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Results of a testing campaign to assess multiple commercially available 3-D printer materials for effectiveness 

in an arc-ignition system for hybrid rockets are presented.  Previously, a form of additive manufacturing 

known as Fused Deposition Modeling was used to fabricate high-density acrylonitrile butadiene styrene fuel 

grains so that, when properly layered possess unique electrical breakdown properties. When subjected to an 

inductive charge an electrical-arc flows along the layered material surface and "seeds" combustion when the 

arc occurs simultaneously with the introduction of an oxidizing flow. This study investigates commercially 

available 3-D printable materials to search for equivalent or possibly superior fuel alternatives to ABS. Test 

specimens include photopolymers processed using polyjet (stereo-lithography) and fused-deposition printing. 

Comparison metrics include general arc-ability, pyrolysis rate, dissipated power, characteristic velocity, and 

ability for multiple restarts. Initially, an ensemble of 8 commonly-available “printable” polymers was 

evaluated, and only 4 printable materials -- high- and low-density ABS, VeroClear®, and white 

polycarbonate -- were found to possess effective “sparking” properties.  In follow-on burn tests only high- 

and low-density ABS and VeroClear performed effectively as fuel materials. White polycarbonate would not 

ignite using the arc-method.  High-density ABS exhibited the best overall ignition properties and 

characteristic velocity. 
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Nomenclature 

CEA   = Chemical Equilibrium with Applications (computer program) 

c*  =  characteristic velocity, m/sec 

 = measured characteristic velocity, m/sec. 

  = power required to pyrolize material, J/sec 

hv  = enthalpy of gasification, MJ/kg 

I  = high voltage power supply output current, mA 

  = massflow of pyrolysis products, g/sec 

  = oxidizer massflow, g/sec 

  = total motor exit massflow, g/sec 

O/F  = oxidizer to fuel ratio 

Pdissipated  = dissipated power, J/sec 

P0  =  chamber pressure, kPa 

p  = pressure of pyrolized fuel vapor, kPa 

Rg  = gas constant of pyrolysis products, J/kg-K 

T  = temperature of pyrolized gas, K 

V  = high voltage power supply output potential, V 

Vol  = chamber volume, cm3  

h*  = combustion efficiency, c*meas/c*ideal 

r  = density, g/cm3 

  = rate of change of density c, g/sec -cm3 

 
I. Introduction 

Because hybrid rocket propellant materials are individually chemically stable prior to mixing within the 

combustion chamber, these systems possess well-known safety advantages. Unfortunately, the relative stability of 

traditional hybrid propellants also makes hybrid systems difficult to ignite. Hybrid rockets have traditionally used 



 

 3 

large, high output pyrotechnic or “squib” charges to initiate combustion. Pyrotechnic ignitors are capable of 

producing very high-enthalpy outputs, but are extremely susceptible to the Hazards of Electromagnetic Radiation to 

Ordnance (HERO) [1], and the pyrotechnic charges associated with large single-use ignitors charges present a 

significant operations hazard. Most importantly, for nearly all applications pyrotechnic ignitors are designed as 

"one-shot" devices that do not allow a multiple restart capability. Thus, the great potential for multiple re-start upper 

stages using hybrid rockets remains largely unrealized.  

II. Background on Ignition Technologies 

Several existing technologies have been investigated to overcome the ignitibility shortcomings described in the 

previous paragraph. These methods include 1) plasma torch, 2) electric spark plugs with bi-propellant oxidizer and 

fuel injectors, 3) pyrophoric ignition fluids, 4) ignition featuring hypergolic bi-propellants, and 5) catalytic 

dissociation of one or more of the hybrid propellants. All of these methods possess distinct disadvantages that make 

application to hybrid rocket systems impractical. 

A. Conventional Ignition Technologies. 

Plasma torches are devices for generating a directed flow of plasma, and have been effectively used for gas 

turbine engines and supersonic combustion ramjets for ground test articles. [2] These devices produce very high 

output temperatures, but have a low total mass flow. Achieving a high-total output enthalpy requires a large input 

power. Typically, the power production units (PPU) for these devices are heavy and not generally amenable to flight 

applications except an initial launch vehicle stage where the ignition power can be provided by a ground based PPU. 

Clearly, bi-propellant ignitors are capable of producing sufficient enthalpy to act as ignition sources for hybrid 

propellants; however, the complexity required by the dual-propellant feed path, and potential combustion stability 

issues present significant operational disadvantages. Bi-propellant ignitors are difficult to properly tune, and 

immediate ignition as the propellants enter the combustion chamber is essential to avoid "hard starts." Ignitor flame 

holding stability is also a critical issue. 

Pyrophoric ignition liquids fluids like Triethylaluminum-Triethylborane (TEA-TEB), and monopropellants like 

hydrazine are highly reliable, produce high output enthalpies, and can be used for multiple re-starts. [3] 

Unfortunately, like hydrazine, this class of hazardous propellants presents the extreme disadvantage of being highly 
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toxic, potentially explosive, and expensive to work with during ground processing. The use of pyrophorics defeats 

the advantages of using safe and non-toxic hybrid propellants.  

