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ABSTRACT 

Effects o( Ripening Processes on Chemistry of Tomato Volatiles 

by 

Bharat Manu Shah, Doctor or Philosophy 

Utah State University, 1968 

Major Professor: Dr. D. K. Salunkhe 
Department: Food Science and Technology 

Jnvestigations were carried out to isolate, identify, and to characterize, 

major volatile components of tomato fruit. Simultaneously, the confirmation 

was extended to the reported tomato voktiles. The volatile extracts from field-

and artificially-ripe fruits were compared qualitatively as well as quantitatively. 

The changes which occu rr:ed in tho volatile components of the fruit at the onset 

of senescence also were delineated. 

A typical chromatogram from field -ri pe tomatoes contained 60 peaks. 

The functional group properties of individual peaks were derived by chemical 

analysis. The short-chain (C:l -C
6

) alcol·,ols represented 10 per cent, aldebydes 

and ketones :!2 per cent, and hydrocarbons, long-chain alcohols, and esters 

were ia 58 J>er cent of the total .imount of the volatiles from the field - ripe 

fruits. 

Among alcohols and carbonyls, 3- peotanol, 1-nonanal, l - deoanal, 

and 1-dodecanal and among esters, propyl acetate, ger~nyl acetate, and 



cetronellyl butyrate were tentatively identified as volatile compounds of tomato 

fruit. Linalyl acetate, citronellyl butyrate, and geranyl butyrate were identi­

fied for the first time as the components of tomato volatiles. 

Comparisons of volatile concentrations of field- and artificially-ripe 

tomatoes were made. In the latter category of fruits the concentrations of 

l-butanol , 3-pentanol, 2-methyl-3-hexanol, 3-metbyl-butanal, 2, 3-butanedione, 

propyl acetate, isopentyl butyrate, and other unidentified carbonyls were higher 

than those observed in the field-ripe fruits. These short-chain compounds, 

especially the c
4
-c

6 
moities, probably are formed in their maximum concen­

trations during the early stages of maturation. Under the conditions of restricted 

nutrient availability , sun l,ight, and limited enzymatic activity during artificial 

ripening, the long- chain compounds are not sunthesized appreciably. The con­

centrations of some of these short-chain compounds may be to a level of mask­

ing the effects of more desirable compounds contributory to ripe tomato aroma. 

Notably, a pulp from the artificially ripe fruits lacked the characteristic ripe 

tomato aroma. The concentrations of the long -chain carbonyls and the terpene 

esters were low Jn the artificially ripe tomatoes as compared to the field-ripe 

ones. This may indicate major contribution of these compounds to ripe tomato 

aroma. An attempt has been made to theorize the mechanisms of the biogenesis 

of these components of tomato volatiles. 

The concentrations of the volatiles from field-ripe and overripe 

tomatoes were compared. During overripening the amounts of alcohols, 

aldehydes , ketones, acetates, and propionates generally decreased. However, 



the concentrations of diacetyl and butyric acid esters increased. It was 

assumed that at the onset of senescence the metabolic pathways for I.he 

formation of diacetyl and butyric acid were highly operative in tomato 

fruit. The mechanisms of these pathwa:rs were postulated. 

(57 pages) 



INTRODUCTION 

Food products contain very low concentrations of odoriferous com­

pounds. Isolation, separation, detection, and identification of these compounds 

present formidable problems. The compounds responsible for characteristic 

aroma should be isolated without any alteration, contamination, heat destruction, 

or oxidative degradation. Isolation methods very frequently used by flavor 

chemists are: distillation, extraction, cyrstalizatlon, and water removal by 

freezing. Gas-liquid partition chromatography (QC), with its low limits of 

detection, is one of the most powerful methods of separating submicrogram 

quantities of volatile compounds. Gas chromatography Is employed for separation 

and detection of volatile compounds in the vapor sampled directly Crom food 

products (head space vapor analysis) and also to separate and detect the volatile 

constituents extracted from food products. Chemical and physical properties 

of the material represented by a gas chromatographic peak must be obtained for 

positive assignment of chemical structure. Functional group analysis, thin-

layer chromatography, infrared spectroscopy, and mass spectrometry are 

valuable tools for identifying compounds in aroma Investigations. 

