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Abstract Evapotranspiration (ET) is one of the main com-

ponents of the hydrological cycle. It is a complex process

driven mainly by weather parameters, and as such, is char-

acterized by high non-linearity and non-stationarity. This

paper introduces a methodology combining wavelet mul-

tiresolution analysis with a machine learning algorithm, the

multivariate relevance vector machine (MVRVM), in order to

predict 16 days of future daily reference evapotranspiration

(ETo). This methodology lays the ground for forecasting the

spatial distribution of ET using Landsat satellite imagery,

hence the choice of 16 days, which corresponds with the

Landsat overpass cycle. An accurate prediction of daily ETo is

needed to improve the management of irrigation schedules as

well as the operations of water supply facilities like canals and

reservoirs. In this paper, various wavelet decompositions were

performed and combined with MVRVM to develop hybrid

models to predict ETo over a 16-days period. These models

were compared to a MVRVM model, and models accuracy

and robustness were evaluated. The addition of 10 days of

forecasted air temperature as additional inputs to the fore-

casting models was also investigated. The results of the

wavelet-MVRVM hybrid modeling methodology showed

that a reliable forecast of ETo up to 16 days ahead is possible.

Keywords Evapotranspiration � Wavelet � Multivariate

relevance vector machine � Forecasting

1 Introduction

Evapotranspiration (ET) is a complex process affected by

several environmental factors and driven mainly by weather

parameters. Among numerous analytical methods that have

been proposed to estimate ET, the Food and Agricultural

Organization of the United Nations (FAO) Penman–Mon-

teith model has become a generally accepted standard for

calculating reference evapotranspiration (ETo) (Allen et al.

1998, 2006). The relationship between ETo and its driving

factors is complicated and not easily modeled (Gao et al.

2012; Partal 2009; Torres et al. 2011; Park and Choi 2014).

The non-stationarity nature of ETo time series leads to

difficulties in forecasting future values (Pandey et al. 2009;

Hernandez et al. 2011; Darshana et al. 2013).

Time series analysis techniques such as the seasonal au-

toregressive integrated moving average (SARIMA) have

been widely used for modeling and predicting different hy-

drological parameters including ETo (Mariño et al. 1993;

Trajkovic 1998; Cigizoglu 2003; Landeras et al. 2009; Go-

rantiwar et al. 2011). However, difficulties related to these

techniques has motivated researchers to look for other

modeling approaches including the use of data-driven tools
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or statistical learning machines, such as artificial neural

networks (ANN), multiple regression methods, support

vector machines (SVM), and relevance vector machines

(RVM). For instance, Landeras et al. (2009) showed that

ANN’s have good performance for weekly ETo forecasts.

Kisi (2007) estimated daily ETo using ANN methods and

compared ANN test results to those of the Penman, Har-

greaves and Turc empirical models. Although, ANN’s have

been used extensively as a useful tool for prediction, they

have difficulty dealing with non-stationary data (Cannas

et al. 2006; Partal 2009; Pulido-Calvo and Gutiérrez-Estrada

2009; El-Shafie et al. 2013). On the other hand, RVM’s were

used extensively by many researchers for modeling and

forecasting hydrological parameters. Unfortunately, these

models are limited to one step ahead of forecasting, i.e. single

output. When predictions are to be made for multiple steps in

time, multiple outputs, the multivariate relevance vector

machine (MVRVM) reported by Thayananthan et al. (2008)

has proven more effective (Ticlavilca and McKee 2011;

Torres et al. 2011; Ticlavilca et al. 2013).

In addition to its ability to predict multiple outputs, the

MVRVM is a Bayesian regression tool that has high pre-

diction accuracy, robustness, and estimation of uncertainty

in the predictions. The MVRVM is an extension of the

RVM algorithm developed by Tipping and Faul (2003) to

produce multivariate outputs when given a set of inputs.

Therefore, developing a model with all these properties

provides a good forecasting tool to produce multiple pre-

dictions that are difficult or not practical to obtain from

traditional modeling approaches. Thus, the MVRVM al-

gorithm was used in this study to forecast daily ETo values

for multiple future time steps.

In the last decade, wavelet transformation has become a

useful technique for analyzing variations, periodicities and

trends in time series (Chou and Wang 2002; Labat et al. 2005;

Küçük et al. 2009). Wavelet transforms, which can produce a

good local representation of a signal in both time and frequency

domains, provide considerable information about the structure

of the physical process to be modeled (Li et al. 1999). Recently,

there has been an increased interest in the use of wavelet

analyses in a wide range of fields related to water resources

(Labat 2005; Mishra et al. 2011). Most of these studies

demonstrated that the application of wavelets leads to several

improvements in the analysis of global hydrological signal

fluctuations and of their mutual time varying relationships.

Wavelets provide a formal method to break down a complex

time series into simpler units to facilitate accurate prediction

(Ahmad et al. 2005; Cobaner 2013) proving to be a more ef-

fective technique than the Fourier and windowed Fourier

transform for studying non-stationary time series (Labat et al.

2005; Partal and Cigizoglu 2008). However, there have been

very few applications of wavelet transform techniques to ET

modeling (Kisi 2011; Mishra et al. 2011; Cobaner 2013).

Researchers have developed hybrid models that com-

bine wavelet transforms with time series models and arti-

ficial intelligence algorithms. In such approaches, a

wavelet transform is used first to decompose the time series

into various scales of temporal resolution. Then, a time

series model or a regression model is applied. The results

of such hybrid models show significant advantages over

traditional time series analysis and prediction (Kisi 2011).