Like pyrophorics, hypergolic propellants allow for a consistent and reliable ignition enthalpy source, and have 

been used for multiple space propulsion systems. [4] Unfortunately, hypergolic bi-propellant ignition systems 

feature both an operations hazard, in addition to the feed-system complexity of a bi-propellant system. To date, a 

hypergolic ignition system has never been seriously considered for a hybrid rocket. 

 Finally, multiple researchers have investigated the catalytic decomposition of nitrous oxide (N2O) to initiate 

hybrid rocket combustion. [5], [6], [7] Unfortunately, in all cases the decomposition bi-products were so hot that all 

existing catalyst bed materials were consumed after one or two ignitions. Thus, multiple restart capability has not 

been demonstrated. Also, to ensure reliable ignition N2O cat beds must be pre-heated greater than 350 oC before 

ignition. This pre-heat requires a considerable power source and is not compatible with small "rideshare" spacecraft 

where hybrid systems show a competitive advantage.  

B. Arc-Ignition of Additively-Manufactured Acrylonitrile Butadiene Styrene (ABS).  

While characterizing the performance of additively-manufactured ABS as a replacement for conventional 

hybrid rocket fuels, [8] it was discovered that the layered material structure of additively-manufactured ABS, 

fabricated using a type of additive manufacturing known as fused deposition modeling (FDM) [9], concentrates 

minute electrical charges that produce localized arcing between material layers. Joule heating -- the process by 

which the passage of an electric current through a conductor releases heat -- from the resulting arc produces a small 

but highly-conductive melt layer. This melt layer allows for very strong surface arcing to occur at moderate input 

voltage levels -- between 200 and 300 volts. Additional Joule heating from the strong surface arcing causes a 

sufficient fuel material to vaporize, seeding combustion when simultaneously combined with an oxidizing flow.  

The discovery of FDM-processed ABS’ unique electrical breakdown characteristics prompted the invention of 

an ignition system that takes advantage of the previously described "hydrocarbon seeding" phenomenon. [10], [11] 

Figure 1 illustrates the top-level concept, where two electrodes are embedded within an ABS fuel grain segment. 

The conducting paths terminate in electrodes that are flush with the combustion port surface and exposed to the 

interior of the combustion chamber. The layered structure of the FDM-processed ABS provides local surface 

features of very small radius. As a voltage is applied across the two electrodes, these surface features serve to 
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concentrate charge at many discrete points the material surface. The effect produces a large ensemble of  

"electrodes" with a gap- distance on the order of microns. These features allow electrical breakdown -- and thus 

electrical arcing -- to occur at moderate voltage levels. For properly designed system geometry the separation 

distance, and thus the breakdown voltage between the metal electrodes is too high to initiate direct metal-to-metal 

arcing; rather arcing occurs along the surface of the ABS fuel. The image on the left-hand side of Figure 1 shows the 

inductive spark propagating along the grain surface, and the schematic on the left hand side shows the resulting fuel 

pyrolysis. 

 

Figure 1: Arc Ignitor with Joule-Heating Concept Demonstration. 

During this initial phase of testing, the authors discovered that particular orientation of the FDM-processed 

material layers had a significant effect on the arcing process. In order to qualitatively assess this effect, three conical 

grains were manufactured; two grains using a Stratasys Dimension® 3-D FDM printer, and the other grain machined 

from extruded ABS stock material. One FDM-processed ignitor grain was printed "vertically-stacked," that is, with 

deposition layers parallel to the longitudinal axis of the motor and direction of oxidizer flow. The second grain was 

printed "horizontally-stacked," with deposition layers perpendicular to the longitudinal axis of the motor and 

perpendicular to the direction of oxidizer flow.  

After several arc-breakdown cycles, the vertically-stacked ignitor grain ceased to visibly arc. In order evaluate 

this result, the grain was cut along the longitudinal axis and inspected. Patterns of heavy char indicated that an 

alternate path between the electrodes had formed, and any circuit closure was occurring internal to the grain surface. 

Because the loop was closed internal to the grain surface, fuel pyrolysis and the resulting vapor generation did not 
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occur. This behavior was observed for several vertically-stacked test specimens. This behavior did not occur in any 

of the horizontally-stacked specimens tested, and indicates that horizontal-stacking is the preferred method of 

manufacture.   