Though many studies have been conducted to elucidate the chemical 

nature of tomato volatiles, complete analysis has not been accomplished to 

enable the reproduction of a typical ripe tomato aroma. Investigat ions into 

chemistry of tomato volatiles and quantitative as well as qualitative dif­

ferentiation betwe en volatile conatituents from field- and artificially-ripe 
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tomatoes may reveal unknown aspects of fruit aroma. Analysis of the volatile 

components of the fruit during an overripe stage may elucidate the biochemical 

aspect of aroma deterioration. With the presumption of thes e potentials, the 

present study was undertaken. 



REVIEW OF LITERATURE 

Non-volatile constituents of the tomato 

Dalal (1965) correlated the biosynt hesis of non-volatil e constituents 

to the 1,>Towth rate In V. R. Moscow cultivar of tomato. Volatile reducing 

substances, reducing sugars, water soluble pectins , and organic acids 

progressiv ely increased in quantity with advancing maturity of tb.e fruit. 

3 

Total titratable acidity and total pectic substances increased during the initial 

stages of maturation, but gradually decreased as the fruit r ipened. Ascorbic 

acid content increased with the maturity of the fruit but declined in the later 

stages of maturation. The concentration of the pigments--chlorophylls, and 

carotenoids--changed significantly as the fruit passed through various stages 

of maturation. Beltran and Macklfn (1965) reviewed the literature ( L945 to 

1961) on the chemistry of the tomato and tomato products. Among the free 

sugars, representing more than 60 per cent of the solids, D-frlt ctose, D-glucose , 

sucrose, and ketoheptose were predominant. Citric and malic acids comprised 

80 to !JO per cent of the acids present. Glutamic and asparti c acids, valine, 

and glutamine were found in appreciable amounts among amino acids itnd 

amides present in eight varieties of tomatoes. Miers ( l966) reported that 1. 6 

to 1. 9 ppm dimethyl sulfide and 150 ppb hydrogen sulfide were present in 

proeesssed tomatoes. The precursor of these compounds in fresh ripe tomatoes 

was later determined to be S-methyl m(;thionine sulfonlum salt (Wong and Carson, 

1966). The sulfonium salt produced homeserine and dimethyl sulfide when heated. 
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Beltran and Maeklin (1965) rev iewed the enzyme systems present in 

the tomato fruit and reported the detection of mallc, succinic , formic and lactic 

acid dehydrogenases and also of alcohol and glucose dehydrogenases in ripe 

tomatoes. The distrib ution of ascorbic acid , oxidases , and peroXidases were 

considered par allel in the ep icarp , end:icarp, and mesocarp, The epicarp and 

endocarp contained more tha n did the mesocarp, and the concentrations In the 

epicarp and endocarp tended to increase dur ing frul t ripen ing . An important 

contributio n to the knowledge of tomato biochemist r y was made by Yu (1967). 

He demo nstrated that crude enzyme preparations from fresh tomato es could 

convert ce rta in amino acids to volatile components. Alanine was found to be 

especially important as a prec ursor for the production of carbonyl compounds, 

whereas leuclne and valine appeared to be important for the production of 

alcohols by the enzyme preparations from the red-ripe tomatoes. The acti vities 

of the enzyme extracts from the fie ld-grown tomatoes were higher than those 

from the greenhouse-grown tomatoes. He also investigated the specificity 

of the enzyme preparations. The mitochondrial preparations had much higher 

activity for alan ine and aspartic acid than the non-mitochondrial fraction. 

However, the mitochondrial preparation was not active for leucine. 

Volatile constituents of the tomato 

Reports o( investigations of volatile compou nds responsible for the 

odor and flavor of the tomato are very few in number. Early investigations by 

Spencer and Stanley (1954) were accomplished with series of solvent extract ion 

of tomato paste followed by molecular distillation of the solvent extract. 
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Components were fractio nated and partially separated by a silicic acid column. 

Carbonyls represented the largest group of compounds res ponsibl e for the 

tomato aroma. The diphenyl hydrazone derivatives of the carbonyl compounds 

were made and further separated by column chromatography. The main carbonyl 

constituent was ~_!_aldehyde . Isovaleraldebyde, citral, and vanillin were 

tentativ ely identified. Aroma extract was also recovered by vacuum distillation 

of thin tomato pulp. Three general types of aroma fractions were isolated. A 

fraction characterized as a "typ ical tomato" odor was relatively non-volatile 

and a fraction with a "green tomato" odor was relatively volatile. The typical 

tomato odor fraction contained alcohols , carbonyl compounds, and unsaturates 

and these were modifled by many other odor fractions, some terpene in nature. 