Partal (2009) modeled ETo using wavelet decomposition

and neural networks showing improvement of ETo mod-

eling with the hybrid models. Wang and Luo (2007)

combined the wavelet transformation and neural network

techniques and were able to develop a wavelet-neural

network hybrid model to forecast ETo 1 day ahead. Since

the evapotranspiration process is characterized by high

non-linearity and non-stationarity (Hernandez et al. 2011),

hybrid wavelet models provide a new alternative to the

evapotranspiration estimation and forecasting problem.

None of the aforementioned studies have attempted to

forecast ETo multiple days ahead using the wavelet hybrid

models. This type of forecasts are very important for irri-

gation management, as it helps the operation of the canal

and reservoirs by predicting ahead of time the required

amounts of water to be delivered. It can also a beneficial

tool for managing the distribution systems especially when

ETo is extrapolated spatially. The spatial distribution of ET

is usually done using remote sensing algorithms and, for

example, Landsat satellite imagery. The latter data set is

only available every 16 days over a specific area for a

specific Landsat satellite. Hence, forecasting ETo up to

16 days ahead is very crucial for irrigation management

and operation of canal delivery and distribution systems.

Therefore, the objective of this study was to develop a

wavelet-MVRVM model to forecast daily ETo simultane-

ously, up to 16 days ahead. Wavelet-based decompositions

were performed and combined with the MVRVM. The

performance and accuracy of these hybrid models were

then compared to the performance of a MVRVM model.

The remainder of the paper describes the data used in this

study, the wavelet multiresolution analysis (MRA), and the

MVRVM learning model in the Methodology Section. The

Results and Discussion Section summarizes the selected

wavelet-MVRVM hybrid models, and their forecasting re-

sults along with a discussion of these results. Finally the

conclusions are drawn and future work is discussed.

2 Methodology

2.1 Data collection and description

The weather data for this study were taken from the me-

teorological station located in Delta, Utah. This station is a
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part of the Community Environmental Monitoring Program

(CEMP) network of 29 monitoring stations located in the

Western states. It is operated and monitored by the Desert

Research Institute (DRI) of the Nevada System of Higher

Education. The station is located at 39�2101100N latitude,

112�3404200W longitude and is 1,415 m above sea level, it

is surrounded with a turf grass area of about 1,000 m2. It

records daily solar radiation, minimum and maximum

temperatures, wind speed, precipitation and relative hu-

midity. Daily records over the full period of January 2002

until June 2012 were used in this study. These data were

available on the CEMP website (CEMP 2012).

Delta is characterized by a semiarid to arid climate, with

an average annual precipitation of 200 mm. The average

monthly weather data from 2002 until 2012 (Table 1)

showed the coldest month to be January, with a minimum

temperature of -7.5 �C, and the hottest month—July, with

34.3 �C as average maximum temperature. The average

wind speed throughout the year was 1.14 m s-1, with

148 W m-2 average solar radiation per day.

The daily values of reference crop evapotranspiration

(ETo) used in this study were calculated from the Delta

weather data using FAO 56 Penman–Monteith (PM)

equation as suggested by Allen et al. (1998, 2006):

ETo ¼
0:408D Rn � Gð Þ þ c 900

Tþ273
U2 es � eað Þ

Dþ c 1 þ 0:34U2ð Þ ð1Þ

where ETo = reference evapotranspiration (mm days-1);

D = slope vapor pressure curve (kPa �C-1); Rn is the net

radiation at the crop surface (MJ m-2 days-1); G = soil

heat flux density (MJ m-2 days-1); c is the psychrometric

constant (kPa �C-1); T = mean daily air temperature at

2 m height (�C); U2 = wind speed at 2 m height (m s-1);

es = saturation vapor pressure (kPa); ea = actual vapor

pressure (kPa); (es - ea) = saturation vapor pressure def-

icit (kPa). It is assumed that Eq. (1) is applied to a

hypothetical crop with a height of 0.12 m, having a surface

resistance of 70 s m-1 and an albedo a = 0.23. Soil heat

flux was ignored as suggested by Allen et al. (1998, 2006)

for daily time steps. The computations of all required data

for calculating ETo were done using the method given in

Chapter 3 of FAO paper 56 (Allen et al. 1998, 2006).

The data sample consisted of 11 years (2002–2012) of

daily ETo records. The first 7 years (2002–2008) were used

for training, 2 years (2009–2010) for calibration, and the

remaining data (2011–2012) have been used for unseen test

of the models. Only the growing season data (April 1 till

October 31) were considered in this study.

It is important to mention that this is a case study of one

location. The main purpose of which was to present the

potential of hybrid model and the methodology of com-

bining wavelets decomposition with multivariate relevance

vector machine in order to improve to forecast several days

ahead of evapotranspiration which is crucial of better irri-

gation management. Further work is being done to validate

the results of this methodology to other stations and ex-

plore the effects of the use of additional weather pa-

rameters as inputs.

2.2 Wavelet multiresolution analysis

Wavelet multiresolution analysis was used in this paper to

study the ETo characteristics in time and frequency do-

mains. One of the advantages of wavelet-based techniques

is the ability to deal with non-stationary data. It is an al-

ternative to a windowed Fourier transform that requires

selection of a window where data are stationary and as-

sumes that time series variability pattern stays the same

over time, which is not the case with ETo series analyzed

in this paper.

