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Parameter-dependent convergence bounds and

complexity measure for a class of conceptual

hydrological models

Saket Pande, Luis A. Bastidas, Sandjai Bhulai and Mac McKee
ABSTRACT
We provide analytical bounds on convergence rates for a class of hydrologic models and

consequently derive a complexity measure based on the Vapnik–Chervonenkis (VC) generalization

theory. The class of hydrologic models is a spatially explicit interconnected set of linear reservoirs

with the aim of representing globally nonlinear hydrologic behavior by locally linear models. Here, by

convergence rate, we mean convergence of the empirical risk to the expected risk. The derived

measure of complexity measures a model’s propensity to overfit data. We explore how data

finiteness can affect model selection for this class of hydrologic model and provide theoretical

results on howmodel performance on a finite sample converges to its expected performance as data

size approaches infinity. These bounds can then be used for model selection, as the bounds provide

a tradeoff between model complexity and model performance on finite data. The convergence

bounds for the considered hydrologic models depend on the magnitude of their parameters, which

are the recession parameters of constituting linear reservoirs. Further, the complexity of hydrologic

models not only varies with the magnitude of their parameters but also depends on the network

structure of the models (in terms of the spatial heterogeneity of parameters and the nature of

hydrologic connectivity).
doi: 10.2166/hydro.2011.005
Saket Pande (corresponding author)
Department of Water Management,
Delft University of Technology,
Delft,
The Netherlands
E-mail: s.pande@tudelft.nl

Luis A. Bastidas
Mac McKee
Department of Civil and Environmental

Engineering and Utah Water Research
Laboratory,

Utah State University,
Logan, Utah,
USA

Sandjai Bhulai
Department of Mathematics,
VU University,
Amsterdam,
The Netherlands
Key words | complexity, convergence bounds, hydrological model identification, inverse problems,

probabilistic and statistical methods, stochastic processes
INTRODUCTION
In this paper we present simple conceptual water balance

models and then derive a complexity measure of such hydro-

logic models and assess the complexity of hydrologic

responses; estimate a bound on its convergence rates; and

discuss its applicability and extensions with examples.

Hereinafter, by convergence rate we mean convergence

of the empirical risk to the expected risk when calibrating

hydrologic models (using the definitions of Vapnik &

Chervonenkis ). The empirical risk is a measure of the

deviation of the modeled output from the observed output

for a given dataset (a measure of prediction error on a

given sample, such as mean absolute error) and the expected

risk is the expectation of the empirical risk. These two
quantities are further defined in the section on ‘Parameter-

dependent complexity measure and convergence bound

for a simple one-reservoir model’.

The model presented, although simple, is widely used as

a component of many hydrologic models, as it conceptualizes

a storage–discharge relationship and consequently the

evolution of soil moisture over space and time in a similar

manner (Burnash ). The motivation behind the choice of

this simple conceptualization is to elucidate the link between

parameters driving storage–discharge relationships, model

complexity, and prediction performance of such models.

Apart from its contribution to statistical learning theory

applications in hydrologic sciences (see Schoups et al.
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() and Pande et al. () for some initial work in this

direction), this paper estimates a complexity measure for

models with memory and its representation in terms of

model parameters (that also define the memory). Also, in a

manner distinct to others (Bartlett & Kulkarni  and

references therein; Meir ), the convergence bounds pre-

sented here are in terms of the model parameters and are

tight due to the parametric specification of the model

space. A key result for hydrologic applications is that com-

plexity, for hydrologic models, does not only depend on

the magnitude (in addition to the number) of parameters

but also on the structure of the models. We formally estab-

lish the relationship between model complexity and model

parameters and structure (such as hydrologic connectivity,

Wang & Waymire ). This relationship provides insights

into the complexity of hydrologic response. We introduce

a quantitative definition of the complexity of the rainfall–

runoff process and describe its implications for decentra-

lized systems, such as decentralized agriculture production

systems (which function without an organized center or

authority), which depend on hydrologic responses.

This paper thus contributes to hydrological model

uncertainty assessment and provides a theoretical basis for

the application of complexity regularized parameter esti-

mation of hydrological models. Through the study of

convergence bounds we mathematically formalize finite

sample performance of hydrological models in the context

of the Vapnik–Chervonenkis (VC) generalization theory.

Our results formally reveal how model complexity trades

off with available information and how hydrological model

complexity becomes irrelevant as sample size goes to infin-

ity. We also quantify complexity of a class of hydrological

models. Although the theory that is presented is applicable

for a simple class of interconnected linear reservoir

models, we consider this step as a first in the direction of

quantifying complexity of state-of-the-art hydrologic

models. The analytical bounds (and its derivation) allow

geometric interpretation of the notion of complexity and

how it affects model performance. This situation also

allows insights into quantification of complexity for other

hydrological models.

Yet another interesting finding is that model complexity

depends on the structure of hydrological model, which for a

spatially explicit hydrological model includes network
topology and spatial heterogeneity as well as the magnitude

of parameter fields. If a model is a close approximation of

underlying processes, the complexity of the underlying pro-

cesses can be said to be driven by its biogeophysical

properties by implication. Further the proofs underlying

the lemmas and theorems suggest a close connection

between complexity measure and model output space.

Given that model output space embodies the nature of

model response to input forcing and if the model is a close

approximation of reality, our interpretation broadly defines

complexity of underlying processes as how it responds to

exogenous forcing (governed by its biogeophysical

properties).
BACKGROUND

The concepts underlying many hydrological models orig-

inate from applying the Boussinesq flow equation (BE),

which is derived from the continuity equation along with

Darcy’s law (Lacey et al. ). Several approximations of

the BE have been used to model ground water flow under

different boundary and initial conditions (Brutsaert &

Ibrahim ). These results have motivated its use to

model subsurface flows (Beven ; Paniconi et al. ),

bank storage (Govindaraju & Koelliker ), and surface

water body–aquifer interaction (Pulido-Velazquez et al.

). The solution to the BE (outflow), under certain con-

ditions, can be represented by a linear reservoir (Brutsaert &

Nieber ) or by an infinite collection of linear reservoirs

connected in series (Pulido-Velazquez et al. ). Nonethe-

less, if solutions of the BE are to be used, extensive datasets

are needed to describe its coefficients (if they are not

calibrated).

As reconciliation, hydrologic responses are conceptual-

ized (e.g. Gupta & Sorooshian ; Savenije ) by

certain classes of functions; such as the collection of inter-

connected linear reservoirs used here. The nonlinearity of

hydrologic response due to within-catchment heterogeneity

has been explored by a combination of linear reservoirs

connected in parallel (e.g. Harman et al. ), as an alterna-

tive to hydraulic theory. A truncated series of linear

reservoirs (connected in series) as an approximation to the

solution of a linearized BE has also been employed to
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simulate surface water body-aquifer interactions (e.g. Pulido-

Velazquez et al. ). By extension, hillslope responses can

be approximated by a linearized BE while channel flows are

approximated by linear reservoir models. Thus catchment-

scale response to rainfall can be conceptualized by intercon-

nected linear reservoir models with reservoir network

topology ascribed by channel network topology and geophy-

sical properties (that affects the spatial distribution of hill

slopes and its approximation). Its parameters are then ‘effec-

tive’ rather than physically based, and need to be calibrated

(Savenije ). A class of models of interconnected linear

reservoir models is therefore not unrealistic to describe

more complex physically based models and that the study

of complexity of a linear reservoir model is one of the funda-

mental steps to study complexity of state-of-the-art

hydrological models.

Several methodologies exist that estimate parameters

(inverse problem), providing either unique parameter esti-

mates (when using gradient-based algorithms, or global

search algorithms such as SCE-UA (Duan et al. )) or

its distribution (such as MOSCEM-UA (Vrugt et al.

a)). We note that ill-posed problems lead to unreliable

parameter estimates while non-convex optimization (mini-

mization) problems (with non-convex hydrological models

as is generally the case) lead to non-unique parameter esti-

mates. However, such observations are theoretical. In

practice, parameter estimation algorithms are designed

either to provide a single parameter set (such as gradient-

based algorithms, SCE-UA (Duan et al. )) or a distri-

bution of parameter sets (such as MOSCEM-UA (Vrugt

et al. 1993)) as a solution irrespective of the nature of the

underlying optimization problem. For example, global

search algorithms such as SCE-UA are less efficient than

gradient-based optimizers when the problem is convex

while neither of these two algorithms may be useful when

the problem is ill posed as the resulting solutions would be

highly unreliable (due to complex model identification

problems). While parameter solutions to non-convex optim-

ization problems have been intensely studied resulting in

global search algorithms, the study of ill-posed problems is

still in its infancy in hydrological modeling. Problems are

ill posed as a result of a mismatch between model complex-

ity and available data (Vapnik ) and this is the topic of

this paper.
Broadly these strategies aim at selecting a model or a

subset of models (e.g. Beven & Binley ; Gupta et al.

) from a model space. However, few have explored

the effect of data finiteness on model selection (e.g. Ye

et al. , ; Pande et al. ). Most inference methods

are conditional on a data set that is used via different

sampling algorithms to arrive at a posterior parameter distri-

bution (e.g. Vrugt et al. a, b; van Griensven & Meixner

).

By data finiteness we imply any data size smaller than

infinite and we employ it to describe the finite sample per-

formance of a model (e.g. in terms of mean absolute

deviation of model prediction from the observed). The law

of large numbers dictates convergence of performance of

any model on any finite data to its performance on infinite

data sets (generated from the same underlying but unknown

ergodic process). In this paper we provide a stronger law of

large numbers in the form of a bound on convergence rates

(for example, the result of Lemma 2) that describes ‘how’

finite sample model performance converge to infinite

sample model performance as a function of sample size

and model complexity. In doing so we also describe how

model performance improves with increasing (but finite)

data size.

In this paper, as its central motivation, we explore how

data finiteness affects model selection for a class of hydrolo-

gic models defined by interconnected linear reservoirs. This

class of models attempts to conceptualize within-catchment

heterogeneities, where each linear reservoir represents a

subbasin. We provide theoretical results on how a model

performance on a finite sample converges to its expected

performance as the data size approaches infinity. These

bounds can then be used for model selection, akin to a reg-

ularized solution to an inverse problem (Elayyan & Isakov

).

Our convergence results are based on the Vapnik–

Chervonenkis generalization theory (Vapnik ). Bounds

of convergence, for various classes of functions, have been

extensively studied (e.g. Blumer et al. ; Bartlett ;

Bartlett & Kulkarni ; Lugosi & Nobel ; Pontil

; Meir ). Innovative statistical tools such as Support

Vector Machines (SVMs) are based on these bounds

(Vapnik ; Han et al. ), which essentially describe

how empirical risk, that is a measure of how a model’s
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performance on finite sample, converges to its expectation.