Matthews (1961) tentatively identified furfural, acetaldehyde, and acetone in 

ripe tomatoes. By employing paper and thin-layer chromatographic separation 

of derivatives of the tomato volatiles . Scborniuller and Grosch (1962, 1964) 

identified eleven volatile constituents. Glyoxal, methyl glyoxal, cinnamaldehyde , 

and hydroclnnamaldehyde were newly reported compounds. Citronella!, c( -

pinene, limonene and citral were reported by Hein and Fuller ( 1963). Nelson 

and Hoff (1967) tentatively identified 2-hexanal, tert-butanol, and methyl acetate. 

In a major study on flavor chemistry of the tomato, Dalal (1965) identified 

fifteen tomato volatiles by employing gas chromatography accompanied with 

thin-layer chromatography of the derivatives. He reported that isopentyl acetate, 

isopentyl butyrate, isopentyl isovalerate , and n-butyl hexanoate and n-hexyl 

hexanoate made important contributions to the tomato aroma. He also observed 
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that the concentrations of all the volatile components, with the except! on of 

isopentanal and n-hexanol, increased ""ith the maturity of the fruit grown 

either in the field or greenhouse. Isopentanal and n-hexanol were presumed 

to be responsible for the green tomato odor. Characteristically, field-grown 

tomatoes had more pronounced ripe tomato aroma than the b'Teenhouse -grown 

tomatoes. The concentrations of the afore mentioned esters were higher in 

the field-grown tomatoes as compared to the greenhouse-grown tomatoes. It 

was interesting to note that in the artificially ripened tomatoes, the concentrations 

of volatile components were lower than in (ield- or greenhouse-grown tomatoes. 

Pyne and Wick (1965) identified twelve compounds and reported other unidentified 

compounds. These investigators vacuu:n distilled fresh ripe tomato pulp. The 

condensates were solvent extracted and the extract was concentrated. The con­

centrate was separated by gas chromatography and individual components were 

recollected. Identification of the compounds was based on retention data and 

infrared spectra. They noted that a synthetic mixture of these compounds yielded 

a green tomato aroma. A synthetic mixture of tomato volatiles prepared by 

Dalal (1965) also had green tomato aroma, however, when the mixture was 

added to a deodorized tomato puree, the ripe tomato aroma was perceived. 

Major contributors to typical ripe tomato aroma were suspected to be relatively 

high boiling components. ·rhis supposition was confirmed by Ryder (1966) as 

he indicated that during a gas chromatographic separation of tomato volatiles 

concentrate, a fraction which eluted between 150-225 C, was of interest in 

relation to ripe tomato aroma. Collecti';ely, about 40 compounds (Table l) 



Table 1. Volatile components reported in fresh or processed tomatoes 

Hydrocarbons Aldehydes and ketonos Alcohols 

L . 6 1monene 
c( -pinene 1, 2 

;oa1a1. 1965 

9 5 6 Glyoxal 
7 9 

Ethanol ' 
5 Methyl glyoxal ' 2-dimethyl ethanol 

Acetaldehyde3, 5, 6, 7, 10 1-propanot5, 6 
Acetone3, 5, 8 2-propanol6 
2-butanone5, 6, 9 l-butanol 6 

2,3-butanedione 5i 9
2 5 6 7 10 

2-butanol 5 
1 5 6 3- methyl butanal ' ' ' ' ' 2- methyl-1-propanol ' • 

2-pentanone5, 9 l-pentano15,6 
2, 3-pentanedione 

7 
2-methyl-1-butanol 6 

6 Furfurat3, 5 3-methyl-l-butanol 1 ' 
1-hexana-f.l, 5, 6 , 8 1-hexanoll, 5, 6 
2-hexanat6, 8 2-hexanol 5 

9 6 Methyl heptanone 3-hexen-1 -ol 
1 Citral

2 
2 2-methyl-3-hexanol 

Ci tronellal 
1 6 Benzaldehyde ' 