C. Arc-Ignition Prototype Development. 

The discovery of ABS’ unique electrical breakdown characteristics prompted the invention of prototype hybrid 

ignition system that takes advantage of the previously described electrostatic breakdown phenomenon. Because the 

primary objective of this test campaign was to optimize the arc-ignitor fuel grain design, it was deemed too costly 

and time consuming to manufacture multiple full-scale 98 mm hybrid fuel grains; thus, as a lowered-cost alternative 

an existing 98-mm motor cap previously used for hybrid motor testing was adapted to fit into a short 10.2 cm hybrid 

motor section. Figure 2 shows an exploded view of this developmental unit, dubbed as "Little Joe." The design was 

engineered such that nozzle geometries could be quickly varied to provide a range of internal chamber pressure 

conditions. The oxidizer for these tests was gaseous oxygen (GOX). The GOX injector feed pressure was adjusted 

using a manual pressure-reducing regulator. The pictured configuration shows a water-cooling jacket, which was 

deemed unnecessary after the initial series of tests and removed for subsequent testing. 

 

Figure 2. Exploded View of the "Little Joe" Ignitor System Development Motor. 

Three different ignitor-grain geometries were evaluated during the “Little Joe” development tests. These 

configurations were 1) a conical converging section, 2) a stepped-cylindrical section with a flow impingement 

"shelf," and 3) a stepped-cylindrical section with dual impingement shelves. The first two geometries employed a 

straight single port injector and the final dual-shelf geometry was tested using coaxial injector with an axial port, and 
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two side injection ports. During this testing campaign only configuration 3 performed in a reliable and effective 

manner, and this configuration was adapted as a baseline for follow-on testing. This novel, low-power arc-ignition 

technology overcomes many of the previously-described issues associated with conventional technology ignition 

methods. 

D. Arc-Ignition Testing with Embedded Fuel Grain Ignitor. 

In order to demonstrate a "drop-in" application of the developed technology, the testing campaign of Ref. [10] 

concluded with a series of tests that embedded the developed ignitor system into the top end of a lab scale 75-mm 

hybrid rocket motor. This well-characterized motor system 

had been previously tested at Utah State, but with ignition 

being initiated by a set of single-shot pyrotechnic charges. 

[12] Figure 3 shows the FDM-fabricated fuel grain with the 

integrated ignitor section. The design takes advantage of 

FDM-processing to build the ABS ignitor and fuel grain 

sections with "snap-together" interlocks that allow 

individual grain segments to be manufactured separately, 

and then assembled for combustion. The embedded 

electrodes fit into slots manufactured in the motor injector 

cap. Figure 4 shows a schematic of the integrated motor 

case. As shown in this figure the initial fuel grain port was 

manufactured with a helical structure in order to increase 

regression rate and combustion efficiency. [13]  

The developed system allowed for multiple consecutive “hands off" re-starts of the 75 mm motor with the 

embedded ignitor grain. The burn profiles exhibited excellent run-to-run consistency with low deviations in both 

thrust and chamber pressure. Also the response fidelity of the integrated arc-ignition system was consistently greater 

than occurred using conventional 1-shot pyrotechnic ignitors on the same system, indicating that the additional 

chamber volume downstream of the ignitor section has little effect upon the ignition kinetics.  

 
Figure 3. FDM-Fabricated ABS Fuel Grain with 

Integral Ignitor and Interlocking Fuel Grain 
Sections. 
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Figure 4. Schematic of 75-mm Motor Case with Integrated Arc-Ignitor. 

For these tests, the motor featured a semi-optimized nozzle with an expansion ratio of 3.5. The mean delivered 

Isp at ambient conditions was 228.7 seconds at a combustion chamber pressure of 1380 kPa (psia). This delivered 

specific impulse extrapolates to a vacuum Isp of greater than 300 seconds using a 20:1 expansion ratio nozzle -- 

significantly higher than can be achieved by a hydrazine-based system. Both the ignitor and fuel sections for this 

design were fabricated using the commercially available ABSplus-P340® [14] feed-stock material.  

III. Propellant Testing with Alternative Additively Manufactured Materials. 

Shortly after the initial discovery, the authors of Ref. [10] made several unsuccessful attempts to reproduce a 

similar phenomenon with other hybrid fuel materials including Hydroxyl Terminated Polybutadiene (HTPB), 

acrylic, paraffin, and extruded ABS. These specimens were fabricated using traditional methods, with the HTPB and 

paraffin test articles being cast using molds, and the acrylic and ABS extruded specimens being manufactured using 

conventional machining. The cast and machined materials, even though possessing identical geometries to the FDM-

processed specimens, were completely ineffective. Thus, the authors have concluded additive-manufacturing is a 

key element to achieving the previously described advantageous arcing properties.  

A. Summary of Test Materials. 

This section summarizes follow-on testing campaign, where multiple 3-D printable materials were evaluated for 

suitability as the fuel component for hybrid rocket systems that employ the previously described arc-ignition system. 

This study investigates materials and manufacturing processes to search for equivalent or possibly superior 

alternatives to the ABSplus FDM-feedstock material previously evaluated during the prototype testing campaign. 

Table 1 shows the list of candidate materials to be evaluated. The study did not attempt to design or optimize the 
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plastic materials, but instead simply evaluated the effectiveness of common commercially-available 3-D printer 

materials10.  