These concepts are also closely linked to ε-optimal model

selection problems wherein Probably Approximately Opti-

mal (PAO) or Probably Approximately Correct (PAC)

(Valiant ) models are selected based on convergence

bounds (Haussler et al. ; Kearns & Schapire ;

Fong ; Alon et al. ).

Convergence bounds that explicitly account for the tra-

deoff between a measure of model complexity (e.g. via

covering number; Cucker & Smale ) and performance

on a finite data size are of particular interest to the hydrolo-

gic community. If a complexity measure of hydrologic

models can be ascribed to their structure, which in turn

may be ascribed (via conceptualizations) to various sources

of within-basin heterogeneities, then data needs for process

conceptualization can be ascribed to the complexity of the

underlying hydrological processes. Understanding such a

tradeoff constitutes the key to robust model selection in con-

ceptual hydrological modeling.

It is important to mention that bounds for hydrological

models need to be estimated afresh because available con-

vergence bounds generally rely on the assumption that the

residuals are independently and identically distributed

(i.i.d.) (Vapnik ). Hydrological model responses have

temporal memory, thus disobey the i.i.d. assumption. The

particular class of hydrologic models, considered in this

paper, allows us to obtain tighter convergence bounds

than those currently available for a class of functions with

memory (see for example Bartlett & Kulkarni ; Meir

). It also provides an opportunity to study these

bounds in terms of parameters and structure (hydrologic

connectivity and parameter heterogeneity) of spatially expli-

cit hydrological models.

The paper is organized as follows: the sections entitled

‘A simple hydrological model (one-reservoir model)’ and

‘Parameter-dependent complexity measure and convergence

bound for a simple one-reservoir model’ introduce an esti-

mation of complexity and convergence bounds for a

simple linear reservoir model; then the section covering

the journey from a single reservoir model to a model of inter-

connected reservoirs does the same for a spatially explicit

model of interconnected linear reservoir models; the next

section provides applications and extensions of the

approach, such as implications (and applications) for
decentralized systems, such as agriculture production sys-

tems, that depend on hydrologic responses; finally

conclusions are presented.
A SIMPLE HYDROLOGIC MODEL (ONE-RESERVOIR
MODEL)

The hydrologic model used here, defines a linear storage

that transforms effective precipitation (input) to discharge

or outflow (output) as a linear function of storage. Effective

precipitation, that is, precipitation minus evaporation and

transpiration, updates the amount of soil moisture over

time. This moisture availability is represented by storage,

which in turn is released as streamflow. For additional

details on hydrologic models, readers are referred to Bur-

nash (). The model obeys the following conservation

of mass equation:

dS(t)
dt

¼ �Q(t)þ u(t) (1)

where S(t) is the state variable (soil moisture or storage) at

the end of time interval t, Q(t) is the outflow or discharge,

and u(t) is the effective precipitation.

Here we make some additional assumptions:

Assumption A: (1) The outflow Q(t) is linearly

related to the soil moisture S(t) as Q(t)¼ kS(t), where k∈
(0, 1) is a runoff or recession coefficient (a parameter).

Assumption A: (2) The storage capacity is never

reached, i.e., S(t)< Smax, where Smax is the storage capacity

of the reservoir.

Assumption A: (3) The effective precipitation u(t) <

Cmax is constant over discrete time intervals Δt with S(t)

observed at the end of such time intervals. Cmax defines an

upper bound on effective precipitation. The mathematical

expectation of precipitation is small compared with Cmax, i.

e., E(u(t))≪Cmax. Finally, u(t) is independently and identi-

cally distributed over time.

Assumption 1 describes the storage–discharge

relationship of a linear reservoir model. A linear reservoir

model is the building block of the class of models of inter-

connected linear reservoir models that we study in this

paper. Assumption 2 conceptualizes dryland areas where
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water stored in the subsurface (in both the saturated and

unsaturated zones) rarely exceeds the subsurface capacity

to store water. We acknowledge that this assumption is

strict and limiting. While this assumption can be relaxed,

we delay it for brevity reasons. Assumption 3 suggests that

input forcing or effective precipitation (actual precipi-

tation minus actual evaporation for a single reservoir

model) is bounded from above. It also describes that

storage at each time step is the value at the end of that

time step. We also assume that effective precipitation on

an average is small compared with maximum possible

precipitation. Finally we assume that effective precipi-

tation at point in time is not correlated with effective

precipitation at previous time steps. Low autocorrelation

is generally observed for time series at daily scale

(Guenni & Bardossy ), thus the assumption may not

be restrictive when the temporal scale of the problem is

daily or finer.

We choose Δt¼ 1 and therefore fix our model resolution

at the scale over which u(t) is uniform. For sufficiently large

t and under Assumption A (1–3), the solution for S(u; t) is

(the solution to a linear ordinary differential equation of

order 1 with constant coefficients) where u¼ {u(t)}t is a

vector of input forcings:

S(u; t) ¼
Xt
τ¼1

u(τ)
Zτ

τ�Δτ

e�k(t�τ 0)dτ 0 þ e�ktS(0)

¼ d(k)
k

Xt
τ¼1

u(τ)e�k(t�τ)

Here, d(k)¼ 1� e�kΔτ¼ 1� e�k.

From Assumption A (1) and calculating the total out-

flow, Q(u; t), during time interval [t� Δt, t], we have:

Q(u; t) ¼ kS(u; t) ¼ d(k)
Xt
τ¼1

u(τ)e�k(t�τ) (2)

From here on we ignore u as an argument of Q or

related quantities when the role of u need not be empha-

sized. Our model Equation (2), for the total outflow,

defines a convolution of past input series while the convolu-

tion depends on parameter k. If we choose a coefficient

m (indicative of the process memory) that defines an
ε-approximation of the outflow: Qm(t) for ε> 0, we have

jQ(t)�Qm(t)j ¼ d(k)
X∞

τ¼mþ1

u(τ)e�k(t�τ) ≤ ε (2b)

Note that the following inequality holds from (2b)

jjQm � EQmj � jQ� EQjj ≤ 2ε

As the following hold by triangle inequality:

jQm � EQmj ≤ jQmj þ jEQmj,
jQ� EQj ≤ jQj þ jEQj

and

jQmj � jQj ≤ jQm �Qj ≤ ε

jEQmj � jEQj ≤ jEQm � EQj ≤ ε:

For a sufficiently large t and u(τ)�Cmax, i.e., Assump-

tion A (3), m obeys the inequality:

e�k(mþ1) ≤
ε

Cmax
(3)

If 0< d< t�m, then the following holds:

Qm(t)

Qm(t�1)

..

.

Qm(t�d)

2
66664

3
77775¼d(k)

1

0
..
.

0

e�k

1
..
.

0

� � �
� � �
. .
.

� � �

0

0
..
.

e�k(m�1)

0

0
..
.

e�km

2
66664

3
77775

u(t)

u(t�1)

..

.

u(t�d�m)

2
66664

3
77775

(4a)

If q, V, and u are (dþ 1) × 1, (dþ 1) × (dþmþ 1), and

(dþmþ 1) × 1 matrices respectively, then Equation (4a)

can be represented by,

q ¼ Vu (4b)

Thus, any (dþ 1) dimensional (outflow) response of a

model to a (dþmþ 1) dimensional input of effective pre-

cipitation always lies in the span defined by the columns
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of the matrix V. The following Lemma 1 characterizes one

of its properties used later.

Consider an example with d¼ 2 and m¼ 1 (conse-

quently an appropriate choice of k such that Equation (3)

is satisfied). Then we obtain from Equation (4a)

Qm(t)
Qm(t� 1)

� �
¼ d(k) 1 e�k 0

0 1 e�k

� � u(t)
u(t� 1)
u(t� 2)

2
4

3
5

The rows on the left-hand side of the above equation

represent one of the two prediction dimensions (correspond-

ing to the y1 and y2 dimensions in Figure 1 below,

representing a model output vector {~y1; ~y2}). Each column

of the corresponding V matrix represents a basis vector.

These columns then define the span of the corresponding

hydrologic model (parameterized by k). The span then

maps the input forcings u to what we call model output

space or Q-space. Thus by model output space (or Q-space

as referred to in Figure 1), we mean how arbitrary input for-

cing, i.e., a vector with elements u(t), u(t� 1) and u(t� 2),

are transformed by the model span (note the difference

between model output space and model span). The shape

and size of this span then completely characterizes a

model’s response for arbitrary input forcings with no persist-

ence or autocorrelation. Also a comparison between any

two models can then be performed in terms of its output

space irrespective of the nature of the input forcing
Figure 1 | Description of model output space and measure of complexity.
(though under the assumption that both the models face

input forcings that are independently sampled from the

same distribution at each time step). However in cases

when input forcing is autocorrelated, model output space

comprises the memory effect of both the input forcing as

well as the model itself. Thus complexity quantification of

models based solely on model output space in the presence

of autocorrelated input forcing is not possible. Model span

(comprised of model basis vectors) that solely represents

memory effect of a model can then be used to cross compare

two different models. The concept of model span alongside

model output space can be used to decompose complexity of

model response into complexity of model and complexity of

input forcing.

It is then intuitive to expect that the extent of the Q-

space, described in Figure 1, defines how flexible a model

is in terms of how an arbitrary input forcing is transformed

into output. In the following we quantify (the order of) the

extent of hydrological models (either a linear reservoir or

interconnected set of linear reservoir models). Lemma 1 pro-

vides an upper bound in the range of |Qm(t)�E(Qm(t))|.

This upper bound also holds for the range of |Qm(t)�E

(Qm(t))|/N and is a measure of complexity that affects

model performance. The quantity |Qm(t)�E(Qm(t))|/N

measures the distance between metric Qm(t) and E(Qm(t))

in N-dimensional output space with ‘1-norm as the metric.

It range thus measures the extent of model output space.

We also formalize a relationship between the extent of

model output space (or Q-space), which we call model com-

plexity, and model’s prediction uncertainty.

