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Abstract

I characterize the entire class of consumption rules for �nite-horizon models in which consumption is
proportional to lifetime wealth. Any such rule can be obtained from a preference model with CRRA
period utility. In a steady state with constant interest rates, a proportional consumption rule can be
derived from a model with time-consistent preferences or from a model with possibly time-inconsistent
preferences in which a household continually reoptimizes future utility discounted relative to the present
instant. These two preference models will only coincide for the special case when the discount function
is exponential. More generally, there will be two distinct yet observationally equivalent preference
models. I argue that the time-consistent model can be used to do welfare analysis for the equivalent
non-exponential discounting model. Under this welfare metric, Social Security cannot improve welfare
for any non-exponential discounting model if the internal rate of return is negative. Applying the
equivalence in the opposite direction, hyperbolic-like discounting may arise because that is a simpler way
for the brain to process a standard exponential discount function after accounting for mortality risk.

JEL Classi�cation: D11, D63, E21
Keywords: consumption, saving, naive hyperbolic discounting, exponential discounting, Social Secu-

rity, welfare analysis, myopia, mortality risk, behavioral economics, lifecycle model

Though it is not as mysterious as quantum mechanics would have appeared to a 19th-Century physicist,
to someone trained in neoclassical economics the hyperbolic discounting model is still a strange beast. One
o¤putting aspect is the multiplicity of selves that inhabit the model, which makes welfare analysis seem
completely arbitrary. In sophisticated versions of the model where di¤erent selves play games with each
other, the model becomes even more absurd�not to mention overly complicated. While I can testify to
reoptimizing after discovering I have made a mistake, I cannot say I have ever successfully committed to a
future behavior that appears optimal in the present but suboptimal in the future. In my experience the
future self always gets its way when the future arrives.
Despite the aesthetic distaste that many economists have for hyperbolic discounting, the accumulated

evidence from experiments suggests that Samuelson�s (1937) exponential discounting model, which he explic-
itly designed for mathematical simplicity and not because he had any data whatsoever to support it, does a
poor job of �tting people�s consumption choices (Frederick, Loewenstein, and O�Donoghue (2002) and Rabin
(2002)). Laibson (1997) followed up this psychologial research, convincing many economists that hyperbolic
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discounting can account for several puzzles in the consumption and saving literature. The hyperbolic model
also has its critics though, for psychologists have found that, while it works quite well for modeling animal
behavior, additional parameters are needed to �t human behavior (Myerson and Green (1995)). However,
such data merely points to more re�ned non-exponential discounting models and not a return to Samuelson�s
model.
Strotz (1956) was the �rst to explore relative discounting models in which households, rather than valuing

consumptions with a constant metric that depends only on the absolute times of these consumptions, value
future consumptions based on the time delay before each consumption occurs. Whereas the valuation
of consumption streams with an absolute discounting function is invariable so the optimal stream can be
chosen once and forever more at age 0, with a relative discounting function the valuation at di¤erent times
can be di¤erent. Indeed, Strotz showed that, unless the discounting function is exponential, plans for
future behavior will be time-inconsistent, and households will have to reoptimize at every instant.1 This
implies that non-exponential relative discounting functions can yield preference reversals: when valuing
consumption streams that begin at some distant time in the future, a household may rank the consumption
streams di¤erently now than it would later at the start of these consumption streams.
Since the rational paradigm depends crucially on the assumption that individuals know how to consis-

tently rank consumption allocations, evidence for a non-exponential relative discounting function is often
viewed as evidence for bounded rationality. Here I show that, in a steady state where interest rates are
constant, any time-inconsistent preference model with constant relative risk aversion (CRRA) period utility
can be mapped into an observationally equivalent time-consistent preference model that yields the same
consumption rule, and vice versa. Thus, behavior that is consistent with non-exponential discounting will
also be consistent with time-consistent preferences that are in no way irrational.
For example, the behavior of a myopic household that discounts exponentially but only values its con-

sumption over a short horizon can be replicated by a time-consistent preference model in which the discount
function is piecewise exponential with two pieces. During the early piece the value of consumption will fall
o¤ quite rapidly, mimicking the myopic household�s belief that it should compact a whole lifetime�s worth
of consumption into the shorter period that it cares about and thus rapidly dissipate its wealth. The later
piece applies when the myopic household sees the true end of its life, after which the discount functions for
the two equivalent households decay at the same rate.
Corresponding time-consistent and time-inconsistent discounting models are not observationally equiva-

lent under any and all circumstances. In the present environment, the household must choose how to allocate
consumption given an exogenous income stream, which is the sort of economic problem a household faces in
reality (ignoring labor and investment decisions). When confronted with hypothetical experiments where
one can choose between di¤erent consumption streams that only diverge in the future, the time consistency
or inconsistency of the discounting model can be identi�ed. The relative discounting model can exhibit
preference reversals, whereas the time-consistent discounting model cannot.2 It is important, however, to
recognize that experiments that can elicit preference reversals are largely arti�cial. Choices between future
consumption streams that only diverge in the future rarely arise in nature. It is very common to face a
situation analogous to having to choose between getting one cookie right now or two cookies tomorrow, but
it is very unusual for a person to have to commit to a choice between getting one cookie tomorrow or two
cookies the day after tomorrow. Experiments involving the second type of choice are useful for discovering
how the brain processes comparisons of consumption streams, but that may be all they are useful for in
terms of positive economics.

1We only consider the case where households are naive about the time-inconsistency of their preferences, so they do not
anticipate that they will reoptimize in the future or, indeed, the next instant. If utility is logarithmic, sophisticated and naive
households will behave the same, so our results do extend to the sophisticated case then (Marín-Solano and Navas, (2009)).

2One can observe preference reversals even with time-consistent preferences if the experimenter is not careful to �x the
consumption stream that occurs during the intervening period between the times when the respondent is asked to rank ensuing
consumption streams (Noor (2009)).
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My equivalence result has two implications. First, since the behavior that comes from a non-exponential
relative discounting function can always be replicated by a time-consistent, though still non-exponential,
discounting function, non-exponential discounting is at worst a benign form of bounded rationality. The
extensive debate about whether households are better modeled as having time-consistent or time-inconsistent
preferences is academic. We can use whichever representation is more appropriate under the circumstances.
This leads to the second result: the equivalent time-consistent model provides a way of measuring welfare
for a model with a non-exponential relative discounting function that is not based on an arbitrary weighting
of the valuations of di¤erent selves.3

I then use the equivalent time-consistent model to study the partial-equilibrium, welfare e¤ects of So-
cial Security in a model with non-exponential discounting. This yields in a simpler fashion the result of
·Imrohoro¼glu, ·Imrohoro¼glu, and Joines (2003) and Caliendo (2011) that nonexponential discounting cannot
justify Social Security on the grounds that it improves welfare. For any proportional consumption rule,
lifetime welfare is a strictly increasing function of the present value of expected income over the lifecycle. If
the internal rate of return of Social Security is negative (as it presently is for the United States), it cannot
increase the relevant time-consistent measure of utility.
Barro (1999) established an observational equivalence between the exponential model and the sophis-

ticated hyperbolic model for in�nite-horizon growth models. Caliendo and Findley (2013) have done the
same for the naive model with log utility in a lifecycle context. I generalize the latter result. In a �nite-
horizon model, any preference speci�cation with a period utility function that exhibits constant relative risk
aversion will yield a consumption rule in which consumption is proportional to the present value of lifetime
wealth. This is true both for time-consistent models and for possibly time-inconsistent relative discounting
models. My principal �nding is that, in a steady state with constant interest rates, the mapping from
either type of preference model to the corresponding consumption rule is invertible. Consequently, there
is a one-to-one mapping between time-consistent preference models and relative discounting models. In a
dynamic setting with perfect foresight about interest rates, the mapping from a relative discounting model
to a time-consistent preference model will still exist, though the inverse mapping may not exist.4