Test Specimens fabricated with both PolyJet (photopolymers) and FDM (thermoplastic) techniques were 

investigated. PolyJet technology is a lithographic additive manufacturing method that is traditionally used to build 

smooth, accurate prototypes, parts, and tooling.  With 16-micron layer resolution and accuracy as high as 0.1 mm, 

PolyJet can produce thin walls and complex geometries using the widest range of materials. PolyJet 3D printing is 

similar to inkjet printing, but instead of jetting drops of ink onto paper, PolyJet 3D printers jet layers of curable 

liquid photopolymer onto a build tray. The built layers are cured using ultraviolet light. Fused Deposition Modeling 

(FDM) is an additive manufacturing method where a plastic filament is unwound from a coil and supplies material 

to an extrusion nozzle. The extruded material cools and sets once contacted with the built model. Depending on the 

model complexity, FDM objects may be built with or without a support structure that must be dissolved away once 

the part is complete.  

  Table 1. Properties of Additive-Manufactured Materials Evaluated for Ignition Testing    
               
                                    ||                               

Photopolymers 
                                         ||                            Thermoplastic                   

Material Name 
 
 
_______________
__ 

VeroClear 
 
 
________ 

Durus-
white 
 
______
_ 

RGD 
720 
 
 
_______ 

Digital 
ABS  
 
 
_________
_ 

Tango-
Plus 
 
_____
_ 

EBS-ED7 
 
 
________ 

FDM 
Poly-
Carbonat
e 
_______
_ 

PC-
ABS 
Blend 
____
_ 

ABS-
Plus 
P340 
______
_ 

Property  Rigid Semi-
Flexible 

Rigid ABS-Like 
(RGD515/ 
RDG535 
Blend) 

Flexibl
e 
Rubbe
r-like 

Static 
Dissipativ
e 

High 
Strength 

High 
Impa
ct 

Most 
Commo
n 

Color  Transpare
nt 
 

White Semi-
clear 

Green Black Black White Black Multipl
e 

Tensile 
Strength 
  

ksi 7-9  2.9-4.35  7.25-
9.45  

8.8-8.7 1.15-
2.2 

5.2 9.8 5.9 4.7 

Tensile 
Elongation 
 

% 10-25% 40-50% 15-25% 25-40% 170-
220% 

4% 4.8% 6% 6% 

Flexural 
Strength 
 

Mp
a 

75-110 30-40 80-110 65-75 61 104 68 196 55 

IZOD 
Impact 
 

J/m 20-30 40-50  20-30 1.2-1.5  111 53 196 

Heat De 113-122 99-108 113-122 136-154 N/A 204 271 230 204 

                                                
10 Anon., Stratasys, "Materials, Explore the widest range of materials in the 3D printing world," 
http://www.stratasys.com/materials, [Retrieved 15 Nov. 2015]. 
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Deflection 
Temperature 
@ 66 psi 

g F. 

                

1. PolyJet (Photopolymer) Materials [16] 

In the above table the PolyJet material VeroClear® is a rigid, nearly colorless photopolymer featuring proven 

dimensional stability for general purpose, fine-detail prototypes. Duruswhite® is a milky-white simulated 

polypropylene material that is created for high strength and elongation resistance. RGD720® is a rigid semi-clear 

plastic acrylic-based photopolymer material with a yellowish tint. Digital ABS® is greenish polyjet material 

fabricated from blended Stratasys Inc.’s proprietary RGD515 and RGD535 polymers. Digital ABS is a 

photopolymer designed to simulate ABS engineering plastics by combining high-temperature resistances with high 

toughness. Tango-plus is a soft-flexible, simulated rubber, PolyJet material with a dark black coloring.  

2. FDM (Thermoplastic) Materials [17] 

In additional to conventional part built from ABSplus feed stock, ABS-ESD7 [18] was also investigated. This 

material stock has embedded non-carbon alloys, carbon powder, and carbon fibers, added to increase the 

conductivity as a measure to control static electricity formation in encapsulated electronics. Typical impedances are 

5-10,000 W/cm. Some properties of the original ABS material are modified by the addition of the filler materials; 

but chemical resistance, strength, and manufacturability remain generally the same. The last two alternative 

materials investigated include a white polycarbonate material designed for high strength, and a polycarbonate PC-

ABS blend designed for high impact resistance.  For the pyrolysis and hot-fire tests, the alternative specimens were 

compared against ABSplus grains manufactured at high density (975 g/cm3) and with a 50% reduction in print 

density (485 g/cm3). 