There are two main types of discrete wavelet transforms:

orthogonal, usually referred to as discrete wavelet

Table 1 Average weather data

for delta from 2002 till 2012
Month Tmax (�C) Tmin (�C) RHmin (%) RHmax (%) Rs (W m-2) U (m s-1)

January 3.5 -7.5 89.5 52.4 58.4 1.03

February 7.0 -4.8 88.9 42.4 93.2 1.24

March 13.2 -0.8 80.0 26.7 140.5 1.64

April 17.3 2.4 76.5 22.9 180.4 1.74

May 23.0 7.2 67.4 19.1 218.3 1.35

June 29.2 12.4 56.2 15.1 242.8 1.13

July 34.3 17.6 53.1 14.8 233.3 0.90

August 32.0 15.7 57.5 16.1 214.4 0.94

September 26.5 9.7 65.5 18.7 170.9 0.80

October 18.2 3.5 77.5 28.9 109.6 0.86

November 10.3 -2.8 82.9 36.7 65.4 1.01

December 3.9 -7.1 89.0 51.5 47.9 1.07

Average 18.2 3.8 73.7 28.8 147.9 1.1
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transform (DWT) and non-orthogonal, also known as

maximal overlap discrete wavelet transform (MODWT)

(Torrence and Compo 1998).

DWT decomposes the original signal into components at

dyadic frequencies. It uses the so-called mother and father

wavelets to capture the detailed and smooth parts of a

signal. Mother wavelets are used to extract the high-fre-

quency components of the signal, father wavelets—the

low-frequency components. The signal is then represented

by its features, which are referred to as wavelet and scaling

coefficients (Mallat 1989; Daubechies 1992). However, the

DWT suffers from a lack of translation invariance. This

means that circularly shifting a time series will not nec-

essarily shift its DWT coefficients in a similar manner

(Daubechies 1992; Lau and Weng 1995). So, the results of

such decomposition depend on the starting point of the

series. This transform is also limited to the series of a 2j

length, where j = 1, 2, 3 …. This problem is solved by

means of a highly redundant non-orthogonal transform

called maximal overlap discrete wavelet transform

(MODWT) also known as non-decimated DWT. For this

transform, an input time series of any length N results in

the same number of wavelet and scaling coefficients at

each resolution level. Therefore, the features of wavelet

coefficients in the wavelet multiresolution analysis (MRA)

are aligned with the original time series (Percival and

Walden 2000).

In this study, a MODWT-based MRA was used to pre-

process ET series and produce the approximately inde-

pendent components. The latter were used for ET

modeling. For MRA decomposition based on MODWT the

wavelet filter selection is not critical (see Percival and

Walden 2000). Therefore, the filter that produces least ar-

tifacts at the beginning and the end of the series was used,

i.e. Haar filter. Let ETo(t) denote the daily evapotranspi-

ration computed using the PM equation. We can write it as:

EToðtÞ ¼
XJ

j¼1

DjðtÞ þ SJðtÞ ð2Þ

where Dj(t) = Dj(1),…, Dj(N) are vectors of length N, also

known as jth level detail, and SJ(t) = SJ(1),…, SJ(N) is the

smooth (or approximation) at level J. The decomposition in

Eq. (2) is known as wavelet MRA. The details, Dj(t), corre-

spond to the component at time of approximately 2j days, and

capture a part of the record that corresponds to the frequencies

in the range from 2-(j?1) to 2-j cycles per day. This range

corresponds to physical scales between 2j and 2j?1 days. The

smooth, SJ(t), captures the low frequency variations of the

time series that correspond to time of approximately 2J days,

or to averages over intervals of 2J to 2J?1 days. For further

details see Percival and Walden (2000).

2.3 Multivariate relevance vector machine

A MVRVM model was used in this study to model and

forecast ET. The MVRVM is an extension of the RVM

developed by Thayananthan et al. (2008) for multiple

outputs of the machine learning model, which in this case

are the ET forecasts for multiple days ahead. Tipping

(2001) introduced the RVM, as a general sparse Bayesian

modeling approach for classification and regression. In

RVM regression model, the weight of each input is gov-

erned by a set of hyperparameters that describe the poste-

rior distribution of these weights. They are estimated

iteratively during the machine learning training step. The

value of most of the hyperparameters approaches infinity,

and the corresponding weights become zero. The remain-

ing non-zero weights are called the relevance vectors.

RVMs have good generalization performance and produce

a sparse representation of the nonlinear processes involved

(Thayananthan et al. 2008).

For developing a MVRVM, a training data set, as input-

target vector pairs xn; ynf gNn¼1 is needed, where N is the

number of observations, x is an input vector, and y 2 RM is

the multiple output vector. The model ‘‘learns’’ the de-

pendence between input and output target with the purpose

of making accurate predictions of the target vector y for

previously unseen values of x:

y ¼ WU xð Þ þ e ð3Þ

Here, U xð Þ ¼ 1; f ðx; x1Þ; . . .; f ðx; xNÞ½ �T is a set of N ? 1

vectors of basis functions f,W is the M 9 P matrix of weights

of these basis functions (P = N ? 1), and e is the noise vector

assumed to be Gaussian with zero-mean and diagonal

covariance matrix B ¼ diagðr2
1; . . .; r

2
MÞ. The kernel basis

functions, f, considered in this paper were the Gaussian

kernel function, f ðx; xnÞ ¼ expð�r�2jjx� xnjj2Þ, Laplace

kernel function, f ðx; xnÞ ¼ exp � r�2jjx� xnjj2
� �1=2

� �
and

Cauchy kernel f ðx; xnÞ ¼ exp 1= 1 þ r�2jjx� xnjj2
� �

, where

r is the kernel width parameter. These types of kernels have

been used by many authors in hydrology applications

(Kaheil et al. 2008; Ticlavilca and McKee 2011; Torres

et al. 2011).