This one-to-one mapping only depends on preference parameters and the interest rate. Thus the equiv-
alent time-consistent model can, in general, be used to evaluate the welfare e¤ects of policy changes that
only alter a household�s income stream without impacting the interest rate. For example, we can use this
approach to study changes in tax policy or Social Security in partial equilibrium. For the special case of log
utility, the caveat that we can only use the mapping for welfare analysis in partial equilibrium also goes away.
Another policy experiment that we can evaluate is the purported benevolence of government programs that
help households with time-inconsistent preferences commit to plans formed early in life. I �nd that such
interventions can only reduce the equivalent time-consistent measure of lifetime utility.
In a calibrated model where I match the observed capital-labor ratio of the US economy, I compute

the time-consistent discounting function that replicates naive hyperbolic and myopic discounting models.
Contrary to popular wisdom, the hyperbolic model actually leads to more initial saving and less initial con-
sumption than an exponential model that produces the same capital-labor ratio. Relative to the exponential
model, the time-consistent form of the hyperbolic model puts more weight on consumption in the middle
of life. The myopic model, on the other hand, behaves as one would expect, placing very high weight on
consumption early in life relative to consumption later in life.
Conversely, in a standard exponential-discounting model augmented with uninsurable mortality risk, the

e¤ective discount function, though time-consistent, will generally not be exponential. The exponential
discount function coming from preferences will be mixed in with the survival probability, which will only

3For some readers, the argument that this is the only known way to evaluate welfare in a non-arbitrary fashion may be
su¢ cient to justify using the equivalent time-consistent preference model to evaluate welfare. For those who are not persuaded
by this purely practical consideration, we provide a more compelling, biological argument at the end of the paper.

4 It will exist if the period utility function is logarithmic.
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be exponential in the counterfactual case of a constant hazard rate of dying In computing the equivalent
relative discounting function, I �nd that a hyperbolic discounting model is a much closer �t to this relative
discounting function than an exponential discounting model. Other biological considerations not accounted
for in the standard model, such as the drive to procreate, may further distort both the time-consistent and
corresponding relative discounting functions away from a pure exponential.
While time-consistent preferences have many advantages that make them a convenient modeling choice

for economists, they are not necessarily so amenible for the programming of biological organisms. To employ
a time-consistent discounting function, one has to determine the age when consumption will occur, and the
discounting function may vary considerably depending on that age. With a relative discounting function, in
contrast, only the length of the time delay preceding the consumption matters. Some common consumption
comparisons will occur repeatedly throughout the lifecycle, and the same relative discounting function can be
used for these comparisons regardless of whether the consumer is young, middle-aged, or old. Human beings
may exhibit time-inconsistent preferences because it is less complicated for the brain to process decisions
with an age-independent relative discounting function.
The paper is organized as follows. Section 1 describes the environment in which we will explore these

di¤erent consumption rules. Section 2 introduces the concept of a proportional consumption rule. In
Section 3, I show how exponential, hyperbolic, and myopic discounting �t into the proportional consumption
rule framework. In Section 4, I establish that any proportional consumption rule can be derived from a
time-consistent discounting function. Likewise in Section 5, I establish that if interest rates are constant
than any proportional consumption rule can be derived from a relative discounting function. In Section 6,
I present numerical examples of equivalent discounting functions. In Section 7, I show that Social Security
cannot improve welfare if it decreases the present value of income. I conclude in Section 8 and discuss how
I interpret these results.

1 The Environment

First, let us establish the budgetary constraints facing a household, which we will hold �xed across all the
preference models that we consider below. A household lives with certainty to age T . At age t, it receives
the �ow of labor or transfer income y(t) � 0, which must be positive on a subset of positive measure of
[0; T ]. This income can be consumed c(t) or saved as k(t) at the instantaneous interest rate r(t). Thus the
household must choose a path of k(t) and c(t) subject to the budget constraint

dk(t)

dt
= y(t) + r(t)k(t)� c(t) (1)

and the boundary conditions
k(0) = k(T ) = 0: (2)

Let us de�ne

R(t) = exp

�Z t

0

r(s)ds

�
; (3)

which is the gross return due to interest compounding between ages 0 and t.5 Note that

dR(t)

dt
= r(t) exp

�Z t

0

r(s)ds

�
= r(t)R(t): (4)

We can rewrite (1) as
d

dt

�
k(t)

R(t)

�
=
y(t)� c(t)
R(t)

(5)

5Throughout the paper, we will assume all relevant functions are suitably well-behaved so they can be integrated.
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Integrating this from t to T; and using the terminal condition k(T ) = 0, we obtain

k(t) =

Z T

t

R(t)

R(s)
[c(s)� y(s)]ds: (6)

Given the path of current and future consumption c(s) for s 2 [t; T ], we can determine the saving k(t) at
age t.
If we de�ne lifetime wealth as

W (t) =

Z T

t

R(t)

R(s)
y(s)ds+ k(t); (7)

we can rewrite (6) as Z T

t

R(t)

R(s)
c(s)ds =W (t): (8)

2 General Proportional Consumption Rules

How is consumption determined? As in most of the economic literature, we will assume here that consump-
tion is chosen based on preferences. However, we are going to reverse the common methodology of deriving
consumption from an assumed preference model. Instead, we will assume consumption is observed and then
try to back out what preferences are consistent with these observations. Following Feigenbaum, Caliendo,
and Gahramanov (2011), we consider consumption rules that are feasible in the environment of Section 1.
Speci�cally, I focus on rules such that consumption at a given age t is proportional to total lifetime wealth

at that age:
c(t) = m(t)W (t); (9)

where the proportionality factorm(t) > 0 is the marginal propensity to consume (MPC) out of lifetime wealth
at age t.6 What conditions do we need to impose on the function m(t) to ensure the budget constraint
(1) and boundary conditions (2) will be satis�ed? Surprisingly little. If we substitute (9) into the budget
constraint to obtain a di¤erential equation for k(t)

dk(t)

dt
= y(t) + r(t)k(t)�m(t)

"Z T

t

R(t)

R(s)
y(s)ds+ k(t)

#
; (10)

we can solve for k(t) given the initial condition k(0) = 0. We then only need to verify that the terminal
condition k(T ) = 0 holds.

Proposition 1 A solution to (10) with k(0) = 0 will satisfy k(T ) = 0 as long as

lim
t!T

m(t)(T � t) = 1. (11)

Eq. (11) is the continuous-time analog of the usual result in discrete-time models that a household must
consume all its remaining wealth in the last period. In continuous time, as the household approaches its
end, it will plan to consume its remaining wealth so W (T ) = 0. If the path of W (t) is di¤erentiable, then
as t ! T , we must have W (t) � C(T � t) for some constant C > 0. The condition (11) then implies that
c(t) � C as t! T . The proof follows.