3. Test Specimen Form Factor 

Figure 5 shows the fuel grain form factors that were evaluated. In this design, the ignitor grain segment was 

manufactured with empty electrode paths incorporated into the structure. After the fuel-segment was manufactured 

and cured, the arc-ignition electrodes were manually inserted into the electrode paths. The electrode slots were then 

"capped" with additively-printed ABS filler material, and bonded with plastic cement. As pictured, the grain shows 

the non-conductive elements with the electrodes that are later bonded into the top of the ignitor grain segment. This 

design reproduces the most successful ignitor and electrode interface geometry of Ref. [11]. As a cost saving 
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measure, the test specimens were manufactured to be only 60% of the length of the ABS test specimens previously 

tested by Ref. [11].  

 

Figure 5. Dual-Material Grain Element with Printed Electrode Paths. 

B. Test Results. 

This section details the tests that were performed in order to evaluate the suitability of the various plastic 

materials as arc-ignitable hybrid rocket fuels. Each of the materials of Table 1 was tested for minimum spark 

capability. For each material that could be "sparked" using a reasonable voltage and current level, a series of follow-

on pyrolysis tests were performed to evaluate the rate of hydrocarbon gas generation and required power input 

levels. Finally, any of the "surviving" fuel materials were burned as fuel in a small hybrid rocket demonstrator.  
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4. "Spark" Tests 

Initial tests during this testing campaign examined the basic "sparkability" of each of the 8 printed materials 

listed in Table 1. High and low-density, horizontally-layered ABS specimens were used as control measures. For 

these tests precision two types high voltage power supply (HVPS) manufactured by UltraVolt, Inc. [19] were used to 

supply the input power. Both 6- and 30-watt units were tested. The higher-voltage 30-Watt unit -- current-limited at 

14.5 mAmps -- was used to “set” the fuel grain, and then the lower power unit -- current limited at 6 mAmps -- was 

used as the power source for follow-on pyrolysis and burn testing. 

With a freshly manufactured grain the material impedance is very high, and the arc generally jumps the air gap 

between the electrodes. Coating the desired arc path with carbon black and arcing initially sets the fuel material. 

This action provided a positive path along the material for the spark, and helped to initiate joule heating and 

pyrolysis of the fuel materials. Once the grain material is “set,” sufficient fuel material has been pyrolyzed to form a 

slightly conductive char-path along the material surface. This conductive path still possesses impedances typically 

greater than 10 kW; but lower than the air-gap impedance. Figure 6 shows a typical “set” and “unset” ABS grain 

spark behavior during the initial grain conditioning process.  

In addition to the two high- and low-

density ABSplus-470 grain segments, 

only one of the photopolymers, 

VeroClear, and one of the thermoplastic 

materials, white polycarbonate, (WPC) 

exhibited sustained sparking properties. 

Thus, only 4 fuel materials, 1) high-

density, 2) low-density FDM-printed 

ABS, 3) FDM-printed polycarbonate, and 

4) VeroClear printed using PolyJet, were carried forward for pyrolysis testing.  For the other materials, once the 

seeding graphite burned away the spark either resumed arcing across the air gap-- Duruswhite, Digital ABS, Tango 

Plus, or buried into the material -- ABS ESD7, Polycarbonate-ABS blend, resulting in no external hydrocarbon vapor 

for seeding combustion.  

 

Figure 6. Arc-Path Properties for Unset and “Set” Fuel Grains. 
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Figure 7 shows a typical combustion behavior for the ineffective fuel materials -- in this case the ABS ESD7 

specimen. Figure 7a plots the internal chamber pressure produced by pyrolysis fuel material, and Fig 7b plots the 

dissipated electrostatic power. Here, for the first 4 seconds of the initial test the specimen produces significant fuel 

pyrolysis and the dissipated power exceeds 2 watts. For subsequent tests no spark was observed and the fuel 

pyrolysis rate drops to zero. Once the seeding carbon black on the surface has burned away leaving only the native 

material behind, the connection between the electrodes essentially becomes an open circuit.  

 

Figure 7. Fuel Pyrolysis Behavior of Graphite-Seeded ABS ESD7. 

5. Initial Arc-Pyrolysis Tests 

This series of pyrolysis tests evaluated rate of hydrocarbon gas generation and required power input levels when 

the test specimen is subjected to an inductive spark in a closed chamber. The primary objective of this series of tests 

was to measure the relative rates of fuel pyrolysis for a given input power level. In this test setup, a shortened 

version of the original “Little Joe” apparatus was employed and a sealing plate covered the nozzle exit. The injector 

inlet was capped and the original 500-psig pressure transducer was replaced with a high sensitivity +0.75 psi 

differential pressure transducer. A small hand-operated vacuum pump was connected to the injector inlet, replacing 

the oxidizer feed line.  Once the test cylinder was sealed, the hand-held vacuum pump was used to mostly evacuate 

the chamber and the 6-watt HVPS was used to spark the grain for a prescribed time period – typically 10 seconds. 

The resulting pressure rise was recorded.  The input current and voltage produced by the HVPS was also recorded to 

allow calculation of the power dissipated by the fuel specimen.  