Let qt ¼ jQmðtÞ � EðQmðtÞÞj:

Lemma 1: (Upper Bound on the range of qt): Let

a� qt� b, ∀t¼ 1,…, Nþm and N¼ dþ 1. Then the fol-

lowing holds with probability u� l for 0< l< u< 1,

r ¼ jb� aj ≤
ffiffiffiffi
D

p " ffiffiffiffiffiffiffiffi
ln

2
l

r
�

ffiffiffiffiffiffiffiffiffi
ln

2
u

r #

where D ¼ 1� e�k

1þ e�k
1� ε2

C2
max

� �
C2
max

Appendix A provides the proof.
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This result is used in Lemma 2 in the section entitled

‘Parameter-dependent complexity measure and convergence

bound for a simple one-reservoir model’ to establish a bound

on the rate of convergence for Qm(t). We later show,

through a corollary, that the rate of convergence of the

empirical error to the expected error (for such models)

depends on the volume of the model span resulting from

V. This corollary therefore connects the geometric interpret-

ation of model span to model performance. As can also be

seen in Figure 1, the volume of the model output space

depends on the basis vectors that are columns of V.

We note here that model selection is a task of differen-

tiating between different model classes and in this work

we only consider one simple class of models. In which

case when the problem is expanded to include additional

model classes, it may not be possible justify model complex-

ity based on output alone. Thus the concept of model output

space, or the Q-space may appear to not provide a rigorous

and clear measure of model complexity.

The concept of model output space can be extended to

distinguish between model classes with different model

structures/mathematical description by defining a general

class of models. This general class of models is a collection

of models each of which is identified by an abstract par-

ameter set. We call this parameter set abstract because it

describes both the model structure as well as (real) par-

ameters corresponding to a given model structure. The

Q-space or model output space can similarly be defined

for each element of this class of models as well.

For example, basis vectors for interconnected linear reser-

voir models (one class of models) can be obtained as in the

section entitled ‘From a single reservoir model to a model of

interconnected reservoirs’ and an intuitively nonlinear basis

function would need to be quantified for nonlinear models

(another class of models). Both of these types of basis vectors

define the model span of the elements of respective model

classes (which characterizes the model output space or

Q-space) in the output space. Here by output space we mean

a positive real space with sample size as its dimensionality.

While the shape of model span differs for these different

model classes, they are defined in the same N (sample size)

dimensional space. Thus the twomodel classes canbedifferen-

tiatedbasedon the shapeand sizeof spanof constitutingmodel

elements in the same N-dimensional space.
We present the concept of Q-space or model output

space as geometric interpretation of the proof of Lemma

1 (provided in the appendix). Lemma 1 is a fundamental

building block of analytical convergence bounds provided

in this paper. Therefore, the concept of Q-space as

measure of complexity is equivalent to the notion of com-

plexity that effect rate of convergence as presented in this

paper.

Other well established criterion (such as AIC and

KIC) may as well be used to measure complexity and its

effect on model performance. These measures are Baye-

sian and are complimentary to the measure of

complexity presented in this paper (which is based on a

frequentist approach to complexity and prediction

uncertainty).

From hereon we assume Cmax¼ 1 and ε/Cmax≪ 1 for

ease of exposition.
PARAMETER-DEPENDENT COMPLEXITY MEASURE
AND CONVERGENCE BOUND FOR A SIMPLE
ONE-RESERVOIR MODEL

Let Z¼ {y(t), u(t)}t<dþmþ1 be a dþmþ 1 × 2 matrix defining

a given input-output data set, where y(t) represents the

observed outflow (measured by stream gauges for example)

and u¼ {u(t)}t¼1,…,N represents the input sequence.

Further, let N¼ dþ 1 and the empirical risk be defined

as,

ξZ(k) ¼
PN

t¼1 jy(t)�Q(u; t)j
N

¼
PN

t¼1 ‘k(y, u; t)
N

Let Q(u; t) represent modeled outflow for a given input

sequence u.

Assumption B: For some η> 0, let |‘k(y, u; t)�E[‘k(y,

u; t)]|� ηjQ(u; t)� E[Q(u; t)]j for any admissible observed

output y¼ {y(t)} and input u¼ {u(t)} sequences.

Assumption B is a standard assumption, suggesting

that j‘k(y, u; t)� E[‘k(y, u; t)]j is of the same order of mag-

nitude as |Q(u; t)�E[Q(u; t)]|. This assumption also

implies that variance in prediction residuals (‘k(y, u; t))

is dominated by variance in output of prediction models

(Q(u; t)).
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We define convergence of the empirical error of a model

to its expected error as the convergence of ξZ(k) to its

expectation E(ξZ(k)) (the ‘expected’ risk).

The upper bound on its rate is obtained by a bound for

ξZ(k), which in turn is obtained from the bounds on the

rate of convergence for ε-approximation of Q, Qm, (as pre-

viously defined, |Qm(u; t)�Q(u; t)|� ε).

Lemma 2: (Bound on the rate of convergence

for Qm): Let assumptions A and B hold. Further, let N¼ dþ
1, m define the memory coefficient of a model parameterized

by k, Qm define the ε-approximate model for outflow Q in

(2), and u¼ {u(t)}t¼1,…,N be any arbitrary input sequence.

Let Cmax¼ 1, ε ≪ 1 and h¼ (1� e�k)/(1þ e�k). Then for

u� l sufficiently close to 1 with 0< l< u< 1,

Pr
XN
t¼1

Qm(u; t)� E[Qm(u; t)]
N

����
����> γ

 !

≤ exp � γ2N

2h[
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=u

p
]2

 !

Proof of the Lemma is provided in Appendix A.

In the above, h can be considered as a measure of com-

plexity of the simple hydrologic model. It depends on the

dominant vector in the set of basis vectors defining

the span emerging from V. This also defines the order of

magnitude of its volume. This can also be observed in Fi-

gure 1, wherein the dominant column vector of V is

d(k) e�k

1

� �
.

It also determines the order of magnitude of the major

axis of circumscribing ellipsoid.

Corollary 2: (Upper bound on the volume of span

defined by V): Consider a span defined by columns of V

in N-dimensional space. Let Cmax¼ 1, ε ≪ 1, and h¼ (1�
e�k)/(1þ e�k). Its volume is then bounded by V(k)∝ (h/

2)N/2.

Proof of the corollary is provided in Appendix A.

Volume of the span defined by V also defines

the volume of output space defined by Qm(u; t) for

any arbitrary u. The span of V allows geometric interpret-

ation of how parameters of a model (conceptualizing the

underlying physics, here k) shape the transformation of

forcing variables (here u) into observed variables (here

Qm(u; t)). The transformation of any possible forcing to
model output is the model span in Figure 1. The trans-

formation is an underlying process of interest (here a

simple mass balance). The bound on span volume is

linked to results obtained in Lemma 2 through h. In

Lemma 2, h has an interpretation of complexity while in

Corollary 2, it defines a geometric entity (volume) describ-

ing the nature of the process being modeled. This link

therefore quantifies one aspect of the complexity of the

underlying process modeled by a simple linear reservoir

model.

Lemma 3: (Bound on the rate of convergence forQ):

Let assumptions A and B hold. Further, let N¼ dþ 1, m

define the memory coefficient of a model parameterized

by k, Qm defines an ε-approximate model for the outflow

Q in (2), and u¼ {u(t)}t¼1,…,N be any arbitrary input

sequence.

Then,

Pr
PN

t¼1 jQ(u; t)� E[Q(u; t)]j
N

> γ þ 2ε

 !

≤ Pr
PN

t¼1 jQm(u; t)� E[Qm(u; t)]j
N

> γ

 !

Proof of the lemma is provided in Appendix A. This

lemma builds upon Lemma 2 and uses the probability

bound derived for ε-approximate streamflow Qm(u; t) in

the latter to derive a probability bound for Q(u; t) by using

inequality (2b).

Theorem 1: (Bound on the rate of convergence

for ξZ): Let Assumptions A and B hold. Further let N¼ dþ
1, m defines the memory (or recession) coefficient of a

model parameterized by k, ξZ(m, k) define the empirical

error, u¼ {u(t)}t¼1,…,N be any arbitrary input sequence, cor-

responding y as observed output sequence, and Z¼ {y(t),u

(t)}t¼1,…,N. Let Cmax¼ 1, ε ≪ 1 and h¼ (1� e�k)/(1þ e�k).

Then for u� l sufficiently close to 1 with 0< l< u< 1,

Pr(jξZ(k)�E[ξZ(k)]j> δ)≤ exp � [δ=η]2N

2h
ffiffiffiffiffiffiffiffiffiffiffiffi
ln2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2=u

ph i2
0
B@

1
CA

Proof of Theorem 1 is provided in Appendix A. This the-

orem builds upon Lemma 3 to link the probability bound for
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streamflow with the probability bound for prediction error.

A key message of this theorem is that the expected predic-

tion error E[ξZ(k)] is a function of empirical prediction

error (i.e., prediction error on finite sample) ξZ(k), and a tra-

deoff of sample size N with model complexity h. This is

interesting because the absolute deviation between empiri-

cal and expected error, |ξZ(k)�E[ξZ(k)]|, is closely linked

to the probability of choosing a suboptimal model when

selection is based on empirical error, ξZ(k). By suboptimality

we mean selecting a model with minimum empirical error,

ξZ(k), but higher expected error E[ξZ(k)] than other compet-

ing models. As the probability bound (the right-hand side

(RHS) of the above inequality) depends on a tradeoff

between sample size N and complexity h, the probability

of picking a suboptimal model is high when the choice set

is a collection of highly complex models. This theorem

also formalizes the notion that highly complex models

tend to overfit on small sample size. Models with large

absolute deviation between empirical and expected error,

|ξZ(k)�E[ξZ(k)]|, will have a large propensity to overfit.

This is so because its average performance (in terms of pre-

diction error) over many repeated samples (essentially E

[ξZ(k)]) can be quite different from the performance that is

observed on one sample (ξZ(k)). If this model also happens

to have been selected (based on low ξZ(k) by chance), it can

have poor performance on other samples of similar size. The

theorem suggests that propensity to overfit increases with

model complexity.
Figure 2 | A model of interconnected reservoirs. The integers in parentheses indicate the

order of the corresponding reservoir from the outlet, for example, the reservoir

corresponding to k23 ({i,j}¼ {2,3}) is a second order reservoir as it has two

reservoirs between (and including) itself and the outlet reservoir k1 and third in

the set of same order reservoirs (when counted clockwise).
FROM A SINGLE RESERVOIR MODEL TO A MODEL
OF INTERCONNECTED RESERVOIRS

For a model with more than one reservoir its span defined

by the corresponding matrix V, has more columns. As

Lemma 2 depends on Lemma 1 to define bounds on conver-

gence rates and complexity therefore the bounds can be

readily obtained for the case of a model with interconnected

reservoirs.

Consider the structure of interconnected reservoirs in

the form of a network with nodes and links (in terms of a

pattern of reservoir connections, Figure 2). These connec-

tions converge to one node, representing the outlet

reservoir. Each such node represents a reservoir and the
links represent connections between such reservoirs. The

recession coefficients define the strength of these links.