Let y ¼ s1; . . .; sm; . . .; sM½ �T and W ¼ w1; . . .;wm;½
. . .;wM�T . The multivariate Gaussian likelihood distribu-

tion for the target vector y can be written as:

p ynf gNn¼1jW ;B
� �

¼
YN

n¼1

N ynjWUðxnÞ;Bð Þ

¼
YM

m¼1

NðsmjwmU; r
2
mÞ ð4Þ
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where U ¼ 1;Uðx1Þ; . . .;UðxnÞ½ � is the design matrix, and H

is the diagonal covariance matrix.

In order to avoid over-fitting in the maximum likelihood

estimation of W and r2, Tipping (2001) proposed adding a

Gaussian prior term for the weights of each basis function.

The prior distribution over the weights is shown in Eq. (5):

pðW jVÞ ¼
YM

m¼1

YP

k¼1

Nðwmkj0; a�2
k Þ ¼

YM

m¼1

Nðwmj0;VÞ ð5Þ

where V ¼ diagða�2
1 ; . . .; a�2

p Þ with each ak being an in-

dependent hyperparameter that determines the relevance of

the associated basis function. This provides the sparsity of

the model (Tipping and Faul 2003). wmk is the element in

mth row and kth column of the weight matrix W.

The posterior distribution of the model parameters is

then given by the combination of the likelihood and prior

distributions within Bayes’ rule:

p W j yf gNn¼1;B;V
� �

1p yf gNn¼1jW ;B
� �

pðW jVÞ

1
YM

m¼1

Nðwmjlm;
X

m

Þ
ð6Þ

The posterior distribution of the weights is Gaussian

Nðlm;
P

mÞ with mean lm ¼ r�2
m

P
m UTsm and covariance

P
m ¼ V þ r�2

m UTU
� ��1

.

Given the posterior of the weights, an optimal set of hy-

perparameters Vopt can be obtained by maximizing the data

likelihood in Eq. (6) (Tipping and Faul 2003; Thayananthan

et al. 2008). The data likelihood is marginalized as:

p ynf gNn¼1jV ;B
� �

¼
Z

p ynf gNn¼1jW ;B
� �

pðW jVÞdW

¼
YM

m¼1

Z
N smjwmU; r

2
m

� �
Nðwmj0;VÞ

¼
YM

m¼1

jCmj�1=2
exp � 1

2
sTmC

�1
m sm

� �

ð7Þ

where Cm ¼ r2
mI þ UV�1UT . And the optimal set of hyper-

parameters aopt ¼ aoptk

� 	p

k¼1
and noise aoptð Þ2¼ aoptm

� 	M

m¼1

are obtained using a bottom-up basis function selection

approach described by Tipping and Faul (2003). During

this optimization process, many elements of a go to infinity

setting the corresponding posterior probability of the

weight to zero. The few non-zero weights correspond to the

so-called ‘‘relevance vectors’’ (RV) that are the sparse core

of the RVM model (Tipping and Faul 2003). The optimal

parameters are then used to obtain the optimal weight

matrix with optimal covariance
P

opt and mean lopt. The

mathematical formulation and optimization procedure of

the RVM are discussed in detail in Tipping (2001), and

Tipping and Faul (2003). Also, details of the MVRVM

model can be found in Thayananthan et al. (2008).

Given a new input x*, the predictive distribution for the

corresponding target y* can be computed as (Tipping

2001):

p y�jy; aopt; roptð Þ2
� �

¼
Z

p y�jW ; roptð Þ2
� �

p W jy; aopt; roptð Þ2
� �

dW

ð8Þ

p y�jy; aopt; roptð Þ2
� �

¼ N y�jy�mean; r�ð Þ2
� �

ð9Þ

where y�mean is the predictive mean, and r�ð Þ2¼

r�1
� �2

; . . .; r�M
� �2

h iT
is the predictive variance. This pre-

dictive variance is the sum of variances of two terms: the

noise in the data and the uncertainty in the prediction of the

weight parameters (Tipping 2004). The standard deviation

r* of the predictive distribution was used to estimate the

95 % Bayesian confidence interval as: y�mean � 1:96r�.

2.4 Performance estimation criteria

In this paper, the accuracy of the models has been esti-

mated and model robustness is evaluated using a bootstrap

approach. The accuracy was estimated using the root mean

square error, RMSE, the coefficient of determination, R2,

and the Nash–Sutcliffe efficiency coefficient, E. The RMSE

was calculated as shown in Eq. (10):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

t¼1

ŷt � ytð Þ2

N

vuuut
ð10Þ

The coefficient of determination, R2, is computed as:

R2 ¼ 1 �

PN

t¼1

ðyt � yÞðŷt � ŷÞ
� �2

PN

t¼1

ðyt � yÞ2 PN

t¼1

ðŷt � ŷÞ2

ð11Þ

where ŷt = predicted ETo for day t (mm days-1); yt = -

calculated ETo using PM equation for day t (mm days-1);

y = mean of the observed ETo; ŷ = mean of the estimated

ETo; and N = total number of observations.