Figures 8, 9, 10, and 11 compare typical time history traces of the resulting pyrolysis pressure and input power 

for the pyrolysis tests of the High- and Low-density ABS, VeroClear, and WPC specimens. In these trials each of the 

4-most effective test materials were tested 5 times to measure the rate of materials pyrolysis and consumed input 
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power. Both the High- and Low-density ABS specimens exhibit similar behaviors, with the exception that the low-

density material shows a slightly higher pyrolysis rate. The pyrolysis pressures of the low-density ABS and 

VeroClear are comparable; however, the power consumed in pyrolyzing the VeroClear material is approximately 

half. This result indicates a likely lower total enthalpy of vaporization for the VeroClear material compared to FDM-

processed ABS material. It is also interesting to note that the pyrolysis pressure slope is nearly linear for the ABS 

specimens, indicating a nearly constant rate of pyrolysis. For the VeroClear specimen, all of the curves exhibit a 

significant change of slope after approximately 2-3 seconds, indicating a significant drop in pyrolysis rate as the 

material heats up.  The VeroClear specimens also exhibited wide variability in the pyrolysis rate. Although the WPC 

specimen shows a good burn-to-burn consistency, this material exhibits by far the smallest arc-pyrolysis rate.  

 
Figure 8. Typical Arc-Pyrolysis Test Results for High-Density ABS Test Specimen. 

 
Figure 9. Typical Arc-Pyrolysis Test Results for Low-Density ABS Test Specimen. 
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Figure 10. Typical Arc-Pyrolysis Test Results for VeroClear Test Specimen. 

Figure 11. Typical Arc-Pyrolysis Test Results for WPC Test Specimen. 

 

The bar graphs plotted in Figure 12 summarize the pyrolysis tests results for each of the 4 down-selected fuel 

grain materials. Figure 12(a) compares the mean pyrolysis rates and Figure 12(b) compares the mean input power 

dissipation in the grain material. The pyrolysis rate was calculated by curve fitting pressure curve to calculate the 

slope, and then averaging that result over the number of trial runs. The error bars indicate the 95% confidence 

interval based on the student-t distribution for the appropriate degrees of freedom. Clearly, the low-density ABS and 

VeroClear stand out as the best potential ignitor grain section materials. The error bars represent 95% confidence 

levels derived from the sample standard-deviations of the data sets, and using the student-t distribution with 4 

degrees of freedom. [20]  
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Figure 12. Arc-Pyrolysis Pressure Rate and Power Dissipation Comparison of the 4-Downselected Additively-

Manufactured Fuel Materials. 

 

Figure 13. Required Power Fraction for Fuel Pyrolysis and Residual Power After Pyrolysis the 4-

Downselected Additively-Manufactured Fuel Materials. 

6. Efficiency of the Pyrolysis Process 

The data presented by Figure 12 can be used to estimate the fraction of the input power required to pyrolyze the 

fuel material, and the residual fraction used to initiate ignition in the presence of the oxidizing agent.  Assuming a 
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constant mean gas temperature within the test chamber11, the mass-flow of the pyrolyzed fuel material is calculated 

by 

 .     (1) 

The energy required to pyrolyze the fuel material is estimated as 

v v ol
g

pE h m h V
R T

= = .     (2) 

The fraction of input power required to pyrolyze sufficient fuel to produce the observed mass flow rate is 

.      (3) 

In Equations (1) and (2) p  is the pyrolysis pressure rate taken from Figure 12a for high-density ABS, Rg is the gas 

constant for the pyrolized fuel products as estimated by the NASA equilibrium gas-chemistry code Chemical 

Equilibrium with Applications CEA [22], T is an assumed mean gas temperature range in the cylinder -- 

approximately 300 K, Vol is the entrapped internal volume – approximately 100 cm3, hv is the enthalpy of 

gasification – 3.0 MJ/kg (Ref. 21). The parameter (I•V)HVPS is the power output from the high voltage power 

supply (HVPS) as plotted on Fig 12b, calculated as the product of the sensed output voltage and current.  

Figure 13 compares the calculations for the input power fraction required to pyrolyze the fuel material, and also 

calculates the residual power calculated as the difference between the input power and the power required to 

pyrolyze the fuel. Previously, Whitmore, and Wilson [23], [24] measured the total enthalpy of gasification of 3-D 

printed ABS as 3.0 MJ/kg, and Stoliarov and Waters25 measured the total enthalpy of gasification of polycarbonate 

as 1.74 MJ/kg.   The precise chemical formulation of VeroClear is unknown to the authors; however, since 

                                                
11 Due to the very low mass flow generated during these tests, and the relatively larger mass of the test chamber, the constant 

temperature assumption is reasonable here, and was verified by inserting a thermocouple probe into the test chamber during 

initial pyrolysis testing. 
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VeroClear is designed as a printable replacement for transparent thermoplastics like PMMA 

(polymethlymethlyacrylate) acrylic, the PMMA enthalpy of vaporization 1.63 MJ/kg, was used as a placeholder for 

this calculation. [26] To account for the uncertainty of this replacement value a variability of +25% in hv was used 

for the VeroClear power dissipation calculation. For the other material the value of hv was assumed to be 

deterministic. The significantly larger error bars observed on the VeroClear charts of Figure 13 reflect this result. 