7 Pheny lacetaldeh§de 
Cinnamaldehyde 
Hydrocinnamaldehyde9 

Esters 

5 Methyl acetate 
Ethyl acetate 5, 6 

1 Isopentyl acetate 
1 Isope ntyl butyrate 

1 Isopentyl isovalerate 
1-butyl hexanoatel 
1-hexyl hexanoate 1 

Methyl salicylatel, 6 

3
Hein and Fuller, 1963 

4 Matthews, 1961 

5Meirs, 1966 
Nelson and Hoff, 196 7 

~Pyne and Wick, 1965 

8
Ryde r, }966 

9Schorm~ller and Grosch, 1962 

10Schormuller and Grosch, 1964 
Spencer and Stanley, 19 54 

Miscellaneous 

Hydrogen sulfide 4 • 5 

Dimethyl sulfide4 , 1 
2-methyl pyrazine 

7 2, 6-dimethyl pyrazine 
Pyridine 7 

"" 



have been identified and reported to contribute to tomato aroma. No single 

compound has been observed with a tyi:;ical tomato odor. 

8 
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EXPERil'l!ENTA L 

Material 

Tomatoes (Cultivar: V. R. M:>Scow) were grown on Utah State Uni­

versity Experiment Station farms during the summer months of 1964 to 1967. 

Tomatoes were harvested at a red-ripe stage of maturation (degree 9; Dalal, 1965). 

They were washed and were packed into polyethylene bags. The packed tomatoes 

were frozen and stored for the experimental use. 

A rtif!c!al ripening 

Tomatoes were allowed to ripen in the field up to breaker stage (degree 

5; Dalal, 1965) of maturation. A representative lot of tomatoes were harvested 

and brought immediately to the laboratory. They were washed and were placed 

in wooden trays keeping at least one inch space between fruits. The trays were 

kept in a room where temperature ranged from 20-22 C and a relative humidity 

from 32-34 per cent. Artificial ripening of the tomatoes was carried out under 

above conditions llntil a majority of the fruit turned red -ripe. The red-ripe 

tomatoes were packed in polyethylene bags, were frozen and stored for the 

experimental work. 

Overripening 

Field-ripe (degree 9; Dalal, 1965) tomatoes were washed and were 

placed in wooden trays keeping at least one inch space between fruits. The 

trays were kept for 36 hours in a room at a temperature range of 20-22 C and 
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a relative humidity of 32-34 per cent. During this period the tomatoes softened 

to some extent, however, the microbial quality of the fruits was not affected. 

These tomatoes were termed "overripe." The fruits were packed in polyethylene 

bags and were frozen and stored for further experimental work. 

Extraction of tomato volatiles 

Direct fruit extraction. The frozen tomatoes were dipped in distilled 

water (20-22 C) for about 5 min. The defrosted pericarp layer was removed 

from the fruits. This helped to exclude pectic substances and waxy material 

from the aroma extract. After the removal of the pericarp layer, the tomatoes 

were chopped finely and 35 g of ammonium chloride were added for each 100 

g of fruit. The mixture was blended to a fine pulp In a Waring blendor. A pulp 

from t00 g of fruit was extracted four times with a total quantity of 240 ml 

purified ethyl ether in a separatory funnel. The solvent -pulp mixture was 

centrifuged at approximately 800 x g for 2 min. at room (20-22 C) temperature. 

The supernatant liquid (solvent phase) was carefully transferred to an 

Erlenmeyer flask. Three g of a decolorlzer (Nuchar Attaclay, Wilkens 

Instrument imd Research, Inc . ) and 15 g of a de.siccant--anhydrous magnesium 

sulfate were added to the collected solvent phase. The above mixture was kept 

for 4 hr. in a refr.igcrator ( 1 C) and was shaken periodically (6-8 times in 1 

hr.). Occasionally it was necessary to add additional amounts of the decoloriz­

ing agent and the desiccant. The pale yellow or nearly colorless aroma extract 

was filtered to an evaporating dish through a Buchner funnel by using Whatman 

filter paper No. 1. The extract was concentrated to approximately 10 ml under 
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a hood. This was transferred to a glass vial and was allowed to concentrate 

to 20-30 pl. The vial was stored in the freez-er comparment (-15 C) of a 

refrigerator. The aroma concentrate was gas chromatographed within the 

72-hr. after the ei...-traction from the fruits. 