6Note that consumption is proportional in the sense that, at a given age t, the fraction of lifetime wealth consumed at t
will be the same regardless of whether the household is rich or poor. However, the fraction consumed is not assumed to be
constant over the lifecycle.
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Analogous to R(t) and r(t), let us de�ne

M(t) = exp

�Z t

0

m(s)ds

�
; (12)

which satis�es
dM(t)

dt
= m(t)M(t): (13)

Since
d

dt

�
M(t)

R(t)
k(t)

�
=
M(t)

R(t)

�
dk(t)

dt
+ (m(t)� r(t))k(t)

�
;

we can rewrite (10) as

d

dt

�
M(t)

R(t)
k(t)

�
=
M(t)

R(t)

"
y(t)�m(t)

Z T

t

R(t)

R(s)
y(s)ds

#
: (14)

Integrating this from t = 0 to T , we obtain the condition

k(T ) =
R(T )

M(T )

Z T

0

M(t)

R(t)

"
y(t)�m(t)

Z T

t

R(t)

R(s)
y(s)ds

#
dt = 0; (15)

which must be satis�ed for any choice of y(t) and r(t) if m(t) is a valid MPC. It will be satis�ed if

M(t)

M(T )
= 0

for all t < T . That is if Z T

t

m(s)ds =1 (16)

for all t < T . Eq. (11) is a su¢ cient condition for this to hold.7 Thus any positive MPC function m(t)
that satis�es (11) will de�ne a proportional consumption rule.
Note that consumption will always be positive under such a rule. Inserting (7) into (9) yields

c(t) = m(t)

"Z T

t

R(t)

R(s)
y(s)ds+ k(t)

#
: (17)

Di¤erentiating the log of (17) gives

d ln c(t)

dt
=

d lnm(t)

dt
+
d

dt
ln

"Z T

t

R(t)

R(s)
y(s)ds+ k(t)

#

=
d lnm(t)

dt
+
r(t)

R T
t

R(t)
R(s)y(s)ds� y(t) +

dk(t)
dtR T

t
R(t)
R(s)y(s)ds+ k(t)

:

Using (1) and (9), this simpli�es to

d ln c(t)

dt
=
d lnm(t)

dt
+
r(t)

R T
t

R(t)
R(s)y(s)ds+ r(t)k(t)�m(t)W (t)R T

t
R(t)
R(s)y(s)ds+ k(t)

;

7Eq. (11) is actually a stronger condition than what is necessary to guarantee (15). However, (11) is satis�ed by all the
consumption rules that we consider and has the reasonable economic interpretation discussed above.
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which reduces to
d ln c(t)

dt
=
d lnm(t)

dt
+ r(t)�m(t): (18)

Integrating this from 0 to t, we get

ln c(t)� ln c(0) = lnm(t)� lnm(0) +
Z t

0

(r(s)�m(s))ds (19)

Since k(0) = 0, we have

c(0) = m(0)

Z T

0

y(t)

R(t)
dt. (20)

Exponentiating (19), and using (3), (12), and (20) obtains

c(t) = m(t)
R(t)

M(t)

Z T

0

y(s)

R(s)
ds; (21)

which is positive given our assumptions aboutm(t), r(t), and y(t). Thus if a household follows a proportional
consumption rule, its consumption at any age will be proportional to the age-0 value of its lifetime income
stream.

3 Standard Discounting Models

Now let us see how three standard discounting models �t into the framework of Section 2: exponential
discounting, naive hyperbolic discounting, and myopic preferences.

3.1 Exponential Discounting

The most frequently used discounting model is Samuelson�s (1937) exponential discounting model in which
the household chooses c(t) to maximize Z T

0

exp(��t)u(c(t))dt (22)

subject to (1) and (2). See Appendix A.1 for details on the solution to this model. As is well known, the
optimal consumption pro�le with these preferences allocates consumption over the lifecycle so the growth
rate of marginal utility is �� r(t). This result is the continuous-time analog of setting the marginal rate of
substitution between consumption at t and t+ dt equal to the relative price of t+ dt consumption in terms
of time-t consumption. Given c(t), this implies the consumption pro�le

c(s) = (u0)�1
�
u0(c(t)) exp(�(s� t))R(t)

R(s)

�
(23)

for s 2 [t; T ]. Inserting the consumption pro�le into (8) yields an equation that implicitly determines c(t)
as a function of lifetime wealth W (t).Z T

t

R(t)

R(s)
(u0)�1

�
u0(c(t)) exp(�(s� t))R(t)

R(s)

�
ds =W (t): (24)
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For most choices of the period utility function u(c), (24) cannot be solved to obtain an analytic expression
for c(t). From now on we will focus on the special case of CRRA utility8

u(c; 
) =

�
ln c 
 = 1
1

1�
 c
1�
 
 6= 1 ; (25)

which satis�es
u0(c; 
) = c�
 : (26)

Eq. (23) then simpli�es to

c(s) =

�
R(t)

R(s)
exp(�(s� t))

�� 1



c(t); (27)

and Eq. (24) to

cexp(t; �) =
W (t)R T

t

�
R(t)
R(s)

� 
�1



exp
�
� �

 (s� t)

�
ds

: (28)

Thus the exponential discounting model with CRRA utility gives a proportional consumption rule with MPC

mexp(t; �) =
1R T

t

�
R(t)
R(s)

� 
�1



exp
�
� �

 (s� t)

�
ds

: (29)

In the special case of 
 = 1, R(t) cancels from the integral in the denominator, and the MPC reduces to

mexp(t; �) =
�

1� exp(��(T � t)) ; (30)

which is purely a function of the preferential discount rate �. The MPC then also has the interpretation of
being the reciprocal of the area of the discount function over the remaining lifespan,

R T
t
exp(��s)ds.9

3.2 Naive Hyperbolic Discounting

Next we consider a naive hyperbolic discounter. At age t, he discounts consumption at age s > t by 1
1+�(s�t)

for � > 0. Given k(t), the hyperbolic discounter at age t will plan his future consumption c(s; t) and asset
holdings k(s; t) at age s 2 [t; T ] so as to maximize

U(t) = max

Z T

t

u(c(s; t); 
)

1 + �(s� t)ds (31)

subject to the imagined budget constraint

c(s; t) +
@k(s; t)

@s
= y(s) + r(s)k(s; t); (32)

and the boundary conditions
k(t; t) = k(t) (33)

8Any period utility function in the hyperbolic absolute risk aversion (HARA) class will allow an analytic solution to (24),
but for other utility functions in this class the consumption rule will be a¢ ne rather than strictly proportional.

9For the special case of log utility, this is a general property of the MPC across discounting models (Findley and Caliendo
(2013)).
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k(T ; t) = 0: (34)

These constraints assume the household sticks to its age-t plan. However, as Strotz (1956) showed, only for
an exponential discounting function exp(��(s � t)) will the household make the same plans for its future
consumption c(s; t) = c(s; t0) at di¤erent ages t; t0 < s. Actual consumption at age t must always follow the
plan set at t: c(t) = c(t; t). However, since the household is naive about its hyperbolic discounting, in the
next instant t0 it will revise its plans, so c(t0) = c(t0; t0) 6= c(t0; t). Asset holdings k(t) must satisfy the actual
budget constraint (1), consistent with the path of actual consumption c(t).
The optimal consumption pro�le with naive hyperbolic discounting is analogous to (27) for the exponential

model, replacing the latter�s discount function exp(��t) with the hyperbolic discount function (1+�(s�t))�1:

c(s; t) =

�
R(s)

R(t)(1 + �(s� t))

�1=

c(t): (35)

Details of the solution are in Appendix A.2.
Analogous to the actual budget constraint, the imagined budget constraint (32) can be rewritten

@

@s

�
k(s; t)

R(s)

�
=
y(s)� c(s; t)

R(s)
;

which yields the imagined lifetime budget constraintZ T

t

R(t)

R(s)
c(s; t)ds =W (t): (36)

Inserting (35) into (36), actual consumption c(t) at age t is

chyp(t; �) =
W (t)R T

t

�
R(s)
R(t)

� 1�




[1 + �(s� t)]�1=
 ds
: (37)

This is a proportional consumption rule with MPC

mhyp(t; �) =
1R T

t

�
R(s)
R(t)

� 1�




[1 + �(s� t)]�1=
 ds
: (38)

In the special case when 
 = 1, (38) reduces to

mhyp(t; �) =
�

ln(1 + �(T � t)) : (39)

As in the exponential case, this MPC is the reciprocal of the integral of the, now relative, discount function
over the remaining lifespan:

R T
t

ds
1+�(s�t) :

For comparison with the exponential MPC, note that since exp(�x) is strictly concave

exp(�x) � 1 + �x

with equality only if x = 0. Since exp(� �

 (s� t)) � (1 + �(s� t))

�1=
 , comparing (29) to (38), we see that
mhyp(t; �) < mexp(t; �) for t < T .
Others (Salanie and Treich (2006)) have pointed this out before, but it is worth mentioning that for a

given value of wealth the hyperbolic discounter actually saves more than the exponential discounter when
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� = �. In other words, if we de�ne patience to be the willingness to defer consumption to later times, a
hyperbolic discounter will be more patient than an exponential discounter with the same �discount rate�.10

While � and � are both measures of patience, they have di¤erent de�nitions and di¤erent quantitative
properties.11 The exponential model is characterized by having a constant � whereas the hyperbolic model
has a constant �. If we compute the decay rate of (1+ �t)�1, the variable analogous to � for the hyperbolic
model, this is

�

1 + �t
� �;

so if � = � the hyperbolic discounter will be more patient than the exponential discounter.12 When I
calibrate the models below, I will use an invariant measure of patience, aggregate saving over the lifecycle,
which also has the advantage of being observable.

