
The use of microfluidics and dielectrophoresis for separation, 
concentration, and identification of bacteria 

 
Cynthia Hanson, Michael Sieverts, Karen Tew,  

Annelise Dykes, Michaela Salisbury, Elizabeth Vargis 
Department of Biological Engineering, Utah State University 

4105 Old Main Hill, Logan, UT, USA 84322 
	
  

ABSTRACT 
 

Traditional bacterial identification methods take one to two days to complete, relying on large bacteria colonies for 
visual identification. In order to decrease this analysis time in a cost-effective manner, a method to sort and concentrate 
bacteria based on the bacteria’s characteristics itself is needed. One example of such a method is dielectrophoresis, 
which has been used by researchers to separate bacteria from sample debris and sort bacteria according to species. This 
work presents variations in which dielectrophoresis can be performed and their associated drawbacks and benefits 
specifically to bacterial identification. In addition, a potential microfluidic design will be discussed. 
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1. INTRODUCTION 
 
The standard method to identify bacteria is the use of an array agar media and associated antibiotics. Depending on 
bacterial growth among the array, the bacteria can be identified. This method is entirely dependent on the growth rate of 
the bacteria. Typically, bacteria will take one to two days to grow to colonies large enough for visual identification, 
while others may take weeks. For time sensitive illnesses, this lag in analysis time is unacceptable and has been the 
motivation for many researchers to find a faster methods to identify bacteria. 
 
Common methods to decrease the analysis time of bacteria include techniques such as polymerase chain reaction (PCR) 
1–5, Raman or infrared spectroscopy 6–8, fluorescent in situ hybridization (FISH) 9–11, and micro-array testing 12–16. Raman 
spectroscopy has been used in our lab to spectrally distinguish between Mycobacterium JLS, Mycobacterium KMS, and 
Mycobacterium MCS. Spectra of these bacteria are shown in Figure 1. In lab, accuracy rates were as high as 96.7% using 
principal component analysis and linear discriminant analysis. Despite speed and accuracy of the most techniques 
presented in literature and from our lab, each method requires a pure sample or a means to label bacteria with fluorescent 
tags, antibiotics, or primers. A real life sample may be from blood, saliva, sputum, urine, etc. As such, samples must be 
pretreated prior to analysis to remove debris or separate other bacteria in the case of a sample containing more than one 
bacteria. The use of fluorescently marked antibodies increase costs and may result in wasted materials due to the broad 
range of bacteria strains that can be present in a sample. As such, label-free identification methods are appealing to cut 
costs and increase simplicity. 



	
  
     Figure 1. Baseline corrected, normalized spectra of M. JLS, M. KMS, and M. MCS. 

One label-free method is dielectrophoresis (DEP). Dielectrophoresis is the use of non-uniform electric fields which 
causes motion in particles due to the electrical properties of the particle and surrounding fluid as well as the applied 
electric field. Dielectrophoresis is well suited for biological samples and has been used by many researchers for bacterial 
analysis such as discrimination between live and dead bacteria17, isolation of specific strains of bacteria18, and separating 
bacteria from sample debris19.  

Although dielectrophoresis was introduced in the early 1950s, its use in various research fields remained fairly dormant 
until the 1990s when techniques such as photolithography assisted in fabrication of minute structures like microfluidic 
devices. This advancement in fabrication techniques was crucial for DEP as it drastically dropped voltage requirements 
due to proximity of electrodes to cells within a sample, thus creating a much more realistic means for sample sorting. As 
a result, the use of DEP in microfluidic devices as well as the methods of implementation have significantly increased. 
 
This article will briefly present the mathematics associated with dielectrophoresis and then present several different 
forms in which dielectrophoresis has been implemented. The benefits and drawbacks in accordance for bacterial analysis 
for each method will be discussed. In addition, a proposed form to carry out DEP will be presented and compared to the 
other methods. 

 
2. DIELECTROPHORESIS 

 
2.1 Theory of dielectrophoresis 
 
Dielectrophoresis (DEP) was introduced by Pohl20 in 1951. In Pohl’s article, some mathematics to explain DEP were 
laid out. Pohl also referenced previous researcher which had witnessed DEP but could not explain it or mistakenly 
attributed it to electrophoresis. Although other researchers had witnessed the phenomenon, Pohl was first to associate a 
name to the occurrence.  
 