Further, let each reservoir cover an equal area in terms of

amount of precipitation received. Figure 2 describes an

example description of such a model. The numbers in par-

entheses denote the order of the link (from the outlet).

The flow contributed by each reservoir to the outlet, at

each instance of time, can then be characterized by the pre-

cipitation amount at the reservoirs and the set of recession

coefficients along its path. Let i denote the order of a reser-

voir in the model, j identify a reservoir within the set of

reservoirs of order i, kij denote the set of recession coeffi-

cients along the path of the ijth reservoir to the outlet, Qij

denote its contribution to the total outflow at the outlet

and let there be R reservoirs in total. Here, the order of a

reservoir indicates the number of reservoirs between (and

including) itself and the outlet. Then,

QijðtÞ ¼
X

τi ����τ2�τ1�t

d k1j�ð1Þ

� 	
e
�k1j�ð1Þ

t�τ1ð Þ

�d k2j�ð2Þ

� 	
e
�k2j�ð2Þ

ðτ1�τ2Þ� � �dðkijÞe�kijðτi�1�τiÞ:uðτiÞ

where j�(‘) denotes the ‘th order reservoir in the set kij. Simi-

lar to a single reservoir case, we define memory mij
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corresponding to εij¼ ε/R approximation such that

jQij(t)�Qij,mij (t)j ≤ d(kmin
ij )

X1
τ¼t�mijþ1

u(τ)e�kmin
ij (t�τ) ≤

ε

R
(6)

where kmin
ij is the minimum element of the set kij. Inequality

(6) follows from (5) and d(k)e�kx being monotonically

decreasing in k.

Finally, Equation (5) can be approximated in a similar

fashion to (4b) by

qij ¼ Vijuij (6b)

where the subscript ij identifies the corresponding reservoir.

Following Lemma 1, the sum of square of

elements of any row of (equivalent) matrix Vij corresponding

to Qij;mij (t) is d2i(kmin
ij )=(1� e�2ikmin

ij )(1� (ε=(RCmax))
2i). The

following lemma then follows.

Lemma 4: (Bound on the rate of convergence for

Q for a model of interconnected reservoirs): Let Assumptions

A and B hold. Further let N¼ dþ 1, i denote the order of a

reservoir in the model, j identify a reservoir within the set of

reservoirs of order i, kij denote the set of recession coeffi-

cients along the path of the ijth reservoir to the outlet,

Qij;mij denote the contribution of the ijth reservoir to the

total outflow at the outlet, R be the total number of reser-

voirs in the model, m define memory coefficient of a

model, Qm define ε-approximate model for outflow Q, and

u¼ {u(t)}t¼1,…,N be any arbitrary input sequence. Let hij¼
d2i (kmin

ij )=(1� e�2ikmin
ij )(1� (ε=(RCmax))

2i). Then for u� l suf-

ficiently close to 1 with 0< l< u< 1,

Pr
PN

t¼1 jQ(u; t)� E[Q(u; t)]j
N

> γ þ 2ε

 !

≤
X
ij

exp � γ2N

2R2C2
max hij[

ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=u

p
]2

 !

Proof of Lemma 4 is provided in Appendix A.

Note here again that the above bounds are for a spatially

explicit hydrological model, which in effect incorporates the
volume of its span through hij. The quantity hij depends on

the slowest reservoir along the path from the ith order reser-

voir to the outlet, thereby distinguishing between

hydrological responses based on upstream heterogeneity in

hydrologic properties. This in turn quantifies the

complexity of a rainfall–runoff process. The quantity hij is

exponential in i, the order of reservoirs. Meanwhile,

the bound is a sum over all R reservoirs. Thus the probability

bounds also encapsulate the degree of convergence

in spatial connectivity on complexity of hydrologic

response.

Theorem 2: (Bound on the rate of convergence for ξZ
for a model of interconnected reservoirs): Let Assumptions

A and B hold. Further let N¼ dþ 1, i denote the order of

a reservoir in the model, j identify a reservoir within the

set of reservoirs of order i, R be the total number

of reservoirs in the model, m define the memory

coefficient of a model, ξZ(m, k) define the empirical

error, u¼ {u(t)}t¼1,…,N be any arbitrary input

sequence with y as observed output sequence, and Z¼
{y(t),u(t)}t¼1,…,N. Let Cmax¼ 1, ε≪ 1 and hij¼ d2i(kij

min)/

(1� e�2ikmin
ij )(1� (ε=(RCmax))

2i). Then,

Pr(jξZ(k)� E[ξZ(k)]j> δ)

≤
X
ij

exp � [δ=η]2N

2R2 hij[
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=u

p
]2

 !

Proof: This can be shown in a manner similar to the

proof of Theorem 1.

Theorem 2 extends the message of Theorem 1 to a

spatially explicit model of interconnected linear reser-

voirs. Thus Theorem 2 can be seen as an extension of

the probability bounds on prediction errors for one type

of nonlinear hydrological model. The measure of com-

plexity in Theorem 2 constitutes not only the effects of

recession coefficients but also the spatial structure of

hydrological models. The propensity to select a subopti-

mal model as well to overfit depends on the spatial

structure of the underlying hydrology as envisaged

by the nonlinear model of interconnected linear

reservoirs.



453 S. Pande et al. | Hydrologic model complexity Journal of Hydroinformatics | 14.2 | 2012
APPLICATIONS AND EXTENSIONS

Examples

Corollary 2 links the volume of the span defined by columns

of V in Equation (4b) with the complexity measure that

appears in Lemma 1 with ε≪ 1, Cmax¼ 1. We empirically

estimate the approximate diameter of the linear reservoir’s

model output space using a global optimization scheme

called Shuffled Complex Evolution, SCE-UA (Duan et al.

), wherein a maximization of mean absolute deviation

between any two model outputs (Q(t)) for a fixed parameter

value is performed while searching over input data (u(t) uni-

formly distributed between 0 and 1) with N¼ 200

(dimensionality). The SCE-UA, is a global search optimiz-

ation method designed to handle difficult, nonlinear

response surfaces encountered in the calibration of concep-

tual watershed models and has been widely used in the

hydrologic community. A detailed description of the

method appears in Duan et al. (). In summary the algor-

ithm is a mix of the downhill simplex approach with some

evolutionary optimization concepts, in which a ‘population’

of points is selected randomly from the feasible parameter

space, is partitioned into several complexes (group of

points), each of which is allowed to evolve independently

but periodically shuffled to share information. At that

point new complexes are formed. The evolution and shuf-

fling are repeated until the specified convergence criteria

are satisfied. In the present study 20 complexes of 2Nþ 1

(where N is the sample size) points were used with a conver-

gence criterion of 0.1% (change in objective function). The

search is terminated after 100,000 iterations if an optimum

value is not found.

We use SCE-UA to find maxu
PN

t¼1 jQ1(t)�Q2(t)j=N
where {Q1(t)}t¼1,…,N and {Q2(t)}t¼1,…,N are model output

vectors for two different instantiations of input forcings

u¼ {u(t)}t¼1,…,N and maximum is taken with respect to

random input instantiations. This provides an estimate of

the maximal extent of model output space. We however

add a note of caution here. We use SCE-UA algorithm to

search a high dimensional (dimensionality¼N) input

data set such that the mean absolute error between any

two model outputs for a particular parameter value is
maximized. Given the high dimensionality of the model,

SCE-UA may yield a local optima. Thus, the obtained

extent of model output space may be lower than the global

maxima.

We note that the maximum possible value ofPN
t¼1 jQ(t)� EQ(t)j=N over different instantiations of input

forcings is never smaller than half the absolute difference

between any two input forcing instantiation. That is,

max
u

XN
t¼1

jQ(t)� EQ(t)j
N

≥
1
2
max

u

XN
t¼1

jQ1(t)�Q2(t)j
N

This follows with equality holding for distributions of

Q(t) that are symmetric around EQ(t). In the experiment

presented here, distribution of Q(t) is symmetric around

EQ(t) as u¼ {u(t)}t¼1,…Nþm (input forcing) is independently

and identically distributed (uniform distribution) with EQ

(t)¼Eu(t). Thus for the input forcing used in this,

max
u

XN
t¼1

jQ(t)� EQ(t)j
N

¼ 1
2
max

u

XN
t¼1

jQ1(t)�Q2(t)j
N

If the range of
PN

t¼1 jQm(t)� EQm(t)j=N is approximately

equal to maxu
PN

t¼1 jQ(t)� EQ(t)j=N, the former may as well

replace the latter in the above equality to yield an approximate

equality between the range of
PN

t¼1 jQm(t)� EQm(t)j=N and

maxu
PN

t¼1 jQ1(t)�Q2(t)j=N.

Lemma 1 provides an upper bound on the (magnitude

of) range (with confidence u� l) of |Qm(t)�EQm(t)|. It

thus also provides an upper bound on the range ofPN
t¼1 jQm(t)� EQm(t)j=N. When ε/Cmax≪ 1, Lemma 1 pro-

vides an upper bound on the range of
PN

t¼1 jQ(t)� EQ(t)j=N.

We estimate these bounds at confidence levels of 95, 90, 80,

75, and 70% by substituting l¼ {0.025,0.05,0.10,0.125, and

0.15 resp.} and u¼ {0.925,0.95,0.90,0.875, and 0.85 resp.}.

For the case when u is uniformly distributed between 0 and 1

with E(u(t))¼ 0.5,
PM

t¼1 jQ(t)� EQ(t)j=N can never be larger

than 0.5. Thus the upper bounds on the range ofPN
t¼1 jQ(t)� EQ(t)j=N can never be larger than 0.5, which

we impose on the bounds obtained from Lemma 1.

Figure 3 shows that the (analytical) upper bound on the

range of
PN

t¼1 jQ(t)� EQ(t)j=N is never smaller than the



Figure 4 | (a) and (b) show the two configurations with R¼ 3, (a) has a maximum order of

2 while (b) has a maximum order of 3. (c) shows how the convergence bound

(the RHS of the probability inequality in Theorem 2) for these two models

performs when the recession coefficient is spatially constant (i.e., k1¼ k2¼
k3¼ k), k is varied over a range [0.01, 0.99] and N in (δ/η)2(N/2R2) is varied {100,

300, 500, 700, 900} (δ/η¼ 0.1, R¼ 3). Pi denotes effective precipitation (input)

going into the store i. In (c), ‘Max order¼ 2’ refers to the model in (a) with

maximum order of reservoir¼ 2 and ‘Max order¼ 3’ refers to the model in (b).