3.3 Myopic Preferences

Under myopic preferences, the household will only value utility within a limited time horizon H > 0.
Assuming discounting is still exponential within this time horizon, a household at age t will maximizeZ minft+H;Tg

t

exp(��(s� t))u(c(s; t))ds (40)

subject to the imagined constraints (32), (33), and (34). Note that this di¤ers from the short-term horizon
models of Caliendo and Aadland (2007), Findley and Caliendo (2013), and Park (2009) because the household
here perceives that it will earn income after t + H. It just does not value its consumption after t + H.
Consequently, the imagined consumption pro�le for s 2 [t; T ] is the same as (27) except that the household
plans to stop consuming at the edge of its current time horizon:

c(s; t) =

(
c(t)

�
R(s)
R(t)

�1=

exp

�
� �

 (s� t)

�
s 2 [t;minft+H;Tg]

0 s 2 (t+H;T ]
: (41)

Details of the solution are given in Appendix A.3.
As in 3.2, actual age-t consumption c(t) is determined by the imagined lifecycle budget constraint (36)

cmyo(t; �;H) =
W (t)Rminft+H;Tg

t

�
R(s)
R(t)

� 1�




exp
�
� �

 (s� t)

�
ds

: (42)

The myopic MPC is

mmyo(t; �;H) =
1Rminft+H;Tg

t

�
R(s)
R(t)

� 1�




exp
�
� �

 (s� t)

�
ds

: (43)

10Some may �nd this counterintuitive since hyperbolic discounting is often cited as an explanation for undersaving. The
notion that hyperbolic discounters are intrinsically less patient than exponential discounters comes from naively interpreting the
results from a popular calibration of quasihyperbolic discounting models. The quasihyperbolic discounting model approximates
hyperbolic discounting in discrete time by introducing an extra discount factor between the current period and all following
periods. Quasihyperbolic and exponential discount factors coincide if this extra discounting is eliminated. Consequently, many
papers compare a quasihyperbolic model with this extra discounting to the corresponding exponential model without it. Since
the overall discount function in the quasihyperbolic model is then always smaller than in the exponential model, this assumes
by construction that a quasihyperbolic discounter is less patient than an exponential discounter.
11 In the notation introduced in Section 5, � = � lnDr(t)=dt, i.e. � is the decay rate of the relative discount function, whereas

� = (d=dt)(Dr(t)�1), i.e. � is the derivative of the inverse relative discount function.
12Conversely, the derivative of the inverse of the relative discounting function for the exponential model is � exp(�t) � �, so

the hyperbolic discounter is also more patient than the exponential discounter with this alternative measure of patience.
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For the case when 
 = 1, (43) reduces to

mmyo(t; �;H) =
�

1� exp(��minfH;T � tg) (44)

When t > T �H, mmyo(t; �;H) = mexp(t; �;H), so the myopic and exponential MPCs are the same at
late ages if the preferential discount rate is the same. For t < T �H,

mmyo(t; �;H) =
1Rminft+H;Tg

t

�
R(s)
R(t)

� 1�




exp
�
� �

 (s� t)

�
ds

>
1R T

t

�
R(s)
R(t)

� 1�




exp
�
� �

 (s� t)

�
ds

= mexp(�),

so the myopic MPC is larger early in life. This is because the myopic household believes it has the
same income stream to distribute over a shorter lifespan. If the discount rate parameter is the same, the
myopic household consumes more than the exponential discounter who consumes more than the hyperbolic
consumer.13

4 General Time-Consistent Discounting Model

We now generalize the exponential discounting model of Section 3.1 and suppose that households choose
the path c(t) to maximize

U =

Z T

0

D(t)u(c(t); 
)dt (45)

subject to (1) and (2) for some discount function D(t) : [0; T ] ! R++. Noor (2009) argues that a general
time-consistent discounting model can produce behavior consistent with hyperbolic discounting. Here I
show that any proportional consumption rule will have a discount function for which that consumption rule
is the optimal behavior. Indeed, there is a 1-1 correspondence between discount functions and proportional
consumption rules.
With utility (45), the optimal consumption pro�le for s 2 [t; T ] is

c(s) = c(t)

�
D(s)

D(t)

R(s)

R(t)

�1=

; (46)

which generalizes (23) for the case when D(t) is not restricted to the exponential form exp(��t).14 Inserting
this in (8),

c(t) =
W (t)R T

t

�
D(s)
D(t)

�
R(s)
R(t)

�1�
�1=

ds

: (47)

Thus the MPC for the general discounting function is

m(t) =
1R T

t

�
D(s)
D(t)

�
R(s)
R(t)

�1�
�1=

ds

: (48)

13We will discuss how we would propose calibrating these three models in Section 6.
14For details, see Appendix B
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My �rst major result is to show that, for a given MPC function m(t), we can back out of Eq. (48) the
discount function D(t) that yields that MPC as part of the optimal consumption rule.15

Proposition 2 Let m : [0; T ] ! R++ satisfy (11) so it is the MPC for a proportional consumption rule.
There exists D : [0; T ]! R++ such that D(0) = 1 and Eq. (48) holds.

Let m(t) be the MPC for a proportional consumption rule. Di¤erentiating (48) gives

dm(t)

dt
= �

�
�
D(t)
D(t)

�
R(t)
R(t)

�1�
�1=

+
R T
t

@
@t

�
D(s)
D(t)

�
R(s)
R(t)

�1�
�1=

ds"R T

t

�
D(s)
D(t)

�
R(t)
R(t)

�1�
�1=

ds

#2

= m(t)2

241 + 1




�
d lnD(t)

dt
+ (1� 
)r(t)

�Z T

t

 
D(s)

D(t)

�
R(t)

R(t)

�1�
!1=

ds

35
Using (48) again, this simpli�es to

d lnm(t)

dt
= m(t) +

1




�
d lnD(t)

dt
+ (1� 
)r(t)

�
: (49)

Solving (49) for the growth rate of D(t), we obtain a �rst-order di¤erential equation for D(t):

d lnD(t)

dt
= 


�
d lnm(t)

dt
�m(t)

�
+ (
 � 1)r(t): (50)

Normalizing D(0) = 1,

lnD(t) =

Z t

0

�



�
d lnm(s)

dt
�m(s)

�
+ (
 � 1)r(s)

�
ds:

Using (3) and (12), this simpli�es to

D(t) =

�
m(t)

m(0)

�

R(t)
�1

M(t)

: (51)

Note that the correspondence between m(t) and the discount rate in (51) holds regardless of the income
path. This fact will be essential to the later interpretation of this result. In contrast, the determination of
the discount function does depend on the path of interest rates. A household maximizing a utility function
of the form (45) will only care about its income path to the extent that its income path determines its
budget set, and lifetime wealth is a su¢ cient statistic containing all the information in the income path that
is relevant to determining the size of the budget set. The relationship between D(t) and m(t) is ultimately
a description of how the optimal consumption rule depends on the budget set. Since the interest rate
determines the gradient of the budget set frontier, the relationship between D(t) and m(t) also depends on
the path of r(t) except when utility is logarithmic. In that special case of 
 = 1, income and substitution

15Similar results would obtain for other HARA utility functions, though in general the consumption function will be a¢ ne
in wealth. We focus on CRRA utility to simplify the discussion since in that case we only have one coe¢ cient, the MPC, to
relate to preferences.
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e¤ects stemming from variation of the interest rate exactly cancel, so the optimal consumption rule only
depends on the size of the budget set and not the slope of its frontier.
For the case of myopic discounting with 
 = 1, there is an analytic expression for the equivalent time-

consistent discount function

Dmyo(t; �;H) =

8<: exp
�
� �t
1�exp(��H)

�
t < T �H

exp
�
��t� �(T�H) exp(��H)

1�exp(��H)

�
t > T �H

: (52)

For t > T �H, the household�s time horizon is longer than its remaining life so it behaves as though it is an
exponential discounter with discount rate �. At earlier times, it still behaves as though it is an exponential
discounter but with the e¤ective discount rate

�eff =
�

1� exp(��H) > �. (53)

For the case of hyperbolic discounting, there is no analytic expression for the equivalent time-consistent
discount function. In Section 6, I will compute the e¤ective discount function numerically.