The Nash–Sutcliffe efficiency, E, is a normalized

statistic that determines a relative magnitude of the residual

variance, ‘‘noise’’, compared to the measured data vari-

ance, ‘‘information’’ (Nash and Sutcliffe 1970). It is rec-

ommended by the ASCE (1993) and Legates and McCabe

(1999) as a measure of model performance. It indicates

how well the plot of observed versus simulated data fits the

1:1 line and was computed as shown in Eq. (12):
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E ¼ 1 �
PN

t¼1 ðyt � ŷÞ2

PN
t¼1 ðyt � yÞ2

ð12Þ

It must be noted that an efficiency value of 1 (E = 1)

corresponds to a perfect match between modeled ETo and

observed data. An efficiency of 0 (E = 0) indicates that the

model predictions are as accurate as the mean of the ob-

served data. An efficiency less than zero (E\ 0) occurs

when the observed mean is a better predictor than the

model, which indicates unacceptable performance.

In order to select the forecasting model, the main goal

was to select the adequate number of inputs, or days to the

past, the kernel width and the kernel type. The optimal

values of these parameters were selected by trial and error

procedure to obtain the best RMSE and E values.

The bootstrap method (Efron and Tibshirani 1998) was

used in this study to guarantee good generalization ability

and robustness of the machine learning model. The bootstrap

data set was created by randomly sampling with replacement

from the training data set. In the bootstrap estimation, the

selection process was repeated 1,000 times to yield 1,000

bootstrap training data sets, which were treated as indepen-

dent sets. For each of the bootstrap sets, the MVRVM was

retrained and its performance was evaluated by calculating

E for the 2 years of unseen test data set. It is important to note

that the kernel type, kernel width, and numbers of days of

past time series data used as input to the MVRVM stayed the

same, but the hyperparameters changed with each bootstrap

sample. The bootstrap method provides implicit information

on the uncertainty of the estimator (E) evaluated in the

model. A more detailed description of the results in detailed

in Sect. 3.

3 Results and discussion

A classical time series modeling approach, the seasonal

autoregressive integrated moving average (SARIMA)

model was first used to forecast ETo. But the results were

converging the forecast to the mean value of the ET time

series. The Nash–Sutcliffe coefficient of efficiency values

for SARIMA models were negative indicating that the

observed mean is a better predictor than the model, which

is considered as unacceptable performance in hydrological

modeling (Legates and McCabe 1999). Using high

resolution daily data was also another limitation for the

SARIMA model, since the season is 365 days which did

not allow the model to converge making it not applicable

for real time modeling and forecasting. The results of the

SARIMA models are not shown in this paper. In this Sect.

3 we only present the results of the wavelet-based MRA

and the MVRVM models.

3.1 Wavelet decomposition selection

The properties of the ETo time series, both physical and

statistical, were examined in time and frequency domains.

Table 2 shows the power spectrum results of the maximum

overlap discrete wavelet transform (MODWT). From this

table, it was obvious that the major changes in ETo were

the seasonal and annual components (Levels d7 through

s8), while the short-term variations had the lowest per-

centage of ETo changes. Based on the power spectrum in

the wavelet domain, a wavelet MRA was performed on the

ETo time series. Two wavelet decomposition designs were

considered to aid ETo forecasting. In Design 1, three levels

of MRA decomposition were used to focus on the short-

term changes of ETo. This design, given in (13), decom-

posed the records into four high frequency changes of ETo

and the smooth part that contains the low-frequency ap-

proximation. This way the high-frequency part (up to

16 days) of the series gets more attention during the

modeling than the low-frequency:

EToð1ÞðtÞ ¼ D1ðtÞ þ D2ðtÞ þ D3ðtÞ þ S3ðtÞ ð13Þ

where the MRA decomposition was performed for J = 3

levels, using MODWT, Haar filter, and the reflection

boundary rule (see Fig. 1). In this model, the highest level

of the detail captured the ETo changes on scale of

8–16 days.

The second design of the wavelet-MRA analysis was

based on the basic energy balance equation that defines

ETo:

ETo tð Þ ¼ Rn tð Þ þ HðtÞ þ GðtÞ ð14Þ

where G(t) = daily heat transfer from/to the ground;

H(t) = daily heat transfer to the atmosphere; and Rn(-

t) = net daily solar radiation. The energy balance concept

was used to extract meaningful components for building

the forecasting model. Here, G(t) corresponds to a long-

Table 2 Wavelet MODWT-based power distribution by level

Level ETo (%) Physical scale in days

(months, years)

d1 4.70 2–4

d2 4.41 4–8

d3 3.28 8–16

d4 2.44 16–32

d5 2.92 32–64

d6 6.89 64–128

d7 21.06 128–256 (4.3–8.5 m)

d8 42.38 256–512 (8.5–17.06 m)

s8 11.84 256–512 (8.5–17.06 m)
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term component that capture the variations of the low

frequency scales, H(t) contains the short-term variations,

which capture the high frequency changes in ETo, and

Rn(t) corresponds to the mid-frequency variations. Based

on this, Design 2 used a wavelet-based MRA performed for

J = 8 levels to breakdown the ETo time series into three

meaningful components, and was defined as:

EToð2ÞðtÞ ¼ DðtÞ þ SðtÞ þ AðtÞ ð15Þ

where D ¼ D1 þ D2 þ D3; S ¼ D4 þ D5 þ D6 þ D7; A ¼
D8 þ S8. Here, D, S, and A are referred to as the daily

(short-term variations), seasonal, and annual (long-term

variations) components as shown in Fig. 2. The daily

component, D, captured ETo variability from two to

16 days, which accounted for 12.39 % of total variability.

The seasonal component, S, captured changes in ETo on

the scale from 16 days to 8.5 months, which amounted

about 33.31 % of total variability. The annual component,

A, captured the changes of ETo on a scale of

8.5–17.06 months which contributed 54.22 % of the total

variability.