The equation to express the DEP force on a spherical particle is  
 

𝐹!"# = 2𝜋𝜀!𝑟!𝑅𝑒 𝑓!" ∇ 𝐸!"# !      (1) 

where 𝑟 is the radius of the particle, and 𝐸!"# is the root-mean-square of the electric field, ε is the permittivity with a 
subscript of 𝑚 to indicate the media. Subscripts of 𝑝 indicate particle. The real part of the Clausius-Mossotti factor is 
factor is expressed as 



𝑅𝑒 𝑓!" = !!∗!!!∗

!!∗!!!!∗
       (2) 

where the asterisks indicate the complex permittivity. The complex permittivity is dependent on the conductivity (𝜎) and 
the frequency of the applied field (𝑓) and is given by 

𝜀∗ = 𝜀 − !"
!!"

       (3) 

where 𝑗 is the square root of negative one. When the Clausius-Mossotti factor is positive, the DEP force will push the 
particle to a region with a strong electric field. This is referred to as positive DEP. In negative DEP, the Clausius-
Mossotti factor is negative and the force pushes the particle to a region with a weak electric field. The point where the 
Clausius-Mossotti factor switches from positive to negative is referred to as the crossover frequency. 

The homogeneity of the particle will influence the DEP force. The equations expressed previously are for homogeneous 
particles. For biological samples this is not the case as the electrical properties between the cytoplasm and the plasma 
membrane are different. For such situations, a single-shell model can be used where the plasma membrane is represented 
as a shell and the cytoplasm as the material inside the shell. Assuming this cytoplasm is homogenous, the complex 
permittivity of the shell-sphere can be express as  

𝜀!!!∗ = 𝜀!"!∗ !!!"!
∗ !!!"#$

∗ !!!(!!"!
∗ !!!"#$

∗ )

!!!"!
∗ !!!"#$

∗ !!(!!"!
∗ !!!"#$

∗ )
     (4) 

where 𝜀!"!∗  and 𝜀!"#$∗  are the complex electrical permittivity for the cell membrane and cytoplasm respectively and 
𝑣 = 1 − 𝑑 𝑅 ! with 𝑑 being the membrane thickness and 𝑅 the outer radius of the cell membrane. The complex 
permittivity for the shell-sphere can then replace 𝜀!∗  in Equation 2. Although this model better matches biological cells, 
bacteria cells require yet another step as bacteria are composed of a cell wall, cell membrane, and cytoplasm (assuming 
homogeneity inside the cell membrane). In which case, a two-shell method must be incorporated, and thus the complex 
permittivity of a bacteria cell would be expressed as 
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where 𝑤 = 1 − 𝑑! 𝑅!  and the thickness of the cell wall and radius of the cell are 𝑑! and 𝑅! respectively. This 
expression for the complex permittivity of the cell can substitute 𝜀!∗  in Equation 2 to calculate the Clausius-Mossotti 
factor for a two-shell spherical particle. 
 
For more complex but realistic shapes such as a homogenous ellipsoid, Equation 2 changes to  
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where 𝐴! is a component the depolarization factor which is along one of the axis (x, y, or z) of the ellipsoid. Assuming a 
prolate spheroid with the major axis on the x axis, the depolarization factor would be expressed as 
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where 
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and 𝑎 is the major axis of the ellipsoid while 𝑏 is the minor axis. To account for a double shell configuration, the 
expressions change. Using articles from Huang et al.21,22 and Castellarnau et al.23, the following equations were 
compiled. The effective dipole factor as a function of angular frequency, 𝜔, for a single shell system is expressed as 
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where 
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and 𝑒! is the same expression as in Equation 8. It should be noted that the following relationship exists due to rotational 
symmetry: 
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To account for the influence due to the cell wall, yet another layer must be added. The effective dipole moment is 
expressed as 
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where 𝜌! is the volume ratio expressed as 
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and 𝑑!"!is the thickness of the membrane. The depolarization factor, 𝐴!,!, remains the same as Equation 10 with the 
exception that all the subscripts change from 1 to 2. The eccentricity changes to 
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The Clausius-Mossotti factor can then be expressed as 
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where 
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and  
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In Equations 16 and 17 𝑑!"##is the thickness of the cell wall. To account for all axes, the Clausius-Mossotti factor is 
expressed as an average.  
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In our lab with M. JLS, KMS, and MCS, the bacteria have an ellipsoidal shape and therefore Equations 9-18 will be used 
to model DEP forces on the bacteria. In previous work done in our department, SEM and AFM images of each bacteria 
has been collected24. Using these images, average bacteria sizes have been determined. However, cell wall and 
membrane thicknesses have not been determined. Literature indicates a range of mycobacteria cell wall thicknesses from 
8-26nm25,26 depending on species and susceptibility. The dimensions measured from SEM and AFM images along with 
estimates from literature will be used in subsequent modeling studies in our lab. 
 

