has been considered, and the antenna promises high aper-

ture efficiency and optical transparency. The reflectarray design has been validated and

can be easily tuned to be compatible with Space Network (SN), and Deep Space Network

(DSN) communication needs.

For future studies, the proposed reflectarray can be directly printed on the cover glass

of solar panel. The current initial prototype is done by using circuit board material to save

time. Looking further ahead, the reflectarray can be redesigned at Ka band with planar

feed so that the entire system can be integrated onto solar panels of a CubeSat. When

needed higher gain, the discussed array can be designed for DSN at higher frequencies such

as Ka band. Designing dual band integrated transparent array for X and Ka bands would
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be another method to take advantage of both NEN and DSN simultaneously.
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