3.2 Forecasting model selection

Two hybrid models, each consisting of a multivariate

relevance vector machine (MVRVM) and a wavelet model

developed from one of the wavelet decomposition designs

were developed. A total of five different forecasting models

were evaluated (the inputs for each model are specified

below):

– Model 1 (M1) ETo time series were used as an input for

the MVRVM, which served as control a model for

comparison,

– Model 2 (M2) Each wavelet decomposition component of

Design 1 defined in Eq. (13) was used separately as input.

The model layout produced individual forecasting models

for the short-term variations, i.e. D1, D2, and D3, which

allowed to better model the high-frequency part of the

signal. The rest of the time series was captured by the

smooth approximation, S3. Four MVRVM models were

built for each decomposition. For each model the estimated

output values, i.e. predictions, were found independently.

These outputs were then added to get the estimated ETo,

– Model 3 (M3)All the levels of wavelet decompositions of

Design 1: D1, D2, D3, and S3 were used simultaneously as

multivariate inputs for the MVRVM. On contrary to

Model 2, only one model was built to forecast ETo,

– Model 4 (M4) Separate MVRVM models were built for

daily, seasonal, and annual components of Design 2 as

defined in Eq. (15). Three independent models were

constructed. The resulting outputs were then added to

get forecasted ETo,

– Model 5 (M5) All the components of Design 2 were

used simultaneously as multivariate inputs for the

MVRVM to get ETo as output. One multivariate model

was built to predict ETo.

Fig. 1 Design 1 of Wavelet-MRA decomposition
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For the MVRVM application, 7 years of daily ETo were

used for training the machine. In this phase, several com-

binations of kernel type, kernel width, and number of in-

puts (or days in the past of the time series) were analyzed

to get the optimal MVRVM parameters. Although the in-

puts for these models consist of only one variable (ETo),

but the outputs are the forecasts for first, second,…, 16th

day ahead. Therefore, the multivariate RVM was used

since it allows predicting multiple steps ahead simultane-

ously. The performance of the model, E and RMSE, for the

different combinations was evaluated based on a 2 years of

calibration phase data. The model that gave the highest E

and lowest RMSE for this calibration phase was selected,

and then applied to two-year unseen test data.

The optimal kernel width, kernel type, and number of in-

puts (days to the past) of each model were presented in

Table 3. This table also showed the performance (E, R2, and

RMSE) of each model for the two-year unseen test data set.

These statistics were the average values for each of the fore-

casted 16 days of ETo for this testing phase. From the statis-

tics presented in Table 3, it is obvious that all wavelet-

MVRVM hybrid models outperformed the MVRVM model

M1. M2 showed the best performance measured by E, R2 and

RMSE (E = 0.604, R2 = 0.619 and RMSE = 0.766 mm

days-1). The second best model was M5 with E = 0.602,

R2 = 0.616 and RMSE = 0.767 mm days-1 with no sig-

nificant difference from M2. However, it should be noted that

M5 required only 9 days of the past records in order to forecast

ETo, while this number increased to 56 for M2. Requiring

fewer number of inputs may be an advantage of M5 over M2

when dealing with data retrieval and incomplete data. Hence,

less computational time is needed which is beneficial for real-

Table 3 Models inputs and average statistics of the unseen test data set for the 16 days of forecasted ETo

Model Input variables Maximum days to past Kernel type Kernel width Statistic

E R2 RMSE (mm days-1)

M1 ETo 50 Gauss 10 0.561 0.580 0.805

M2 D1, D2, D3, S3 56 Laplace/Cauchy 14 0.604 0.619 0.766

M3 All Ds together 60 Cauchy 20 0.595 0.604 0.774

M4 D, S, A 70 Gauss/Laplace 34 0.586 0.608 0.872

M5 All DSA together 9 Laplace 17 0.602 0.616 0.767

Fig. 2 Design 2 of Wavelet MRA decomposition
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Table 4 Statistics of the models for all the forecasted days

Days

ahead

Model

M1 M2 M3 M4 M5

E R2 RMSE

(mm)

E R2 RMSE

(mm)

E R2 RMSE

(mm)

E R2 RMSE

(mm)

E R2 RMSE

(mm)

1 0.595 0.604 0.750 0.651 0.615 0.738 0.637 0.642 0.710 0.599 0.565 0.896 0.652 0.654 0.697

2 0.542 0.553 0.798 0.592 0.599 0.759 0.587 0.594 0.758 0.561 0.572 0.887 0.594 0.598 0.752

3 0.527 0.542 0.814 0.582 0.599 0.767 0.585 0.593 0.764 0.574 0.587 0.877 0.602 0.608 0.748

4 0.542 0.554 0.807 0.578 0.603 0.772 0.575 0.585 0.777 0.574 0.591 0.878 0.601 0.610 0.753

5 0.552 0.565 0.804 0.584 0.615 0.771 0.586 0.600 0.773 0.580 0.596 0.879 0.601 0.609 0.758

6 0.548 0.561 0.811 0.581 0.610 0.779 0.581 0.591 0.781 0.587 0.603 0.873 0.593 0.603 0.769

7 0.546 0.561 0.815 0.581 0.606 0.782 0.577 0.588 0.787 0.586 0.601 0.874 0.584 0.596 0.780

8 0.536 0.557 0.822 0.582 0.606 0.777 0.584 0.593 0.778 0.577 0.599 0.876 0.581 0.595 0.785

9 0.537 0.563 0.818 0.588 0.610 0.767 0.588 0.595 0.772 0.574 0.602 0.869 0.580 0.597 0.784