3. DIELECTROPHORETIC DESIGN 
 
3.1 Traditional dielectrophoresis 
 
Initially, DEP was performed on microfluidic devices using metallic electrodes embedded within the sample chamber 
and thus created the electric field gradient. This arrangement was used by many researchers especially for bacterial 
separation and concentration19,27,28. However, the design had inherent problems such as electrode fouling, increased in 
sample temperature, and spatial limitations. Rise in sample temperatures are particular concern for biological samples as 
too high of temperatures can lead to cell death. The problem of spatial limitation refers to how close the cells must be to 
be influenced by the electric field, which is approximately 30 micrometers. Spatial problems can be partially addressed 
by patterning electrodes to the top and bottom of the sample chamber or along the full height of the channel. However, 
this does not completely resolve the problem as narrowing channels for proximity sake decreases throughput. Alternative 
designs such as insulator-based DEP (iDEP) and contactless DEP (cDEP) among others have been implemented and 
successfully overcome these spatial limitations while maintaining a high throughput. 
 
3.2 Insulator-based dielectrophoresis 
 
Insulator-based DEP (iDEP) incorporates the use of insulator structures within a microfluidic device to create electric 
field gradients as opposed to using the shape and configuration of metal electrodes to create the non-uniform electric 
field. In iDEP, electrodes are placed on opposite ends of a microfluidic device in direct contact with the sample solution. 
An array of insulator posts are placed in between the electrodes. This arrangement forces the electric field to move 
around the structures and creates a non-uniform electric field required for DEP.  
 
When using iDEP, the electric field as well as the required voltage can be manipulated by altering size and shape of the 
insulator structures. This has been demonstrated in literature by observing the changes in electric field while using 
insulator posts in a variety of shapes (circles, diamonds, squares, etc.)29,30 as well as spacing of posts in an array31. Using 
iDEP in an array, bacteria has been concentrated and separated from water32 as well as from other bacteria in the same 
sample33. In addition, an iDEP array has been used to separate live and dead E. coli17. 
 
A variation of iDEP is gradient insulator dielectophoresis (g-iDEP), which incorporates not only an electric field 
gradient at the specific site but also throughout the channel. This is has been done by using a saw tooth pattern which 
gradually come closer together over the length of the microfluidic channel34,35 as illustrated in Figure 2. Specific to 
bacterial studies, this method has been used as a means to separate serotypes of E. coli18 and to separate Staphyloccocus 
epidermidis based on antibiotic susceptibility to gentamicin36.  
 

	
  
Figure 2: Illustration of gradient-iDEP device with a sawtooth pattern such that the pattern converges creating a gradient non-
uniform electric field. 

 



Insulator-based DEP has also been done in the form of partial obstruction of the microfluidic channel37–39, examples of 
which are illustrated in Figure 3. Examples of using iDEP and partial obstruction for bacterial isolation include 
concentrating and separating Bacillus subtilis from a multicomponent mixture38 and separating E. coli from blood cells40. 
 

	
  
Figure 3: Examples of iDEP devices with partial obstruction. Illustrations are of a side view were the sample indicated by the dark 
grey color moves from left to right. 

3.3 Contactless dielectrophoresis 
 
Contactless dielectrophoresis (cDEP) describes a DEP design where the electrodes have no direct contact with the 
sample chamber41–44. This can be done by forming three different chambers separated by an insulating material. One 
chamber is for the sample while the other two are for the electrodes. The non-uniform electric field is generated by either 
insulator structures within the sample chamber or simply the change in size and shape of the sample chamber. This 
method is highly dependent on the insulator material used and how thin of insulating layer can be made between the 
sample channel and the electrodes43. The design of cDEP avoids problems bubbles formation at electrodes, electrode 
fouling, and electrolysis. In addition, cDEP devices are quite simple to make once a master mold is created. After which, 
fabrication consists of simply casting PDMS on the mold and sealing the PDMS structure to a glass slide. The 
fabrication can be troublesome due to the requirement of such a thin membrane (~20 micrometers) between the sample 
channel and the electrode channels. The thinner membranes require less voltage but run the risk of dielectric breakdown 
during operation. Thinner membranes also increase the difficulty of forming a proper seal between the PDMS and the 
glass slide. 
 