Figure 3 | A comparison of analytical upper bound on the range of
PN

t¼1 jQ(t)� EQ(t)j=N
and empirical estimate of the diameter of linear reservoir model output space.

The input forcing (u(t)) is uniformly distributed and lies between 0 and 1, i.e.,

Cmax¼ 1. In the legend, CL is confidence level.
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numerical estimation of maxu
PN

t¼1 jQ1(t)�Q2(t)j=N for all

confidence levels considered. Both the numerical and

analytical estimates increase with increasing recession coef-

ficient suggesting that complexity of the underlying rainfall–

runoff process increases with faster transformation of

rainfall into runoff. Further, the analytical bounds provided

in Lemma 1 provide upper bounds on the empirically-

derived diameter of modeling space, the latter of which in

turn can be used to quantify the complexity of arbitrary

hydrological models.

We add a note of caution here. We use SCE-UA algor-

ithm to search for a high dimensional input data set such

that the mean absolute error between any two model

output for a particular parameter value is maximized. The

estimated model output space diameter is sensitive to the

choice of SCE-UA parameters and may as well be

sensitive to the choice of solver itself (SCE-UA). Further

how closely should optimization based output space diam-

eter match with derivation based on Lemma 1 needs

further deliberation. We postpone its investigation to a

later study.

As another example we consider a spatially distributed

model with recession parameters k that are spatially con-

stant. Further let R¼ 3, ε¼ 0, and consider two

configurations of the reservoirs as shown in Figures 4(a)

and (b). Note that different structures (such as the two con-

figurations here) also conceptualize geomorphologic

influence on hydrologic flows in natural systems. Figure 4(c)

show how the bounds (the RHS of the probability inequality
in Theorem 2) perform as k and (δ/η)2(N/2R2)is varied over

a range (with k varied between 0 and 1).

Figure 4(c) also shows that for larger values of N, the

bounds of both models converge and approach 0. For any

value of N, the model in Figure 4(a) with the lower order

has looser bounds than the model in Figure 4(b), at least

for larger values of k. Further, the bounds loosen with

increasing values of recession coefficient in both models.

Loosening of the bounds indicate larger complexity

(as also observed in Figure 3). As the bounds are a function

of N and complexity, the latter (for fixed N) increases

with increasing k. Similarly the model in Figure 4(a)

(with maximum reservoir order of 2) displays higher com-

plexity than the model in Figure 4(b) (with maximum

reservoir order of 3), especially for lower values of N and

large values of k.
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This example shows that the spatial structure of a model

(which has a clear hydrologic meaning as it is an interpret-

ation of the predominant physical processes in a particular

catchment) can affect the convergence bounds, and there-

fore its parameter estimation. Further, these bounds are

also a function of the recession parameters through

complexity.

Global nonlinear hydrologic behavior representation by

locally linear behavior

Nonlinear hydrologic behavior at catchment scale can be

represented through interconnected linear reservoir

models (Uhlenbrook et al. ; Clark et al. ). Nonli-

nearity of catchment response is represented by parameter

heterogeneity of constituting linear reservoirs. Such a rep-

resentation is akin to representation of nonlinear functions

by piecewise linear functions. Each linear reservoir rep-

resents local behavior and its parameters model dominant

physics at that scale (catchment response is then a combi-

nation of hillslope responses and flow through stream

network). Complexity of catchment response is driven by

complexity of constituting local behaviors, which in turn is

driven by its parameters.

Consider a two-dimensional linear groundwater flow

equation (a linearized BE) (Pulido-Velazquez et al. ),

@

@x
Tx

@h
@x

� �
þ @

@y
Ty

@h
@y

� �
þw ¼ S

@h
@t

where h¼ h(x, y, t) is the hydraulic head, S(x, y) is the sto-

rage coefficient, w(x, y, t) is net recharge, and Tx,Ty are

transmissivity coefficients along the x and y directions

(depth to water table is the z-direction). These transmissivity

coefficients are assumed independent of hydraulic head h

(under the assumption that saturated thickness is signifi-

cantly larger than the fluctuations in hydraulic head h).

These coefficients are therefore product of location specific

hydraulic conductivity and saturated thickness. Depending

on spatial discretization of the problem, data on hydraulic

properties and saturated thickness is needed before a sol-

ution to the linearized BE can be obtained (unless it is

calibrated). The data requirement increases with the resol-

ution of spatial discretization.
Its analytical solution for lateral flow from an aquifer to

surface water body can be expressed as (Pulido-Velazquez

et al. ),

~QðtÞ ¼
X∞
i¼1

αiViðtÞ ¼
X∞
i¼1

αibið1� e�αiΔtÞ
Xt
τ¼1

RðτÞe�αiτΔt

 !

Here, αi is a ‘discharge coefficient’ of ith reservoir and

bi is a fraction of total stress R(τ) (exogenous forcing on

to the system) applied to it. A nonlinear (groundwater

flow) process represented by the linear groundwater flow

equation is combination of linear reservoirs connected in

series.

Linear reservoir models presented in the section entitled

‘A simple hydrologic model (one reservoir model)’, when

connected in a spatially explicit manner, can therefore rep-

resent highly nonlinear process such as above. This is

evident by defining αi as ki, (1� e�αiΔt) as d(ki), biR(τ) as

ui(τ) and Δt¼ 1. Complexity of the process above depends

on the constituting coefficients as well as connectivity

(which here is in series). The probability bounds presented

in the above section quantify such a relationship, as shown

in the sections defining the model and the following section

on the parameters.
Why complexity?

The shape and size of the model output space (defined by

columns of V in the case of a single linear reservoir) governs

the flexibility of hydrologic response under stochastic for-

cings. Its size has been defined here as complexity (via

Corollary 2). Such a behavior is valid for models that are

physics based, such as the one presented in the previous sub-

section of the paper, that are closest in representing

underlying flow processes in porous medium (such as a

soil matrix). Given that coefficients (or parameters in con-

ceptual models) quantifies complexity, a quantification of

(rather than qualitative) the nature of processes complexity

emerges as a result. This quantification is a unique contri-

bution of this paper.

Model selection that best identifies the underlying pro-

cess is governed by both the complexity of the underlying

process (manifesting itself in available information) and
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complexity of the set of models available (one of which is

finally selected). This is elicited in Theorems 1 and 2). Con-

sider Theorem 1 (and the corresponding definitions in

section on parameters),

Pr(jξZ(k)�E[ξZ(k)]j> δj) ≤ exp � [δ=η]2N

2h[
ffiffiffiffiffiffiffiffiffiffiffiffi
ln2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln2=u

p
]2

 !

Without loss of generality, let η¼ 1 and let

H ¼ h[
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=u

p
]2. By equating the RHS to χ, we

can state the following with probability of at least 1� χ:

E[ξZ(k)] ≤ ξZ(k)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2H
N

ln
1
χ

� �s

For a given set of models defined by a set of possible

values of k, and given the available information on the

underlying process (embodied in data Z defined in the par-

ameters section), the best available model from the set can

be selected by minimizing the RHS of the above inequality.

Such a minimization also formalizes Occam’s razor prin-

ciple. Occam’s principle of parsimony has the following

form: ‘given two explanations of the data, all other things

being equal, the simpler explanation is preferable’ (Blumer

et al. ). In other words, choose the simplest hypothesis

that is consistent with the sample data (Blumer et al. ).

A hypothesis chosen based on this principle is the best pre-

dictor of future observations with high probability (which

has been proved here).

Finally, the complexity of the model selected to rep-

resent the underlying processes also has implications for

assessing the impact of hydrologic response on human sys-

tems. We further elaborate this aspect of complexity in the

following section.
Implications for sustainable allocation at basin scale

Consider a simple example wherein there are two agents

(upstream¼ 1, downstream¼ 2) residing in two contiguous

subbasins (constituting a basin), that utilize water, e1(t),

e2(t), for income generation,
PT

t¼1 Fi(ei(t), Si(t)). Assume

that Fi(ei(t),Si(t)) is concave and increasing in the first
argument while convex and decreasing in the second argu-

ment. Hydrologic behavior dictates flow from upstream to

downstream agents as the function of the upstream agent’s

soil moisture conditions. Here, hydrologic behavior is mod-

eled by k1 and k2, which best approximate it in the sense of

the previous section. For simplicity, we represent the basins

by linear reservoir models, with store levels S1(t),S2(t) such

that the allocation solution is sustainable for the two

basins taken together over a certain T period (under stochas-

tic rainfall conditions ui(t), i¼ 1, 2). Sustainable allocation

solution can be decentralized (Lyon & Pande ) by the

marginals (Lagrange multipliers μi,t, i¼ 1, 2) of the following

program:

W(u;k) ¼ max
e,S

X2
i¼1

XT
t¼1

Fi,t(ei(t), Si(t))

st,

S1(tþ 1)� S1(t) ¼ u1(t)� e1(t)� k1S1(t) (μ1,t)

S2(tþ 1)� S2(t) ¼ u2(t)� e2(t)� k2S2(t)þ k1S1(t) (μ2,t)

Si(T)� Si(1) ¼ 0, i ¼ 1, 2

From first order conditions for 1< t< T with respect to

Si(tþ 1), i¼ 1, 2, we have

μ2(t)� μ2(t� 1) ¼ k2μ2(t)�
@F2,t

@S2,t
(7a)

μ1(t)� μ1(t� 1) ¼ k1(μ1(t)� μ2(t))�
@F1,t

@S1,t
(7b)

The partial derivatives in (7a) and (7b) depend on the

stochasticity of ui(t), i¼ 1, 2, while μi,t, i¼ 1, 2 describes

the evolution of prices that can decentralize such an allo-

cation solution. Equation (7a) is similar to a linear

reservoir storage soil moisture evolution equation with sto-

chastic input �∂F2,t/∂S2,t, while Equation (7b) is similar to

a spatially distributed soil moisture evolution equation

with stochastic input �∂F1,t/∂S1,t.

The T-dimensional span of the downstream agent’s

prices {μ2,t, t¼ 1,…, T} is determined by k2 and its volume

can be bounded using Lemma 1. Further, this volume

also defines the ‘complexity’ of downstream prices, which
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is due to the complexity of its underlying hydrologic

response. Using the convergence bounds estimated in

Lemma 3 (with variables renamed), this volume can be

related to the flexibility of (or potential volatility in) the

downstream agent’s prices that are feasible for a range of

stochastic input ui(t), i¼ 1, 2 (through �∂F2,t/∂S2,t). Simi-

larly the complexity in hydrologic response can be related

to the potential volatility in the upstream agent’s prices

using the convergence bounds described in Lemma 4

(with variables renamed).