5 Relative Discounting Model

We can also generalize the hyperbolic model of 3.2 and the myopic model of 3.3 to consider time-inconsistent
models with any relative discounting function. Let Dr : [0; T ] ! R++ such that Dr(0) = 1 be a relative
discount function so that Dr(s) measures how utility is discounted after a delay s. A household at age t
with assets k(t) will maximize

Ur(t; k(t)) = max

Z T

t

Dr(s� t)u(c(s); 
)ds (54)

subject to the imagined constraints (32), (33), and (34).
There is no di¤erence in the assumptions we make about the discount functions D(t) in Section 4 and

the assumptions we make about relative discount functions here. The same function could be used in both
classes of model. What is di¤erent is the optimization problems (45) and (54). Only for an exponential
function will the two problems have the same solution. Thus the exponential discounting model can be
viewed equivalently as either a time-consistent discounting model or a relative discounting model.
As in Section 4, where we replaced exp(��(s � t)) by D(s)=D(t), here we generalize the consumption

function of the exponential model by replacing exp(��(s � t)) in (23) with Dr(s � t):16 That is, at age t
the household will plan to follow the consumption path

c(s) = c(t)

�
R(s)

R(t)
Dr(s� t)

�1=

: (55)

Inserting this into the lifecycle budget constraint from t to T (8), we obtain the consumption function.

c(t) =
W (t)R T

t

��
R(s)
R(t)

�1�

Dr(s� t)

�1=

ds

; (56)

16See Appendix C for a rigorous derivation.
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which has MPC
m(t) =

1R T
t

��
R(s)
R(t)

�1�

Dr(s� t)

�1=

ds

: (57)

For comparison, the MPC for a time-consistent model with discounting function D(t) is

mD(t) =
1R T

t

��
R(s)
R(t)

�1�

D(s)
D(t)

�1=

ds

: (58)

This will be the same as (57) if

Dr(s� t) =
Dr(s)

Dr(t)
: (59)

As Strotz (1956) showed, this equality can only hold for all (s; t) 2 f[0; T ]2 : s � tg if Dr is exponential.
Like Eq. (58), Eq. (57) can be inverted to obtain the relative discount function that yields a given MPC

function. However, because s and t cannot be multiplicatively separated in Dr(s � t) like they can when
the restriction (59) holds, stronger assumptions are needed to achieve a result analogous to Proposition 2 in
Section 4.

Proposition 3 Let m : [0; T ]! R++ satisfy (11) so it is the MPC for a proportional consumption rule. If
r(t) = r for all t 2 [0; T ] or if 
 = 1, there exists Dr : [0; T ]! R++ such that Dr(0) = 1 and Eq. (57) holds.

Let m(t) be the MPC for a proportional consumption rule. We can rewrite (57) asZ T

t

 �
R(s)

R(t)

�1�

Dr(s� t)

!1=

ds =

1

m(t)
: (60)

Di¤erentiating this by t,

1

m(t)

d lnm(t)

dt
= 1 +

Z T

t

d

ds

�
D1=

r (s� t)

��R(s)
R(t)

� 1�




ds+
1� 




r(t)

Z T

t

D1=

r (s� t)

�
R(s)

R(t)

� 1�




ds

Integrating the second term by parts and reusing (60) to simplify the third term,

1

m(t)

d lnm(t)

dt
= 1 +

"
D

1


r (s� t)

�
R(s)

R(t)

� 1�




#T
t

�1� 




Z T

t

D1=

r (s� t)r(s)

�
R(s)

R(t)

� 1�




ds+
1� 




r(t)

m(t)

Thus

1

m(t)

d lnm(t)

dt
= D1=


r (T � t)
�
R(T )

R(t)

� 1�




+
1� 




"
r(t)

m(t)
�
Z T

t

D1=

r (s� t)r(s)

�
R(s)

R(t)

� 1�




ds

#
: (61)

For the special cases where r(t) = r or 
 = 1, the second term on the right of (61) cancels:17

1

m(t)

d lnm(t)

dt
= D1=


r (T � t) exp
�
1� 




r(T � t)
�
:

17For simplicity, we will write r(t) = r in the following. With 
 = 1, r(t) need not be constant. However, in that case, r(t)
cancels from the expressions that follow.
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Thus we can solve for Dr(T � t).

Dr(T � t) =
�

1

m(t)

d lnm(t)

dt

�

exp (�(1� 
)r(T � t))

Let s = T � t, so t = T � s. Then we obtain

Dr(s) =

�
1

m(T � s)
d lnm(T � s)

dt

�

exp (�(1� 
)rs) (62)

for the relative discounting function that yields the proportional consumption rule with MPC m(t).
Since Propositions 2 and 3 establish that there is a 1-1 mapping between time-consistent discount func-

tions D(t) and the MPC function m(t), and there is also a 1-1 mapping between relative discount functions
Dr(s) and the MPC function m(t), there must also be a 1-1 mapping between the two types of discount
functions.18

Corollary 4 In a steady state with constant interest rates or if utility is logarithmic, there is a one-to-one
correspondence between the space of time-consistent discount functions D(t) : [0; T ] ! R+ with D(0) = 1
and the space of relative discounting functions Dr(s) : [0; T ] ! R+ with Dr(0) = 1 such that the same
consumption behavior is realized in a time-consistent discounting model with D(t) and in a time-inconsistent
discounting model with the corresponding Dr(s).

For both time-consistent and time-inconsistent discounting models, households are su¢ ciently rational
so that lifetime wealth W (t) is a su¢ cient statistic for their income path. The existence of a proportional
consumption rule means that households can decompose their consumption-saving problem into the determi-
nation of their lifetime wealth and the determination of what fraction of their wealth they should consume at
each age. The dichotomy between these two problems ensures that the MPC only depends on a household�s
current age and preferences, and not on the income path. Thus the mapping between the two types of
discounting functions will be the same for any income path, though it does depend on the reigning interest
rate (except when 
 = 1).
From a scienti�c perspective, the signi�cance of Corollary 4 is that we will not be able to identify whether

households maximize a time-consistent utility function like (45) or repeatedly reoptimize a time-inconsistent
utility function like (54) if we only have access to panel data on household consumption. The two types
of preference models can only be distinguished empirically if we can elicit a household�s plans for future
consumption at various points in the lifecycle. If the household repeatedly reoptimizes a time-inconsistent
utility function, its plan for how much it will consume at some future age t can change as the household
progresses through time to age t. In constrast, if the household maximizes a time-consistent utility function,
its plan should remain unchanged over the course of the lifecycle.