10 0.554 0.578 0.810 0.596 0.615 0.767 0.580 0.588 0.786 0.580 0.610 0.864 0.592 0.609 0.774

11 0.554 0.582 0.815 0.603 0.619 0.767 0.579 0.588 0.792 0.580 0.614 0.864 0.591 0.610 0.780

12 0.558 0.587 0.819 0.610 0.624 0.768 0.588 0.597 0.791 0.586 0.622 0.864 0.593 0.612 0.785

13 0.577 0.602 0.809 0.625 0.636 0.762 0.606 0.614 0.781 0.596 0.630 0.864 0.609 0.627 0.777

14 0.594 0.615 0.799 0.635 0.644 0.760 0.617 0.625 0.776 0.604 0.639 0.862 0.616 0.635 0.776

15 0.605 0.625 0.793 0.639 0.648 0.759 0.619 0.628 0.778 0.609 0.644 0.861 0.620 0.640 0.777

16 0.613 0.633 0.791 0.644 0.653 0.760 0.628 0.636 0.775 0.615 0.651 0.860 0.625 0.646 0.777

Average 0.561 0.58 0.805 0.604 0.619 0.766 0.595 0.604 0.774 0.586 0.608 0.872 0.602 0.616 0.767

Fig. 3 Left Predicted ETo

versus observed ETo time series

for two-years of unseen test data

for Model 2 for selected days.

Right Plots of predicted ETo

versus observed ETo for the

same time period
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time applications of the model. The overall performance of

these hybrid models showed their ability to forecast daily ETo

for 16 days simultaneously. This is crucial for reliable irri-

gation systems management.

Table 4 included the statistics for 16 forecasted days of

all the models. It indicated that in some cases, e.g. M2,

E was higher when forecasting the16th day ahead (0.644)

as compared to forecasting the 7th day ahead (0.581). One

would expect the efficiency to decline as we increased the

forecasting horizon. This was not the case here due to the

selection of the parameters by the model that minimizes the

average of E over all the outputs. Another reason is that the

MVRVM forecasting is not iterative as it is in the time

series regression models. The prediction errors do not

accumulate.

Figures 3 and 4 showed the plots of the results of the

best two hybrid models, M2 and M5, respectively. Four

days (1st, 6th, 11th and 16th days ahead) were selected to

display the results. The left panels in these figures provided

a graph of the observed ETo time series calculated by PM

equation (points) and predicted ETo by the hybrid models

(line), and the 95 % confidence bounds for the 2 years of

unseen test data set (2011–2012). The shaded areas in the

left panels of these figures represented a 95 % confidence

interval of the forecasting models. M2 gave wider confi-

dence interval bounds, hence the error over the prediction

in M5 was smaller. This was due to the design of the

wavelet MRA decompositions. M2 was decomposed using

Design 1 (described in previous section) which focused on

the short-time variations. On the other hand, M5 was de-

composed using Design 2 in which the annual and seasonal

components (D and S) presented cyclic trends. Therefore,

M5 seemed to capture the variation in the ETo time series

better than M2. In the right panels of these figures, pre-

dicted ETo was plotted against observed ETo. These plots

showed that the models underestimated ETo values when

observed ETo was greater than about 6 mm days-1. The

underestimation was more pronounced when forecasting

for more than 1 day ahead. This tendency has also been

reported by Cobaner (2013) who used wavelet regression

techniques for estimating ETo. Since the MVRVM models

used are regression models, they tend to underestimate

larger values and overestimate low values. This was clear

in those graphs, as the model was trying to regress towards

the mean.

Another comparison was done to compare M2 and M5

forecasts for the unseen data with the historical average of the

ETo time series in the area of study (Fig. 5). The historical

Fig. 4 Left Predicted ETo

versus observed ETo time series

for two-years of unseen test data

for Model 5 for selected days.

Right Plots of predicted ETo

versus observed ETo for the

same time period
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average was calculated for 9 years of the available daily data,

and had an RMSE of 1.16 mm/day compared to 0.76 mm/day

for the wavelet hybrid models M2 and M5 compared to the

observed ETo calculated using FAO-PM method (Table 5)

presenting an advantage of those hybrid models over tradi-

tional application for forecasting daily ETo.

3.3 Model robustness

Bootstrapping was performed to check for over-fitting and

model generalization capability of the best two wavelet-

MVRVM hybrid models, M2 and M5, and for M1 for

comparison. Figure 6 showed a boxplot of the results for

1,000 bootstraps samples for which the Nash–Sutcliffe

coefficient of efficiency, E, was computed. No assumptions

were made about the distribution of the data. Repeated

samples were drawn from the population with replacement.

Since this type of samples are good approximation of the

population, the bootstrap method provides a good ap-

proximation of the sampling distribution of the statistic

E. For displaying purposes, only the results for 4 days (1st,

6th, 11th and 16th days ahead) were presented. On each

box, the central mark was the median, the edges of the box

were the 25th and 75th percentiles, the whiskers extended

to the most extreme data points not considered outliers, and

outliers were plotted individually. M5 showed a higher

E for all the selected days, with no significant difference

from M1 and M2. From these boxplots, it was noticed that

the wavelet-MVRVM hybrid models M2 and M5 did not

lose the robustness while improving the accuracy of the

forecasts. The boxplots confirmed that the models were

robust and can be used as ETo forecasting models for real-

time applications. The real-time application of ETo fore-

casting models allows farmers to estimate the water de-

mand for their fields and place the water orders. It will also

allow the canal and reservoir operators to release the re-

quired amount of water needed for the command area.