The above simple example can be generalized for a sub-

basin with arbitrary hydrologic connectivity (the way

various subbasins interconnect) and within-subbasin nonli-

nearity. Complexity and potential volatility of subsequent

prices can then similarly be extended.
DISCUSSION AND CONCLUSIONS

In this paper we introduced a quantitative measure of

complexity that is applicable to hydrological models.

The measure was based on the Vapnik–Chervonenkis gen-

eralization theory that relates model complexity to sample

size and predictor error. We showed through a simple

example and sequences of lemmas and theorems that

this measure has geometric interpretation, and thereby

allowed more intuitive insights into the theory presented.

In particular, we showed that the complexity measure

depends on the magnitude of model parameters (fast

reservoirs are more complex than slow reservoirs) as

well as model structure (parallel reservoir configurations

are more complex than in series with the same number

of reservoirs). By extension, if hydrologic models are

assumed to represent underlying hydrological behavior

closely, we argued that the complexity of hydrologic

response depends on upstream hydrologic connectivity

and heterogeneities (for example on heterogeneity in soil

properties). This paper also estimated the convergence

bounds, first for a simple single linear reservoir model

and then a conceptual spatially explicit hydrologic

model. By convergence we meant the rate (with increasing

sample size) with which prediction error calculated on

finite sample (empirical error/risk) converges to the

mean of prediction errors over repeated samples of same
size (expected error/risk). The convergence bounds on

such predictive performance were shown to be a function

of model parameters and structure as a consequence of its

dependence on complexity measure. These bounds are a

function of model complexity. Based on this, we argued

that the complexity of modeled hydrologic response con-

trols robust model identification and that complexity

depends on the properties of modeled hydrologic pro-

cesses. We also discussed its applications and extensions

with examples.

We note that the results derived are not applicable

when the class of models is changed from interconnected

linear reservoir models to another class of models. How-

ever, the results and in particular the derivation of these

results as well as its geometric interpretation are useful in

deriving convergence bounds for an arbitrary class of

models. For example, we note from geometric interpret-

ation of Q-space for a linear reservoir model that the

basis vectors define the span, which in turn define its

complexity (and thus convergence bounds). One may

qualitatively extrapolate this notion and look for nonlinear

basis functions that can describe the span of nonlinear

reservoir models. Research efforts may therefore be

directed at finding nonlinear basis functions for particular

hydrologic models. Complexity quantification of nonlinear

models can then follow in a spirit similar to this paper.

Comparison between any two state-of-the-art hydrological

models can be made in terms of their nonlinear basis

functions.

We also note that in deriving the bounds on rate of con-

vergences, we considered the effect of memory on the

(variance of) model output at each time step (considered

in Lemma 1) but ignored the effect of memory on corre-

lation between model outputs at two time steps (ignored in

Lemma 2 by assuming independence of qt between any

two time instances). However this does not affect the con-

clusion that complexity increases with quickness of runoff

response to rainfall. By Chebyshev’s inequality (Boucheron

et al. ), we have

Pr
nX

t
qt ≥ Nγ

o
≤

E[(
P

t qt)
2]

N2γ2

where qt¼ |Qm(t)�E(Qm(t))| as in Lemma 1.
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It can then be shown for i.i.d. input forcing u(t),

ε/Cmax≪ 1, and Cmax¼ 1 that

E
n�X

t
qt
	2o

≈ NDþ 2
e�k

1þ e�k

� �
σ2(u)

where N is the sample size, h¼ (1� e�k)/(1þ e�k) is the

complexity measure that we use (as defined in Lemma 1),

σ2(u) is the variance of input forcing and k is the recession

coefficient. Thus,

Pr
P

t qt
N

≥ γ


 �
≤

hþ 2ðe�k=N(1þ e�kÞ)� 

σ2(u)

Nγ2

and for not too small N,

Pr
P

t qt
N

≥ γ


 �
≤

hσ2(u)
Nγ2

The left-hand side (LHS) is the probability that we

bound in Lemma 2 and the above suggests that bound on

probability should tighten with increasing N but loosen

with h the complexity measure that we have proposed.

As h increases with increasing value of k, convergence

bound weaken with increasing k. Using Lemma 3 onwards,

it then demonstrates again that complexity of rainfall–runoff

processes increases with the quickness of the response.

However, improvement of results presented in the lemmas

of this paper is left for future work.

We here studied models that omit thresholding behavior

(Liebe et al. ) in hydrologic behavior, i.e., models which

conceptualize linear storage–discharge relationship. How-

ever, this is not a limitation as nonlinear basin response

can be conceptualized through a distribution of intercon-

nected linear reservoir models (Harman et al. ).

In future research, we intend to pursue numerical esti-

mation of complexity for state-of-the-art hydrologic models

based on the bounds (and the concept of complexity as

the extent of model span) presented in this paper. We also

intend to investigate how the shape of model output space

as exemplified in Figure 1 can be used to describe model

uncertainty and how it is linked to resilience of a model to

perturbations to input forcings. Yet another interesting
extension of the concepts presented here can be its impli-

cations for decentralized water resource management.
ACKNOWLEDGEMENTS

The authors thank Editor Michael Piasecki and two

anonymous reviewers for their critical review that helped

to improve this manuscript.
REFERENCES
Alon, N., Ben-David, S., Cesa-Bianchi, N. & Haussler, D. 
Scale-sensitive dimensions, uniform convergence, and
learnability. J. Assoc. Comp. Mach. 44 (4), 615–631.

Bartlett, P. L.  The sample complexity of pattern classification
with neural networks: the size of the weights is more
important than the size of the network. IEEE Trans. Inf.
Theory 44 (2), 525–536.

Bartlett, P. L. & Kulkarni, S. R.  The complexity of model
classes, and smoothing noisy data. Systems Control Lett. 34
(3), 133–140.

Beven, K. J.  Kinematic subsurface stormflow. Wat. Resour.
Res. 17 (5), 1419–1424.

Beven, K. J. & Binley, A. M.  The future of distributed models:
model calibration and uncertainty prediction. Hydro. Proc. 6,
279–298.

Blumer, A., Ehrenfeucht, A., Haussler, D. & Warmuth, M. K. 
Occam’s Razor. Inf. Process. Lett. 24, 377–380.

Blumer, A., Ehrenfeucht, A., Haussler, D. & Warmuth, M. K. 
Learnability and the Vapnik–Chervonenkis dimension. J.
Assoc. Comp. Mach. 36 (4), 929–965.

Brutsaert, W. & Ibrahim, H. A.  Research note on the first and
second linearization of the Boussinesq equation.
Geophys. J. R. Astron. Soc. 11, 549–554.

Brutsaert, W. & Nieber, J.  Regionalized drought flow
hydrographs from a mature glaciated plateau. Water Resour.
Res. 13 (3), 637–643.

Boucheron, S., Lugosi, G. & Bousquet, O.  Concentration
inequalities. Advanced Lectures on Machine Learning,
Lecture Notes in Computer Science, 2004, 3176/2004,
208–240.

Burnash, R. J. C.  The NWS River forecast system-catchment
modelling. In: Computer Models of Watershed Hydrology
(V. P. Singh, ed.), Water Resource Publications, Highlands
Ranch, CO, USA, pp. 311–366.

Clark, M. P., Rupp, D. E., Woods, R. A., Tromp-van Meerveld, H.
J., Peters, N. E. & Freer, J. E.  Consistency between
hydrological models and field observations: linking processes
at the hillslope scale to hydrological responses at the
watershed scale. Hydrol. Proc. 23, 311–319.

http://dx.doi.org/10.1109/18.661502
http://dx.doi.org/10.1109/18.661502
http://dx.doi.org/10.1109/18.661502
http://dx.doi.org/10.1016/S0167-6911(98)00008-5
http://dx.doi.org/10.1016/S0167-6911(98)00008-5
http://dx.doi.org/10.1029/WR017i005p01419
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1002/hyp.3360060305
http://dx.doi.org/10.1016/0020-0190(87)90114-1
http://dx.doi.org/10.1029/WR013i003p00637
http://dx.doi.org/10.1029/WR013i003p00637
http://dx.doi.org/10.1007/978-3-540-28650-9_9
http://dx.doi.org/10.1007/978-3-540-28650-9_9
http://dx.doi.org/10.1002/hyp.7154
http://dx.doi.org/10.1002/hyp.7154
http://dx.doi.org/10.1002/hyp.7154
http://dx.doi.org/10.1002/hyp.7154


459 S. Pande et al. | Hydrologic model complexity Journal of Hydroinformatics | 14.2 | 2012
Cucker, F. & Smale, S.  On the mathematical foundations of
learning. Bull. Amer. Math. Soc. 39 (1), 1–49.

Duan, Q., Sorooshian, S. & Gupta, V.  Effective and efficient
global optimization for conceptual rainfall-runoff models.
Water Resour. Res. 28 (4), 1015–1031.

Elayyan, A. & Isakov, V.  On an inverse diffusion problem.
SIAM J. Appl. Math. 57 (6), 1737–1748.

Fong, P.  A quantitative study of hypothesis selection. In
Proceedings of the 12th International Conference on Machine
Learning (ICML-95), 226–234. Morgan Kaufmann
Publishers, Inc (http://citeseer.ist.psu.edu/viewdoc/
summary?doi=10.1.1.20.6423)

Goldstein,M. Some remarksonprobability inequalities for sums
of boundedconvex randomvariables. J.App.Prob.12, 155–158.

Govindaraju, R. S. & Koelliker, J. K.  Applicability of
linearised Boussinesq equation for modeling bank storage
under uncertain aquifer parameters. J. Hydrol. 157, 349–366.

Guenni, L. & Bardossy, A.  A two step disaggregation method
for highly seasonal monthly rainfall. Stochastic Environ. Res.
Risk Assessment 16 (3), 188–206.

Gupta, V. K. & Sorooshian, S.  Uniqueness and observability
of conceptual rainfall-runoff parameters percolation process
examined. Water Resour. Res. 19, 269–276.

Gupta, H. V., Sorooshian, S. & Yapo, P. O.  Toward improved
calibration of hydrologic models: multiple and
noncommensurable measures of information. Water Resour.
Res. 34 (4), 751–763.

Han, D., Chan, L. & Zhu, N.  Flood forecasting using support
vector machines. J. Hydroinformatics 9 (4), 267–276.

Harman, C. J., Sivapalan, M. & Kumar, P.  Power law
catchment-scale recessions arising from heterogeneous linear
small-scale dynamics. Water Resour. Res. 45, W09404.