18This corollary does not imply that the equivalence between a time-consistent discount function and a relative discounting
function preserves the monotonicity properties of the discount functions. A model with a strictly decreasing time-consistent
discount function might have a relative discounting function that is not decreasing, or vice versa. In a �nite-horizon model,
there is no technical necessity of having a decreasing discount function. Most economists intuitively believe that discount
functions ought to be decreasing. In practice we will usually start o¤ with one representation of the discount function that
we know how to interpret and which may satisfy monotonicity. The corollary shows there is a mathematically equivalent
representation of the other type that may be useful for some purposes, but we do not have to abandon the original, monotonic
representation when interpreting these preferences.
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6 Calibration Exercises

I now apply Corollary 4 to some common discounting models in the literature, calibrated to match
important macroeconomic observables. Where economists normally employ a relative discounting model,
we obtain the equivalent time-consistent model, and vice versa.

6.1 Computing the Equivalent Time-Consistent Discount Function

First, let us compare the equivalent time-consistent discount functions for the exponential, hyperbolic, and
myopic discounting models described in Section 3. I have calibrated an overlapping-generations model where
households live with certainty from age 25 to age 80. Household income y(t) follows Gourinchas and Parker
(2002) until households retire at age 65. The interest rate r = 3:4%.19

One issue that has to be addressed when comparing across discounting models is that discounting para-
meters do not have the same economic interpretation. The same value of the �discount rate�in two di¤erent
discounting models may yield di¤erent levels of impatience. Here I control for patience by calibrating the
three models so aggregate saving

K =

Z T

0

k(t)dt (63)

is the same across models.20 With log utility, I set � = 0:04 in the exponential model, � = 0:063 in the
hyperbolic model, and H = 19 years (with � = 0) in the myopic model.21

The resulting consumption pro�les are plotted in Fig. 1. The exponential model produces a smooth,
almost linear consumption pro�le that slopes downward because � > r. The hyperbolic model produces a
hump-shaped consumption pro�le as in Park (2012). The myopic model gives a piecewise smooth pro�le.
Prior to age 61, the household�s time horizon is shorter than its lifespan, so it has an e¤ective discount rate
of �eff =

1
H = 0:052 > r, and consumption declines steeply. After age 61, the household does not discount

future consumption, so consumption rises even more steeply since r > 0.
The corresponding asset demand pro�les are plotted in Fig. 2. The area under each curve is the same

by construction. All three models lead the household to initially borrow and then build up saving to fund
consumption during retirement. The hyperbolic model actually has the household borrow the least and
start saving earliest, although it accumulates less saving prior to retirement. The myopic model borrows
the most, but also accumulates the most saving at retirement since it consumes so little in the years prior
to the realization that the household will soon reach its end.
While the hyperbolic and myopic models are usually viewed as less rational than the exponential model, all

three consumption pro�les can be obtained from a time-consistent discounting model that is unquestionably
rational. The equivalent discount function D(t) for the three models is given in Fig. 3. The myopic model
has a piecewise exponential function with the discount rate in each piece equal to the e¤ective discount
rates computed above. Early in life, the hyperbolic model puts more weight on consumption than the other
two models whereas the myopic model puts less weight on consumption until about age 72 when the three
discount functions intersect. Thereafter the ordering of the three discount functions reverses. The relative

19This is chosen to produce K=Y = 2:5 and C=Y = 0:75 with a Cobb-Douglas production technology that has a share of capital
of 1/3 and depreciation rate of 10% in an overlapping-generations model with labor productivity endowment e(t) = y(t)=w,
where the wage w is determined in equilibrium.
20A more common method of controlling for patience is to equalize

R T
t Dr(t0)dt0 across models, but this can only be done for

one t. Equalizing aggregate saving controls for patience across the lifecycle. Moreover, aggregate saving has the advantage
that it is observable.
21With these parameters, aggregate saving equals the capital stock necessary to achieve r = 3:4% in equilibrium.
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c(t)

Age (t + 25)

Figure 1: Lifecycle consumption pro�les for the exponential, hyperbolic, and myopic discounting models
calibrated to produce the same aggregate saving.
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k(t)

Age (t + 25)

Figure 2: Lifecycle asset demand pro�les k(t) for the exponential, hyperbolic, and myopic discounting models
calibrated to produce the same aggregate saving.
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weight
D(t)

Dexp(t)
� 1

of the hyperbolic and myopic discount functions to the exponential is plotted in Fig. 4. The hyperbolic
model puts a maximum of 12.5% more weight than the exponential model on utility in the early �fties. At
the end of life, it puts 10% less weight on utility than the exponential model. In contrast, the myopic model
puts a minimum of 40% less weight than the exponential model on utility in the 60s. At the end of life, it
puts 40% more weight on utility.
The exponential discounting model assumes a constant decay rate for the discount function. However,

if preferences are dictated by biological forces, an idea discussed at greater length in the conclusion, then
it is plausible that human beings would evolve to put more value on consumption during the �rst half of
adulthood when they are likely to be producing and raising children. Purely hyperbolic discounting may
put too much weight on consumption during the middle ages and not enough during the childbearing years.
Nevertheless if such biological factors do play a role in driving preferences, the hyperbolic model will better
approximate the true discounting function than the exponential model.

6.2 Computing the Equivalent Relative Discount Function

Another common discounting model employed in the literature22 is the standard exponential discounting
model augmented by mortality risk, which is time-consistent:

D(t) = exp(��t)Q(t). (64)

I calibrate this model with a discount rate of � = 0:04 and a survivor function Q(t) taken from U.S. data
(Bullard and Feigenbaum (2007)). The equivalent relative discount function is plotted in Fig. 5. Note that
the resulting relative discount function Dr(t) is not monotonic decreasing, a property that is not required
by our de�nition of a relative discount function. For very small t, the reported Dr(t) function behaves quite
weirdly, starting at 1, dropping down to 0.7 and then returning to 0.9 over delays between 0 and a month.
This is likely due to approximation error. The behavior of Dr at short delays is driven by the behavior of
the MPC function at the end of life, where m(t) is divergent.
I also plot Dhyp

r (t; 0:12), which is the closest �t to Dr(t) in the hyperbolic class of relative discount func-
tions, and Dexp

r (t; 0:45) in the exponential class. Although the relative discount model is not well represented
by either model, the hyperbolic model provides a better �t than the exponential model.23 Thus another
explanation for why human beings might exhibit non-exponential discounting is that this is a convenient
way to incorporate mortality risk in the discount function.

7 Social Security

Imrohoroglu, Imrohoroglu, and Joines (2003) have shown that Social Security cannot improve the welfare
of hyperbolic discounters in partial equilibrium. Caliendo (2011) showed this more generally for any time-
inconsistent preferences of the form (54). His Generalized IIJ Impossibility Theorem can be seen immediately

22See, for example, Huang, Milevsky, and Salisbury (2012); Richard (1975); or Yaari (1965).
23The mean squared error for the hyperbolic �t is 0.020 while it is 0.045 for the exponential �t.
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D(t)

Age (t + 25)

Figure 3: Time-consistent discount functions D(t) for the exponential, hyperbolic, and myopic discounting
models calibrated to produce the same aggregate saving.
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D(t)
Dexp(t)

Age (t + 25)

Figure 4: Discount functions D(t) for the hyperbolic and myopic discounting models relative to the expo-
nential model.
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Delay (t)

Dr(t)

Figure 5: The relative discount function Dr(t) equivalent to a time-consistent discount function
Q(t) exp(�rt). Fits to exponential and hyperbolic discounting functions are also plotted.
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if we use the equivalent time-consistent discount function to evaluate welfare. In the present context, we
can analyze the e¤ect of changing y(t) without changing the path of interest rates r(t).24

From Eq. (21), we see that consumption at any point in the lifecycle will be proportional to the present
value of income

R T
0

y(s)
R(s)ds. If r(t) is �xed, the proportionality factor m(t) R(t)M(t) will be exogenous, and the

household will be objectively worse o¤ if a policy reduces the present value of income. With monotone, time-
consistent preferences, lifetime utility must then also be reduced. Combining (45) and (21), we compute
lifetime welfare with the time-consistent representation of utility:

U =

Z T

0

D(t)u

 
m(t)

R(t)

M(t)

Z T

0

y(s)

R(s)
ds

!
dt

For 
 6= 1;

U = u

 Z T

0

y(s)

R(s)
ds

!Z T

0

D(t)

�
m(t)

R(t)

M(t)

�1�

dt (65)

while for the case of log utility

U = ln

 Z T

0

y(s)

R(s)
ds

!Z T

0

D(t)dt+

Z T

0

D(t) ln

�
m(t)

R(t)

M(t)

�
dt: (66)

In either case, lifetime welfare is a strictly increasing function of the present value of income
R T
0

y(s)
R(s)ds.