3.4 Carbon based electrode dielectrophoresis 
 
In the past decade, the use of 3D carbon electrodes arrays for DEP-based separations has increased. This design 
incorporates structures similar to those related to iDEP with an array of posts within the sample. Unlike iDEP where the 
array is made of insulating material, the array in carbon electrode DEP are the electrodes themselves. This design allows 
for some advantages in lower applied voltages. An example of carbon based electrode DEP device for bacteria is the 
purification of Mycobacterium smegmatis to identify antibiotic susceptibility45. 
 
3.6 Comparison of designs 
 
The previous list of DEP methods is not comprehensive. However, it does provide a reasonable base to assess general 
advantages and drawbacks for bacterial separation for future analysis. A more complete review of DEP methods 
including fabrication and functionality can be found in literature46. This article is concerned with development and 
functionality of DEP devices specifically for separation and concentration of bacteria for subsequent identification. As 
such, devices ideally avoid undesirable conditions for cells such as increased sample temperature and exposure to high 
voltages. At the same time, the device would need to be easily reproducible, durable during operation, and capable of 
exposing target particles to electric fields for effective sorting. 
 
Devices which incorporate direct exposure of the sample to metallic electrodes such as traditional or iDEP approaches 
have the hardest time avoiding electrolysis and avoiding Joule heating. Electrolysis isn’t as much as a problem with 
iDEP devices as the electrodes are far from the area in which DEP functions are carried out. However, electrolysis at the 
electrodes can create conditions such as a shift pH and associated aggregation of proteins which will influence DEP 
behavior47. Carbon based DEP still experience electrolysis, however these devices allow for lower voltage requirements 
as opposed to iDEP. Joule heating is also a concern particularly for iDEP devices as high voltages can increase sample 
temperature and rupture cells48. In contrast, cDEP deals with electrolysis and Joule heating much better as the sample 
channel has no contact with the electrodes. 
 
For DEP to effectively sort a sample, the target particles must have adequate exposure to DEP forces. Devices which 
depend on the arrangement of metallic electrodes to create the electric field gradients are most hindered by this 



requirement. As stated previously, particles must be within approximately 30 micrometers of the electrodes. This is 
especially problematic for planar electrodes. Researchers have worked around this problem by fabricating electrodes 
through electroplating. However, this drives up fabrication costs.  
 
In terms of reproducibility and durability, cDEP arguably is most challenged by these aspects. The design of cDEP 
devices require an excellent seal between the elastomer and glass surface to avoid contamination between the electrode 
and sample channels. Providing a good seal between these two surfaces is complicated due to the thin membrane 
(approximately 20 micrometers) required. In addition, if the membrane is too thin, the device runs the risk of dielectric 
breakdown. 
 
As demonstrated, each DEP method has advantages and drawbacks. Ideally, a device will incorporate the strengths of 
each design allowing for effective separation of target molecules regardless of position in the sample channel while 
avoiding risks of electrolysis. In addition, an ideal device would be durable and simple to produce.  
 

4. PROPOSED DESIGN 
 
The DEP methods presented previously in this paper used PDMS as a means to form the microfluidic channel when 
properly sealed to glass. The nature of PDMS lends these devices to be cheap and disposable. Although this can be a 
desirable characteristic, the use of PDMS or other elastomers come with inherent problems such as low stiffness making 
high aspect-ratio channels difficult to construct depending on the application and requirements. Ensuring a good seal 
between glass and PDMS may also proof problematic due to channel design. To avoid these problems, we propose 
forming a cDEP microfluidic device entirely of glass. 
 
Several research groups have been striving to create robust, low-cost techniques to form glass microfluidic 
structures49,50. Companies have also demonstrated the ability and ease by which to form glass microfluidic devices with 
20:1 etch rate of exposed to unexposed glass51. With these developments, producing a cDEP device with an adequately 
thin membrane offers advantages over the traditional form of fabrication with PDMS. Glass structures would be more 
resilient to higher voltages allowing for a wider range of operation before dielectric breakdown of the membrane. For 
PDMS membranes between 2-14 µm, the dielectric breakdown has been reported between 250-635 V/µm 52. In contrast, 
alkali-free glass has a dielectric breakdown of 1000 V/µm53 for thicknesses of 5-20 micrometers. 
 
It is proposed to fabricate a cDEP microfluidic device solely out of glass to avoid issues associated with electrolysis 
experienced in other common forms of DEP, while capitalizing on the benefits of a reproducible and durable design. 
With a thin membrane composed of glass rather than PDMS, higher operating voltages can be applied without damaging 
the device. In addition, a glass microfluidic structure allows for reuse of the device even after autoclaving to remove any 
bacteria from previous samples.  
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