Haussler, D., Kearns, M., Littleston, N. & Warmuth, M. K. 
Equivalence of models for polynomial learnability. Inform.
Comput. 95, 129–161.

Hoeffding, W.  Probability inequalities for sums of bounded
random variables. J. Amer. Statist. Assoc. 58, 13–30.

Kearns, M. J. & Schapire, R.  Efficient distribution-free
learning of probabilistic concepts. J. Comput. Syst. Sci. 48 (3),
464–497.

Lacey, A. A., Ockendon, J. R. & Tayler, A. B.  ‘Waiting Time’
solutions of a nonlinear diffusion equation. SIAM J. Appl.
Math. 42 (6), 1252–1264.

Liebe, J. R., van de Giesen, N., Andreini, M., Walter, M. T. &
Steenhuis, T. S. Determining watershed response in data
poor environments with remotely sensed small reservoirs as
runoff gauges. Water Resour. Res. 45, W07410.

Lugosi, G. & Nobel, A. B.  Adaptive model selection using
empirical complexities. Ann. Statist. 27 (6), 1830–1864.

Lyon, K. S.&Pande, S. The role of costate variable in stochastic
renewable resource model. Nat. Resour. Model. 19 (1), 45–66.

Meir, R.  Nonparametric time series prediction through
adaptive model selection. Mach. Learn. 39, 5–34.
Pande, S., McKee, M. & Bastidas, L. A.  Complexity-based
robust hydrologic prediction.Water Resour. Res. 45, W10406.

Paniconi, C., Troch, P. A., van Loon, E. E. & Hilberts, A. G. J. 
Hillslope-storage Boussinesq model for subsurface flow and
variable source areas along complex hillslopes: 2.
Intercomparison with a three-dimensional Richards equation
model. Water Resour. Res. 39 (11), 1317.

Pontil, M.  A note on different covering numbers in learning
theory. J. Complexity 19, 665–671.

Pulido-Velazquez, D., Sahuquillo, A., Andreu, J. & Pulido-
Velazquez, M. An efficient conceptual model to simulate
surface water body-aquifer interaction in conjunctive use
management models. Water Resour. Res. 43, W07407.

Savenije, H. H. G.  The art of hydrology. Hydrol. Earth Syst.
Sci. 13, 157–161.

Schoups, G., van de Giesen, N. C. & Savenije, H. H. G. 
Model complexity control for hydrologic prediction. Water
Resour. Res. 44, W00B03.

Uhlenbrook, S., Roser, S. & Tilch, N.  Hydrological process
representation at the meso-scale: the potential of a
distributed, conceptual catchment model. J. Hydrol. 291,
278–296.

Valiant, L. G.  A theory of the learnable. Commun. ACM 27
11, 1134–1142. http://doi.acm.org/10.1145/1968.1972.

van Griensven, A. & Meixner, T.  A global and efficient multi-
objective auto-calibration and uncertainty estimation method
for water quality catchment models. J. Hydroinform. 9 (4),
277–291.

Vapnik, V.  Estimation of Dependencies based on Empirical
Data. Springer Verlag, New York.

Vapnik, V.  The Nature of Statistical Learning Theory, 2nd
edition. Springer-Verlag, New York.

Vapnik, V. & Chervonenkis, A.  On uniform convergence of
relative frequencies of events to their probabilities. Theory
Probab. Appl. 16 (2), 264–280.

Vrugt, J. A., Gupta, H. V., Bastidas, L. A., Bouten, W. &
Sorooshian, S. a Effective and efficient algorithm for
multiobjective optimization of hydrologic models. Water
Resour. Res. 39 (8), 1214.

Vrugt, J. A., Gupta, H. V., Bouten, W. & Sorooshian, S. b A
shuffled complex evolution metropolis algorithm for
optimization and uncertainty assessment of hydrologic
model parameters. Water Resour. Res. 39, 1201.

Wang, S. X. & Waymire, E. C.  A large deviations rate and
central limit theorem for Horton Ratios. SIAM J. Discrete
Math. 4 (4), 575–588.

Ye, M., Neuman, S. P., Meyer, P. D. & Pohlmann, K. 
Sensitivity analysis and assessment of prior model
probabilities in MLBMA with application to unsaturated
fractured tuff. Water Resour. Res. 41, W12429.

Ye, M., Meyer, P. D. & Neuman, S. P.  On model selection
criteria in multimodel analysis. Water Resour. Res. 44,
W03428.
First received 17 January 2011; accepted in revised form 18 June 2011. Available online 18 October 2011

http://dx.doi.org/10.1090/S0273-0979-01-00923-5
http://dx.doi.org/10.1090/S0273-0979-01-00923-5
http://dx.doi.org/10.1029/91WR02985
http://dx.doi.org/10.1029/91WR02985
http://dx.doi.org/10.1137/S0036139995288733
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.6423
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.6423
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.20.6423
http://dx.doi.org/10.2307/3212418
http://dx.doi.org/10.2307/3212418
http://dx.doi.org/10.1016/0022-1694(94)90113-9
http://dx.doi.org/10.1016/0022-1694(94)90113-9
http://dx.doi.org/10.1016/0022-1694(94)90113-9
http://dx.doi.org/10.1007/s00477-002-0094-4
http://dx.doi.org/10.1007/s00477-002-0094-4
http://dx.doi.org/10.1029/WR019i001p00269
http://dx.doi.org/10.1029/WR019i001p00269
http://dx.doi.org/10.1029/WR019i001p00269
http://dx.doi.org/10.1029/97WR03495
http://dx.doi.org/10.1029/97WR03495
http://dx.doi.org/10.1029/97WR03495
http://dx.doi.org/10.2166/hydro.2007.027
http://dx.doi.org/10.2166/hydro.2007.027
http://dx.doi.org/10.1029/2008WR007392
http://dx.doi.org/10.1029/2008WR007392
http://dx.doi.org/10.1029/2008WR007392
http://dx.doi.org/10.1016/0890-5401(91)90042-Z
http://dx.doi.org/10.2307/2282952
http://dx.doi.org/10.2307/2282952
http://dx.doi.org/10.1016/S0022-0000(05)80062-5
http://dx.doi.org/10.1016/S0022-0000(05)80062-5
http://dx.doi.org/10.1137/0142087
http://dx.doi.org/10.1137/0142087
http://dx.doi.org/10.1029/2008WR007369
http://dx.doi.org/10.1029/2008WR007369
http://dx.doi.org/10.1029/2008WR007369
http://dx.doi.org/10.1214/aos/1017939242
http://dx.doi.org/10.1214/aos/1017939242
http://dx.doi.org/10.1111/j.1939-7445.2006.tb00175.x
http://dx.doi.org/10.1111/j.1939-7445.2006.tb00175.x
http://dx.doi.org/10.1023/A:1007602715810
http://dx.doi.org/10.1023/A:1007602715810
http://dx.doi.org/10.1029/2008WR007524
http://dx.doi.org/10.1029/2008WR007524
http://dx.doi.org/10.1029/2002WR001730
http://dx.doi.org/10.1029/2002WR001730
http://dx.doi.org/10.1029/2002WR001730
http://dx.doi.org/10.1029/2002WR001730
http://dx.doi.org/10.1016/S0885-064X(03)00033-5
http://dx.doi.org/10.1016/S0885-064X(03)00033-5
http://dx.doi.org/10.1029/2006WR005064
http://dx.doi.org/10.1029/2006WR005064
http://dx.doi.org/10.1029/2006WR005064
http://dx.doi.org/10.5194/hess-13-157-2009
http://dx.doi.org/10.1029/2008WR006836
http://dx.doi.org/10.1016/j.jhydrol.2003.12.038
http://dx.doi.org/10.1016/j.jhydrol.2003.12.038
http://dx.doi.org/10.1016/j.jhydrol.2003.12.038
http://dx.doi.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
http://doi.acm.org/10.1145/1968.1972
http://dx.doi.org/10.2166/hydro.2007.104
http://dx.doi.org/10.2166/hydro.2007.104
http://dx.doi.org/10.2166/hydro.2007.104
http://dx.doi.org/10.1137/1116025
http://dx.doi.org/10.1137/1116025
http://dx.doi.org/10.1029/2002WR001746
http://dx.doi.org/10.1029/2002WR001746
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1137/0404050
http://dx.doi.org/10.1137/0404050
http://dx.doi.org/10.1029/2005WR004260
http://dx.doi.org/10.1029/2005WR004260
http://dx.doi.org/10.1029/2005WR004260
http://dx.doi.org/10.1029/2008WR006803
http://dx.doi.org/10.1029/2008WR006803


460 S. Pande et al. | Hydrologic model complexity Journal of Hydroinformatics | 14.2 | 2012
APPENDIX A: PROOFS

Proof of Lemma 1: We first use Hoeffding’s inequality

(Hoeffding ) to obtain the following,

Pr(qt ≥ η) ≤ 2 exp
�η2

C2
max

Pmþ1
j¼1 w2

j

 !
(A1)

where wj¼ d(k)e�( j�1)k. Heoffding inequality bounds the

rate of convergence of mean of a finite number of random

numbers to its expected value. The above inequality follows

as

qt ¼ jQm(t)� E(Qm(t))j

¼
Xt�(mþ1)

j¼t

wju(j)� E
Xt�(mþ1)

j¼t

wju(j)

0
@

1
A

������
������;

u( j)�Cmax and the random numbers are wju( j).

Further,

Xmþ1

j¼1

w2
j ¼ d2(k)(1þ e�

~k þ e�2~k þ � � � þ e�m~k)

where ~k ¼ 2k.

Xmþ1

j¼1

w2
j ¼ 1� e�2(mþ1)k

1� e�2k (1� e�k)2

¼ 1� e�k

1þ e�k (1� e�2(mþ1)k) (A2)

As from Equation (3), we have

e�k(mþ1) ≈
ε

Cmax
;

Xmþ1

j¼1

w2
j ¼ 1� e�k

1þ e�k 1� ε2

C2
max

� �
¼ D=C2

max

Substituting (A2) in (A1), we obtain

Pr(qt ≥ η) ≤ 2 exp
�η2

D

� �
(A3)
Consider two events A and B. Let �B be as an event

complement to event B such that Pr(�B) ¼ 1� Pr(B). Further

let A ∩ �B ¼ ⊘, i.e., there is no overlap between the two

events. Let 0< l< u< 1 such that Pr(A)� 1� u, Pr(B)�
1� l and that Pr(B)� Pr(A). We assume that Pr(B)� Pr

(A)� u� l. Then

Pr(A ∪ �B) ¼ Pr(A)þ Pr(�B) ¼ Pr(A)þ 1� Pr(B)

) 1� Pr(A ∪ �B) ¼ Pr(B)� Pr(A) ≥ u� l

From the above, we can then say with A or B never

happen with probability of at least u� l.