Thus the e¤ect of any policy on welfare in partial equilibrium is solely determined by how this policy a¤ects
the household�s wealth.
In partial equilibrium without binding borrowing constraints, Social Security cannot improve the welfare of

naive time-inconsistent individuals if it reduces the present value of lifetime income, regardless of the shape
of the discount function. In equivalent terms, Social Security must reduce welfare if its internal rate of
return is less than the interest rate. I should stress, though, that this conclusion only applies to welfare as
de�ned by the equivalent time-consistent discount function, which I am presuming must drive the evolution
of the household�s behavior. This does not imply that Social Security cannot make households feel better
o¤ as they perceive their welfare if in fact they have time-inconsistent preferences.25

This result is a consequence of the fact that agents in these models still follow consumption rules pro-
portional to current lifetime wealth, which households are assumed to value correctly. If households have
irrational expectations about their future income, as in Caliendo and Aadland (2007) or Park (2009), then
Social Security can make a di¤erence. Findley and Caliendo (2008) have demonstrated that when house-
holds are not just myopic in their preferences but also cannot see that they will earn income beyond their
current time horizon, then Social Security can raise welfare. In such models, the reason why households do
not save enough for retirement is not because they undervalue retirement consumption during their working
life; it is because they do not expect to retire.
Another argument for how Social Security might help households is that it may act as a commitment

device that prevents households with time-inconsistent preferences from deviating from their original time-0
plan. In fact Guo and Caliendo (2012) have shown that a self-�nancing transfer-payment mechanism that
keeps households from deviating from their original time-0 plan must involve time-inconsistent announce-
ments about what bene�ts households can expect from the government and consequently looks nothing like

24We cannot use the equivalent time-consistent model for welfare comparison in general equilibrium, except in the case of log
utility, because a change in Social Security will change the interest rate and therefore change the mapping.
25Similar objections can also be made regarding the interpretation of the preexisting IIJ theorems. IIJ (2003) and Caliendo

(2011) draw their conclusions by showing that consumption at every point in the lifecycle will be reduced if Social Security has
a negative net present value.
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existing Social Security systems. But even if Social Security could work as a commitment device, we can
use the equivalent time-consistent discounting function to ask whether it is a good idea for the government
to provide this commitment device. Both the original plan and the realized plan will be feasible. Since
a household with the time-consistent discounting function is completely rational, the realized plan will be
chosen over the original plan precisely because the realized plan delivers higher utility. Thus there is no
time-consistent value in helping households with time-inconsistent preferences commit to their original plan,
and this should neither be helped nor encouraged.

8 Concluding Remarks and Evolutionary Interpretation of Equiv-
alence Relation

Suppose that households value their consumption �ow using a constant relative risk aversion utility function.
If households allocate consumption to maximize the integral of this utility �ow over the lifecycle, weighted
by a time-consistent discount function, they will adopt a proportional consumption rule in which their
consumption at every instant is some age-dependent fraction of their accumulated wealth at that age. We
call this fraction the marginal propensity to consume. If, instead, at every instant households maximize the
integral of the utility �ow over their remaining life span, weighted by a time-inconsistent relative discount
function, they will also adopt a proportional consumption rule. Only in the case of an exponential discount
function will the resulting rule be the same for both classes of models if the functional form of the discount
function is the same. Nevertheless, I have shown that in a steady state with constant interest rates, given
a speci�cation of how the MPC varies over the lifecycle, we can obtain both a time-consistent discount
function and a relative discount function that generate a given marginal propensity to consume function.
Consequently, there is a one-to-one correspondence between time-consistent discounting models and time-
inconsistent discounting models: a time-consistent discounting model and its corresponding time-inconsistent
model will both produce the same consumption behavior.
To continue the quantum mechanical analogy from the introduction, there is a duality between time-

consistent and time-inconsistent discounting models. We can exploit this duality to better understand
behavior that, at least at �rst glance, seems like it can only come from one class of model and not the other,
as for example occurs when experimental economists observe preference reversals.
If we accept the premise that preferences over consumption have evolved to optimally satisfy biological

imperatives then natural selection requires a time-consistent representation of preferences to work upon
since the time scale of natural selection is much longer than one generation. Under this view, the time-
consistent discount function ought to measure the relative importance of consumption at di¤erent ages for
the perpetuation of the species. However, while a time-consistent representation is necessary to determine
the optimal consumption rule, it is not necessary to implement a proportional consumption rule. A brain
with �nite computing power may �nd it easier to employ a relative discounting function when making
consumption-saving decisions since the relative discounting function that yields the optimal consumption
rule will not change over the lifecycle. The two representations will only coincide for the special case when
the time-consistent discounting function is exponential, which is a subset of measure zero of the space of
possible discounting functions. Thus it will almost certainly be the case that the optimal consumption rule
can be derived from a time-inconsistent relative discounting function.
I have shown that equivalent time-consistent discount functions for hyperbolic and similar relative dis-

count functions put more weight on consumption during and prior to the child-bearing years. Mortality risk
will naturally cause a person to put more weight on consumption early in life. From a biological perspective,
more weight should also be put on consumption during these years if preferences are determined so as to
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maximize the size of one�s progeny. The health of a person after his kids are grown has very little impact
on the perpetuation of his line. Consumption prior to reproduction is important to ensure healthy children,
and consumption, both of the parent and child, while the children are growing will also be important. Thus
consumption behavior consistent with hyperbolic-like discounting is also consistent with biological theory.
Since the two representations are equivalent for the purposes of solving macroeconomic overlapping-

generations models, we suggest that the most relevant representation be applied depending on the context.
When doing welfare analysis, one ought to use the time-consistent discounting model that must presumably
determine why the observed consumption rule is optimal.26 When doing experiments that delve into precisely
how consumption choices are made, one should use the discounting model that best matches how people
empirically make these choices, which, based on existing data, is going to be the relative discounting model.
The upshot of all this is that time-inconsistent preferences that arise from a relative discounting model are
an innocuous deviation from our standard notion of rational behavior. If, on the other hand, preference
reversals are happening because the brain is only solving an approximate version of the household�s problem
(Rubinstein (1988, 2003), Leland (2002)), that is a situation not covered by the models in this paper and
welfare consequences may be more severe.
The �ndings of this paper emphasize the need for a reliable panel data set on consumption. It has

been more than 50 years since Friedman (1957) wrote A Theory of the Consumption Function. After
�ve decades, we still have only an imprecise understanding of how people apportion their income between
consumption and savings. The state of the art today is to assume a family of discounting models, usually
exponential or hyperbolic, and estimate which parameters �t best to consumption data (Blow, Browning,
and Crawford (2014)).27 If we knew more precisely what consumption rule people actually obey, we could
nonparametrically back out preferences consistent with this consumption rule, and many of our debates
about preferences would be resolved.