Clearly, both the high and low density ABS fuel materials exhibit the most efficient pyrolysis behavior with 

more than 1-watt of input power "left over" after the fuel has been pyrolyzed. This residual power is available to 

initiate combustion. Although the VeroClear exhibits a higher pyrolysis rate than either of the ABS specimens, it 

also has a significantly lower power residual, leaving less energy available to initiate combustion.  

7. Arc-Ignition and Burn Tests. 

Finally, each of the 4 down-selected fuel grain specimens were inserted into the "Little Joe" thrust chamber 

depicted in Figure 2 and burned as hybrid fuel materials. A graphite spacer was inserted to adapt for the shorter 

length of the fuel grain segments evaluated during this series of tests. Figure 2 shows this spacer. Figure 14a shows 

the oxidizer flow path piping and instrumentation diagram (P&ID), and Figure 14b presents the ignition system 

electronics schematic.  Gaseous oxygen is fed into the top of the motor cap, and manually set regulator and an 

electronic run valve manage the oxidizer flow control. A separate electronic circuit provides the ignition spark. A 

laptop computer manages the motor fire-control operations remotely via an amplified USU extension cable. 
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Figure 14. Functional Schematics of "Little Joe" Test Hardware. 

Test measurements included combustion chamber pressure, oxidizer mass flow, and thrust. Consumed fuel mass 

was calculated using pre- and post-test mass measurements. Gaseous oxygen was used as the oxidizer for these tests. 

The oxidizer mass flow was calculated using a calibrated Venturi flow meter inserted into the GOX flow path. The 

electronics of the spark-ignition system depicted by Figure 14b was significantly upgraded from the original Little-

Joe test apparatus. (Ref. 11) The injector and nozzle geometries remained the same using the coaxial injector with a 

discharge area of approximately 0.10 cm2, and a nozzle throat area of approximately 0.28 cm2. 

Because the main objective of this test series was to evaluate the relative ignitability and combustion 

sustainability with the different fuel materials, the test motor employed only a sonic nozzle in order to simplify the 

construction; thus, the measured specific impulse has little practical meaning for these tests. For these comparisons 

the characteristic velocity c* and combustion efficiencies h* will be used as the relative measures of merit. The 

characteristic velocity is calculated from the test measurements by  
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  ,    (4) 

and the combustion efficiency is estimated by 

 ,       (5 

In Eq. (4) P0 is the measured combustor chamber pressure, A* is the nozzle throat area, is the oxidizer mass 

flow, and O/F is the oxidizer-to-fuel ratio. The NASA chemical equilibrium combustion program CEA [23] was 

used to calculate the theoretical values for c*
 
based on the mean O/F ratio and chamber pressure. The mean O/F 

ratio was calculated post-test by measuring the consumed fuel and dividing by the total burn time to calculate the 

mean fuel massflow rate. The oxidizer mass flow rate was measured in real time during the burn tests using the in-

line Venturi flow meter. Dividing the measured oxidizer massflow by the mean fuel massflow rate consumption 

gives the mean O/F value for the burn.  

For each test specimen the evaluation motor was commanded to perform 3 consecutive 1-second burns, 

followed a two-second wait between each burn. Each set of pulse firings was performed twice to ensure run-to-run 

consistency. Spark was initiated 500 ms before and continued for 500 ms after opening of the GOX run valve. Tests 

were performed at very low chamber pressures in order to evaluate ignition capabilities under near worst-case 

conditions. Figure 16 compares these test results for each of the 4-downselected materials. Figures 15(a) -15(c) plots 

the resulting chamber pressure, oxidizer mass flow, and thrust time histories. Figs. 15(d) - 15(f) plots the input 

power to the fuel grain, the calculated characteristic velocity c* based on Eq. (4), and the calculated combustion 

efficiency based on Eq. (5).  
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Figure 15: Low Chamber Pressure Hot-Fire Tests Comparisons for the Down-selected Materials. 

Only the first three test specimens – 1) high and 2) low density ABS and 3) VeroClear – successfully ignited. 