3.4 Forecasting ETo using 10-days of forecasted

temperature

In an attempt to improve the forecasting potential of the

ETo models, including additional model inputs was con-

sidered. The National Oceanic and Atmospheric Admin-

istration (NOAA) provides daily forecast of minimum and

maximum temperatures (Tmin and Tmax) up to 10 days

ahead. In order to determine whether or not adding these

data to the hybrid models that performed best (i.e. M2 and

M5) would improve the forecasts, the M2 and M5 analyses

were repeated using additional temperature inputs.

Table 6 showed the results for the modified models

M1*, M2* and M5*. It is clear from this table that adding

the forecasted Tmin and Tmax improved the performance of

Fig. 5 Comparison of the

selected models (M2 and M5) to

the historical average

Table 5 Statistical results of M2, M5 and 9-years average as com-

pared to the observed data for the 2 years of unseen test data set

Model E RMSE (mm/day)

M2 0.604 0.766

M5 0.602 0.767

9-years Avg 0.408 1.162
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the models, especially for forecasting the first 10 days for

which the predicted temperature data were available. It is

important to note that since the historical records for

forecasted minimum and maximum temperature of NOAA

were not available, the recorded temperatures of the 10

‘forecasted’ days were used instead. On average, the

modified wavelet-MVRVM hybrid models M2* and M5*,

respectively, outperformed again the MVRVM (M1*)

model by 17.4 % and 10.6 % for E. Figure 7 showed the

scatter plots of the three modified models: M1*, M2* and

Fig. 6 Boxplots for the results

of bootstrapping analysis (1,000

times) for models M1, M2 and

M5 for selected days

Table 6 Statistics of the

models for the 16 days with the

additional 10-days forecasted

Tmin and Tmax as input

Days ahead Model

M1* M2* M5*

E R2 RMSE (mm) E R2 RMSE (mm) E R2 RMSE (mm)

1 0.694 0.703 0.652 0.729 0.771 0.759 0.752 0.772 0.588

2 0.658 0.666 0.690 0.722 0.737 0.716 0.722 0.752 0.622

3 0.630 0.644 0.721 0.729 0.732 0.705 0.711 0.751 0.637

4 0.615 0.637 0.740 0.731 0.733 0.720 0.717 0.756 0.634

5 0.613 0.636 0.747 0.728 0.733 0.720 0.715 0.757 0.641

6 0.606 0.619 0.757 0.727 0.736 0.725 0.705 0.751 0.654

7 0.594 0.606 0.771 0.726 0.739 0.729 0.683 0.738 0.681

8 0.589 0.606 0.774 0.722 0.739 0.731 0.683 0.745 0.683

9 0.581 0.603 0.779 0.724 0.740 0.717 0.653 0.724 0.712

10 0.611 0.628 0.756 0.715 0.731 0.697 0.643 0.706 0.724

11 0.580 0.587 0.791 0.685 0.700 0.718 0.619 0.672 0.753

12 0.527 0.533 0.848 0.640 0.655 0.745 0.574 0.629 0.803

13 0.537 0.541 0.846 0.628 0.641 0.756 0.568 0.628 0.817

14 0.543 0.548 0.847 0.632 0.644 0.757 0.572 0.635 0.819

15 0.547 0.553 0.848 0.643 0.655 0.751 0.583 0.643 0.814

16 0.547 0.552 0.856 0.642 0.656 0.759 0.577 0.638 0.825

Average 0.592 0.604 0.776 0.695 0.709 0.732 0.655 0.706 0.713
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M5*. M2* showed improvement with underestimation of

high ETo values. The MVRVM uses Gaussian distribution

which is not designed for capturing extremes. Hence, the

tendency to underestimate higher values of ETo and

overestimate lower values. The introduction of wavelet

decomposition helps overcoming this problem. M2* also

showed that the forecasts were more clustered around the

1:1 line. This highlights the possible improvement of such

hybrid models by adding information about the forecasted

future temperatures.

4 Conclusions and future work

In practice, predicting daily ETo is difficult because it is

characterized by high non-linearity and non-stationarity.

Therefore, models that use components at different tem-

poral resolutions provide a new alternative to ETo fore-

casting problems. The potential of wavelet-MVRVM

hybrid modeling for forecasting daily ETo up to 16 days in

advance was investigated in this paper. The study intro-

duced the methodology of decomposing an ETo time series

using wavelet multiresolution analysis methods, and com-

bining the wavelet decompositions with a MVRVM to

develop an ETo forecasting model. The resulting models

predicted daily ETo up to 16 days ahead with good accu-

racy. Model that combined a wavelet daily, seasonal and

annual multiresolution analysis components with

MVRVM, performed the best in this study. It is recom-

mended as a forecasting model for ETo in the study area.

The results showed that the wavelet-MVRVM hybrid

models performed better than the MVRVM. The boot-

strapping analysis showed robustness in forecasting of the

wavelet-MVRVM hybrid models.

Inclusion of 10-days of forecasted minimum and max-

imum air temperatures as additional inputs to the models

improved the performance for the first 10 days for which

the weather forecast is generally available. Further research

might be of interest to explore the potential of adding other

weather variables, and their forecasts to the input vector.

The methodology presented in this study lays the

grounds for further investigations and studies that could

lead to forecast ETo at the spatial level using remote

sensing algorithms and the Landsat imagery.

Fig. 7 Scatter plots of

forecasted ETo using modified

models: M1* (a), M2* (b) and

M5*(c) compared to observed

ETo
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