A Properties of Standard Discounting Models

A.1 Exponential

The Hamiltonian for the exponential problem (22) is

Hexp = exp(��t)u(c(t)) + �(t)[y(t) + r(t)k(t)� c(t)]; (67)

which yields the equations of motion

@Hexp
@c(t)

= exp(��t)u0(c(t))� �(t) = 0 (68)

@Hexp
@k(t)

= r(t)�(t) = �d�(t)
dt

: (69)

The c equation (68) determines �(t) as a function of c(t)

�(t) = exp(��t)u0(c(t)) (70)
26We are assuming here that the utility function maximized by natural selection is also the utility function that the individual

would prefer to maximize. Philosophically, this is a rather shaky proposition, equivalent to assuming that people have no free
will independent of their biologically determined fate. As a practical matter though, if we abandon the basic principle of
revealed preference that we can deduce an individual�s utility function from his behavior, then we are in Austrian territory.
27We can compute both the time-consistent and the observationally equivalent time-inconsistent discount function that best

�t household consumption data. However, we cannot distinguish which of these two discount functions the household actually
employs in its utility function.
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while the k equation (69) determines the equation of motion for �(t):

d ln�(t)

dt
= �r(t); (71)

which has the solution

�(t) =
�(0)

R(t)
: (72)

Solving (70) for c(t)

c(t) = (u0)�1
�
�(0) exp(�t)

R(t)

�
and de�ning

c(0) = (u0)�1(�(0));

we obtain the lifecycle consumption pro�le

c(t) = (u0)�1
�
u0(c(0)) exp(�t)

R(t)

�
: (73)

Solving (73) for c(0); and inserting that result back into (73) evaluated at s 2 [t; T ], we �nd

c(s) = (u0)�1
�
u0(c(t)) exp(�(s� t))R(t)

R(s)

�
:

Substituting this into the lifetime budget constraint (8), we obtain the exponential MPC

mexp(t; �) =
1R T

t

�
R(t)
R(s)

� 
�1



exp
�
� �

 (s� t)

�
ds

:

Note that mexp(t; �) satis�es (11), for

lim
t!T

mexp(t; �)(T � t) = lim
t!T

T � tR T
t

�
R(t)
R(s)

� 
�1



exp
�
� �

 (s� t)

�
ds

= lim
t!T

�1R T
t

@
@t

��
R(t)
R(s)

� 
�1



exp
�
� �

 (s� t)

��
ds�

�
R(t)
R(t)

� 
�1



exp
�
� �

 (t� t)

� = 1
by l�Hôpital�s Rule.

A.2 Naive Hyperbolic

The Hamiltonian for the hyperbolic problem (31) at age t is

Hhyp(t) =
u(c(s; t); 
)

1 + �(s� t) + �(s) [y(s) + r(s)k(s; t)� c(s; t)] : (74)

Hamilton�s equations are
@Hhyp(t)

@c(s; t)
=

c(s; t)�


1 + �(s� t) � �(s) = 0 (75)
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d�(s)

ds
= �@Hhyp(t)

@k(s; t)
= ��(s)r(s): (76)

The costate variable has the solution

�(s) =
�(t)R(t)

R(s)
: (77)

From Eq. (75), planned consumption is

c(s; t) = [�(s)(1 + �(s� t))]�1=
 : (78)

If we de�ne
c(t) = �(t)�1=
 ,

we can rewrite (78) as

c(s; t) =

�
R(s)

R(t)(1 + �(s� t))

�1=

c(t):

Substituting this into the imagined budget constraint (36), we obtain the hyperbolic marginal propensity to
consume

mhyp(t; �) =
1R T

t

�
R(s)
R(t)

� 1�




[1 + �(s� t)]�1=
 ds
:

Since

lim
t!T

mhyp(t; �)(T � t) = lim
t!T

T � tR T
t

�
R(s)
R(t)

� 1�




[1 + �(s� t)]�1=
 ds

= lim
t!T

�1R T
t

@
@t

��
R(s)
R(t)

� 1�




[1 + �(s� t)]�1=

�
ds�

�
R(t)
R(t)

� 1�




[1 + �(t� t)]�1=

= 1;

the naive hyperbolic MPC satis�es the condition (11)

A.3 Myopic

The Hamiltonian at age t will be

Hmyo(t) = exp(��(s� t))u(c(s; t)) + �(s)[y(s) + r(s)k(s; t)� c(s; t)]:

@Hmyo
@c(s; t)

= exp(��(s� t))u0(c(s; t)) = 0 (79)

d�(s)

dt
= � @Hmyo

@k(s; t)
= �r(s)�(s): (80)

These equations of motion are the same as in Section 3.1 except they are only applicable for s 2 [t;minft+
H;Tg]. Thus (23) is applicable for s < minft+H;Tg, and the planned lifecycle consumption pro�le at age
t is

c(s; t) =

(
c(t)

�
R(s)
R(t)

�1=

exp

�
� �

 (s� t)

�
s 2 [t;minft+H;Tg]

0 s 2 (t+H;T ]
:
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Inserting this into the imagined lifetime budget constraint (36), we obtain

mmyo(t; �;H) =
1Rminft+H;Tg

t

�
R(s)
R(t)

� 1�




exp
�
� �

 (s� t)

�
ds

:

Note that

lim
t!T

mmyo(t; �;H)(T � t) = lim
t!T

T � tRminft+H;Tg
t

�
R(s)
R(t)

� 1�




exp
�
� �

 (s� t)

�
ds

= lim
t!T

�1

�
�
R(t)
R(t)

� 1�




exp
�
� �

 (t� t)

�
+
R T
t

@
@t

��
R(s)
R(t)

� 1�




exp
�
� �

 (s� t)

��
ds

= 1:

B Properties of General Discounting Models

The Hamiltonian for the problem (45) with discount function D is

HD = D(t)u(c(t)) + �(t)[y(t) + r(t)k(t)� c(t)] (81)

@HD
@c(t)

= D(t)u0(c(t))� �(t) = 0 (82)

d�(t)

dt
= � @HD

@k(t)
= �r(t)�(t): (83)

Given �(t), the solution to (83) is again (77) while the solution to (82) is

c(t) =

�
�(t)

D(t)

��1=

:

The MPC for the general discounting function is

m(t) =
1R T

t

�
D(s)
D(t)

�
R(s)
R(t)

�1�
�1=

ds

; (84)

which satis�es the condition (11):

lim
t!T

m(t)(T � t) = lim
t!T

T � tR T
t

�
D(s)
D(t)

�
R(s)
R(t)

�1�
�1=

ds

= lim
t!T

�1R T
t

@
@t

�
D(s)
D(t)

�
R(s)
R(t)

�1�
�1=

ds�

�
D(t)
D(t)

�
R(t)
R(t)

�1�
�1=
 = 1:
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C Properties of Relative Discounting Models

The Hamiltonian for the problem (54) at age t is

Hr(t) = Dr(s� t)u(c(s)) + �(s)[y(s) + r(t)k(s)� c(s)]: (85)

Hamilton�s equations are
@Hr
@c(s)

= Dr(s� t)c(s)�
 � �(s) = 0 (86)

d�(s)

ds
= � @Hr

@k(s)
= �r(s)�(s): (87)

The solution to (86)-(87) is

c(s) = c(t)

�
R(s)

R(t)
Dr(s� t)

�1=

:

Note that the resulting MPC,

m(t) =
1R T

t

��
R(s)
R(t)

�1�

Dr(s� t)

�1=

ds

;

satis�es (11):

lim
t!T

m(t)(T � t) = lim
t!T

T � tR T
t

��
R(s)
R(t)

�1�

Dr(s� t)

�1=

ds

= lim
t!T

�1

�1 +
R T
t

@
@t

 ��
R(s)
R(t)

�1�

Dr(s� t)

�1=
!
ds

= 1:

Since
lim
t!T

m(t)(T � t) = 1;

for t � T ,
m(t) � 1

T � t :

d lnmr(t)

dt
� d

dt
(� ln(T � t)) = 1

T � t
we also have

lim
s!0

Dr(s) = lim
s!0

�
1

m(T � s)
d lnm(T � s)

dt

�

exp (�(1� 
)rs)

= lim
s!0

(T � (T � s)) 1

T � (T � s) = 1:
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