For each of these tests the exhaust flame plume was clearly visible, and substantial chamber pressure jumps 

occurred. The WPC specimen did not ignite in spite of multiple-trials.  The small rise in chamber pressure for the 

WPC trace is only due to the oxidizer massflow. The high- and low-density ABS specimens exhibit nearly identical 

results. The small latent start for pulse 3 of the low-density ABS is likely due to a surface char build-up that covered 

the electrodes. Surface arcing and fuel pyrolysis does not typically occur until this char layer burns away. The 

VeroClear material exhibited significantly less gas production, and the c* and combustion efficiency h*, are 

between 35-40% lower than for the ABS specimens. This result suggests that VeroClear is a lower-performing 

hydrocarbon when compared to ABS. The low combustion efficiencies for all of the test specimens likely result 

from the low chamber pressures for these tests, approximately 220 kPa  (32 psia). The authors acknowledge that 

these chamber pressures are significantly lower than the typical levels that occur in a hybrid rocket. However, these 

pressure levels represent the "ragged edge" of oxidizer concentration that will allow combustion and are considered 

to be provide a worst-case evaluation of the igntior system effectiveness.  
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In order to investigate whether the alternative materials – VeroClear and WPC -- would perform better under a 

25% higher chamber pressure that is more typically a hybrid rocket system, follow on test was performed with 50% 

higher injector feed pressure. Figure 16 shows these results. Here the VeroClear specimen ignites with slightly less 

latency than exhibited in Figure 15, and produces a significantly higher chamber pressure. The result is a marginal ~ 

10% increase in both c* and h*. As with the earlier tests the WPC specimen did not light, and the “bump” in 

chamber pressure is entirely due to oxidizer inflow. Because the motor did not light, c* remain largely unchanged.  

 

Figure 16: Hot-Fire Results for the VeroClear and WPC at Higher Chamber Pressure. 

IV. Conclusion. 

The study has investigated commercially-available 3-D printing materials and manufacturing processes to 

search for equivalent or possibly superior alternatives to FDM-processed ABS as a material for a hybrid rocket 

featuring an arc-ignition system. Clearly, engineering a printable plastic that is optimized for propulsion applications 

is a challenging task. Most current printable plastics are engineered for structural/materials and not thermodynamic 

properties; and as demonstrated by the results of this testing campaign, are unsuitable for propulsion applications. 

Because the manufacturers hold the precise chemical formulation of their printable plastic as confidential, this test 
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series did not try to engineer the fuel material that were tested; instead, these tests attempted only to identify which 

commonly available materials produced the best overall properties for propulsion applications. The test specimens 

evaluated include photopolymers processed using stereo-lithography (PolyJet) printing, and thermoplastic material 

printed using fused deposition modeling (FDM). Comparison metrics include general arc-ability, pyrolysis rate, 

dissipated power, "burnability" at low chamber pressures in a lab-scale hybrid rocket motor, characteristic velocity, 

and combustion efficiency. 

Initially, a set of 8 “printable” polymers was evaluated for minimum spark-ignition capability. With a freshly 

manufactured grain the material impedance is very high, and the arc generally jumps the air gap between the 

electrodes. Coating the desired arc path with carbon black and arcing initially sets the fuel material. This action 

provided a positive path along the material for the spark, and helped to initiate joule heating and pyrolysis of the fuel 

materials. Once the grain material is “set,” sufficient fuel material has been pyrolyzed to form a slightly conductive 

char-path along the material surface. This conductive path still possesses impedances typically greater than 10 kW; 

but lower than the air-gap impedance.  

Only 4 materials, 1) High- and 2) Low-density ABS, 3) VeroClear, and 4) white polycarbonate were found to 

possess effective “sparking” properties, and were carried forward for arc-pyrolysis measurement. The pyrolysis tests 

evaluated the rate of hydrocarbon gas generation and required power input levels when the system is subjected to an 

inductive spark in a closed chamber. Both the High- and Low-density ABS specimens exhibit similar behaviors, 

except that the low-density material shows a marginally higher pyrolysis rate. The pyrolysis pressures of the low-

density ABS and VeroClear are comparable; however, the power consumed in pyrolyzing the VeroClear material is 

approximately half. This result indicates a likely lower total enthalpy of vaporization for the VeroClear material 

compared to FDM-processed ABS material. The 4 "surviving" fuel materials were burned as fuel in a small hybrid 

rocket demonstrator. In follow-on hot-fire burn tests only high- and low-density printed ABS and VeroClear were 

effective fuel materials. The white polycarbonate material would not ignite.  The high-density ABS exhibited the 

best overall ignition properties and characteristic velocity.  

The arc-ignition technology described in this paper has been developed to a high degree of operational 

readiness, and has been successfully demonstrated for multiple oxidizers including gaseous oxygen and nitrous 

oxide. The low required input wattage and relatively low required ignition voltages, suggests that this system can be 
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scaled to large levels. To date reliable "on-demand" system starts and re-starts have been demonstrated across 

multiple scales with thrust levels varying from less than 10 N to greater than 900 N. Observed ignition latencies and 

specific impulse from amongst these motor scales were nearly identical, suggesting a high degree of scalability.  

A primary technology maturation milestones currently missing is a comprehensive set of systems tests under 

vacuum conditions, and only this lack of detailed hard-vacuum test data places the TRL of the end-to-end system at 

the relatively low estimated level of 4-5. A primary focus of immediate follow-on work will be an assessment of the 

performance of the system under hard vacuum conditions.  
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