Now let event A be qt< ηA such that

Pr(qt < ηA)> 1� u (A4)

Similarly let �B be qt> ηB such that

Pr(qt > ηA) ≤ l (A5)

We now use (A3) to express u and l in terms of ηB and

ηA in (A5) and (A4),

2 exp
�η 2

B

D

� �
¼ l ) ηB ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ln

2
l

� �s

2 exp
�η 2

A

D

� �
¼ u ) ηA ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ln

2
l

� �s

and state with probability of at least u� l that qt lies in the

interval [
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ln (2=u)

p
,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D ln (2=l)

p
].

Thus with probability of at least u� l, for l< u, we have

r ¼ jb� aj ≤
ffiffiffiffi
D

p ffiffiffiffiffiffiffiffi
ln

2
l

r
�

ffiffiffiffiffiffiffiffiffi
ln

2
u

r" #
□

Proof of Lemma 2: Let qt¼ |Qm(t)�E(Qm(t))|,

S ¼PN
t¼1 qt. We now apply a modified result of Theorem 1

of Goldstein () (given in the Appendix B) for a convex
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function f(Xt) ¼ jXtj ¼def qt (subscript i in appendix replaced

by t) with

1. Xt¼Qm(t)�EQm(t),

μt ¼ μ ¼ E(Qm(t)� EQm(t)) ¼ 0:

2. rt¼ r ∀t, where

r ¼ jb� aj ≤ 2
ffiffiffi
h

p
[
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=l

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=u

p
];

h¼ (1� e�k)/(1þ e�k) obtained from D Lemma 1 and

given that Cmax¼ 1, ε ≪1,

3: ζ t ¼ ζ ¼ �a
b� a

, ρt ¼ ρ ¼ �f(a)
f(b)� f(a)

∀t;

where, a ¼ min (Qm(t)� EQm(t)), b ¼ max (Qm(t)� EQm(t))
f(a) ¼ jmin (Qm(t)� EQm(t))j, f(b) ¼ jmax (Qm(t)� EQm(t))j
and min and max are with respect to input forcing such that

these lower and upper bounds are never violated for any

input forcing u(t).

Further we note that

a< 0, b> 0, which implies that

f(a) ¼ jaj ¼ �a,

f(b) ¼ jbj ¼ b

Thus,

b� a¼ |b|þ |a|� |b|� |a|¼ f (b)� f (a), which implies

that

ζ � ρ ¼ �a
b� a

� �f(a)
f(b)� f(a)

¼ f(a)
b� a

þ f(a)
f(b)� f(a)

≤
2f(a)

f(b)� f(a)
¼ 2f(a)

r

(A5)

Then,

XN
t¼1

(ζ t � ρt)rt ¼ Nr(ζ � ρ)< 2Nf(a)

¼ 2Njmin (Qm(t)� EQm(t))j

Further as min Qm(t)¼ 0,

jmin (Qm(t)� EQm(t))j ¼ jminQm(t)� EQm(t)j
¼ j � EQm(t)j ¼ jEQm(t)j
Also, ε/Cmax≪ 1⇒Qm(t)→Q(t).

Finally note that

EQ(t)¼ d(k)
Xt
τ¼1

e�k(t�τ)Eu(τ)¼E(u)d(k)
Xt
τ¼�∞

e�k(t�τ) ¼Eu(τ)

Thus,

XN
t¼1

(ζ t � ρt)rt ¼ 2Eu(t)N:

Using the conclusions of (1)–(3) and applying Theorem

1 of Goldstein () we have,

Pr
XN
t¼1

Qm(u; t)� E[Qm(u; t)]
N

����
����> γ

 !

≤ exp � (γ � 2Eu)2N

2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2=lÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð2=uÞph i2
0
B@

1
CA

and for γ≫E(u(t)),

Pr
XN
t¼1

Qm(u; t)� E[Qm(u; t)]
N

����
����> γ

 !

≤ exp � γ2N

2h
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lnð2=lÞp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð2=uÞph i2
0
B@

1
CA

:

Note that we here implicitly assumed that |Qm(u; t)�E

[Qm(u; t)]| is independently and identically distributed

which may lead to an inaccurate upper bound on

convergence.

ProofofCorollary2: Foranyk<N, theEuclideannorm

of any column of corresponding V is no larger than

ffiffiffi
h

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2(k)(1þ e�~k þ e�2~k þ � � � þ e�m~k)

q
:

The span can therefore be circumscribed by N-sphere

of radius
ffiffiffi
h

p
=2. Thus, volume of the span defined

by V is always bounded by the volume of N-sphere V(k)∝
(h/4)N/2.
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Proof of Lemma 3: As

jjQm � EQmj � jQ� EQjj ≤ 2ε

PN
t¼1 j(Q(u; t)� E[Q(u; t)])j

N
> γ þ 2ε

)
PN

t¼1 j(Qm(u; t)� E[Qm(u; t)])j
N

> γ

The inequality in the lemma then follows. □

Proof of Theorem 1: From Assumption B,

j‘k(y;u; t)� E[‘k(y;u; t)]j ≤ ηjQ(u; t)� E[Q(u; t)]j:

By triangle inequality we have

PN
t¼1 ‘k(y;u; t)

N
�
PN

t¼1 E[‘k(y;u; t)]
N

�����
�����

≤
XN
t¼1

‘k(y;u; t)� E[‘k(y;u; t)]
N

����
����

≤ η
XN
t¼1

jQ(u; t)� E[Q(u; t)]j
N

Thus,

ηθ ≤

PN
t¼1 ‘k(y;u; t)

N
�
PN

t¼1 E[‘k(y;u; t)]
N

�����
�����

)ηθ ≤ η
XN
t¼1

jQ(u; t)� E[Q(u; t)]j
N

Finally we note that if there are two events A and B such

that A⇒B then Pr(A)� Pr(B). This is because whenever

event A occurs, B occurs. However whenever B occurs, A

need not occur (∵ B⇒A). Thus probability of occurrence

of A is never larger than probability of occurrence of B.

Let event A be

ηθ ≤

PN
t¼1 ‘k(y;u; t)

N
�
PN

t¼1 E[‘k(y;u; t)]
N

�����
�����
and event B be

ηθ ≤ η
XN
t¼1

jQ(u; t)� E[Q(u; t)]j
N

It then follows that,

Pr
PN

t¼1 ‘k(y;u; t)
N

�
PN

t¼1 E[‘k(y;u; t)]
N

�����
�����> ηθ

 !

≤ Pr
PN

t¼1 jQ(u; t)� E[Q(u; t)]j
N

> θ

 !

Finally for δ¼ ηθ, and applying Lemma 2 with γ¼ δ/η

�2ε with ε≪ 1,

Pr(jξZ(k)� E[ξZ(k)]j> δ) ≤ exp � [δ=η]2N

2h[
ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=u

p
]2

 !

Proof of Lemma 4:

Let Q̂ ¼ (
PN

t¼1 jQm(u; t)� E[Qm(u; t)]j)=N, where

Qm(u; t) ¼
X
ij

Qij,mij (u; t):

As

γ ≤ Q̂ ≤
X
ij

XN
t¼1

Qij,mij (u; t)� E[Qij;mij (u; t)]

N

����
����

PN
t¼1 jQij;mij (u; t)� E[Qijmij (u; t)]j

N
≥

γ

R

for at least one ij. This is so because its complement in the

following cannot hold if γ ≤ Q̂ holds. This is shown in the

following, if

PN
t¼1 Qij;mijðu; tÞ � E½Qij;mijðu; tÞ�
��� ���

N
� γ

R
for all ij

)
X
ij

PN
t¼1 jQij;mijðu; tÞ � E½Qij;mijðu; tÞ�j

N
�
X
ij

γ

R
¼ γ
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But,

X
ij

PN
t¼1 jQij,mij (u; t)� E[Qij;mij (u; t)]j

N
≥ Q̂ ≥ γ

a contradiction.

Let E be the event that γ ≤ Q̂ holds and Fij be the event

thatPN
t¼1 jQij,mij (u; t)� E[Qij;mij (u; t)]j

N
≥

γ

R

holds.

Then,

E )
[
ij

Fij

or,

Pr(E) ≤ Pr
[
ij

Fij

0
@

1
A

Further note that

Pr
[
ij

Fij

0
@

1
A ¼

X
ij
Pr(Fij)� Pr

\
ij

Fij

0
@

1
A ≤

X
ij
Pr(Fij)

Therefore, we have

Pr(E)� Σ ijPr(Fij), or

Pr(Q̂ ≥ γ) ≤
X
ij

Pr

PN
t¼1 jQij,mij (u; t)� E[Qij,mij (u; t)]j

N
≥

γ

R

 !
:

From Lemma 2,

Pr

PN
t¼1 jQij,mij (u; t)� E[Qij,mij (u; t)]j

N
≥

γ

R

 !

≤ exp � γ2N

2R2C2
max hij[

ffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=l

p � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 2=u

p
]2

 !
Finally given that

PN
t¼1 jQ(u; t)�Qm(u; t)j

N

≤
X
ij

PN
t¼1 jQij(u; t)�Qij,mij (u; t)j

N
≤
X
ij

ε=R ¼ ε

and following Lemma 3, we have

Pr
PN

t¼1 jQ(u; t)� E[Q(u; t)]j
N

> γ þ 2ε

 !

≤ Pr
PN

t¼1 jQm(u; t)� E[Qm(u; t)]j
N

> γ

 !

≤
X
ij

exp �γ2N=2R2C2
max hij

ffiffiffiffiffiffiffiffi
ln

2
l

r
�

ffiffiffiffiffiffiffiffiffi
ln

2
u

r" #20
@

1
A □
APPENDIX B

Theorem 1 of Goldstein (): If X1, X2,…, Xn are inde-

pendent random variables such that ai�Xi� bi,i¼ 1,…, n,

and f is a continuous convex function then, if δ>max1�i�n|

(ρi� ζi)ri|,

P{S ≥ nδ} ≤ exp �2
(nδ � vn)

2

wn

( )

where wn ¼Pn
i¼1 r

2
i , vn ¼Pn

i¼1 (ζ i � ρi)ri, S ¼Pn
i¼1 f(Xi),

ri¼ f(bi)� f (ai) with ζi¼ (μi� ai)/(bi� ai), ρi¼ (�f(ai)/f

(bi)� f(ai)) and μi¼EXi. □
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