Steam distillation. A laboratory type steam distillation apparatus was 

used to distill volatiles from a tomato pulp. The pericarp layer of frozen 

tomatoes was defrosted by a distilled water dip and the layer was removed by 

hand. The tomatoes were chopped and blended to a pulp. Five hundred g of 

tomato pulp was put In 1000 ml distilling flask. A glass tube (1/ 4" o. d.) 

extension from a boiling water flask was inserted to 3 inches above the bottom 

of the distilling flask. A spiral tube water (20-22 C) condensor (22") was 

attached to the distilling flask vapor outlet. The condensed steam volatiles 

were recovered in a flask cooled with an ice-salt mixture. A total of 3000 

ml of the condensate was collected. This was saturated with refined sodium 

chloride and was extracted three times with a total quantity of 350 ml 

purified ethyl ether in a separatory funnel. The upper layer (ethyl ether) 

in the separatory funnel was carefully collected in an Erlenmeyer flask. To 

the collected solvent phase was added 1 g of the decolor!zer and 10 g of the 

desiccant. The mixture was kept in a refrigerator (1 C) and was shaken 

periodically. The decolorlzed extract was filtered to an evaporating dish 

through a Buchner funnel using Whatman filter paper No. 1. The extract 

was finally concentrated under hood to 100-150 )11 and was stored in a freezer 

compartment (-15 C) of a refrigerator. The aroma concentrate was gas 

chromatographed within 72 h.t•. after the extraction from the fruits. 



12 

Preparation of GC column accessories 

The procedure adopted by Dalal (1965) was followed in the preparation 

of GC column accessories. 

Preparation of packing material for GC column, Teng of Carbowax 20 M 

(liquid phase) was suspended in 100 ml of methanol in a beaker. Ninety g of 

Chromosorb w, acid washed, 60/80 M, (stationary phase) was gradually added 

to the solution. The solvent was then removed under vacuum In a rotatory (20-

30 rpm) vacuum evaporator. The dried mixture was transferred to an evaporat­

ing dish and was kept overnight in a vacuum des iccator to remove the last traces 

of the solvent. 

Technique for packing and conditioning the column. A stainless steel 

tube (1/4" (o. d.) x 10") was used to prepare a GC column. One end of the tube 

was sealed with glass wool. A small funnel was fixed at the top end of the tube. 

A steady flow of the packing material was passed through the funnel, while the 

tube was slowly vibrated by an electric vibrator. Later the tube was subjected 

to high speed vibrations to ensure thorough packing. When fully packed, the 

upper end of the tube was sealed with glass wool. The packed column was coiled 

around two iron poles 17 inches apart. Swagelock nuts and ferrules were fixed 

at both ends of the column. rt was then baked in an oven at 220 C for 48 hrs. 

followed by 12 hrs. of baking at 250 C. Nitrogen (2 p. s. i.) was passed through 

the column to avoid olddation of the liquid phase during baking. The passage of 

nitrogen also was used to drive off any volatile compound present in the column. 
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Removal of volatiles from aroma extracts 
(Functional group subtraction) 

Removal of alcohols. A boric acid column was prepared to remove the 

alcohols from the aroma concentrates 1Ikeda ~a l. , 1964). Boric acid (L 7 g) 

mixed with 20 ml of methanol was added to the previously prepared packing 

material (Chromosorb W 90 g + Carbowax 20 M 10 g). The amount of boric 

acid was adjusted to bring the final level at 3 per cent of total quantity of 

stationary and liquid phases. The solvent was i·emoved under vacuum in a 

rotatory evaporator. The dried material was transferred to an evaporating 

dish and was left overnight in a vacuum desiccator to remove the last traces 

of the solvent. The material was packed in an aluminum column (1/2" (o. d.) 

x 18"). 

The boric acid column, when attached to the tail end of a GC column 

retained alcohols (as acid-alcohol complexes) from aroma concentrates during 

gas chromatographic separation. 'fhls resulted in a suppression of corre-

sponding peaks compared to the origina l chromatogram. 

Removal of carbonvls. ·The procedure adopted by Wolford, Alberding, 

and Attaway (1962) was followed to remove carbonyls from the aroma con-

centrates. 

One and one-half g of citric acid and 50. 5 g of disodium hydrogen 

phosphate (buffer solution pH 7) were dissolved in a 1000 ml steam distillate. 

Fifty g of sodium bisulfite were dissolved in the buffered distillate. The 

solution was kept in a sealed glass container for 18 hrs. at room (20-22 C) 

temperature. It was then saturated with refined sodium chloride and was 
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extracted with purified ethyl ether. The extract was decolorized, desiccated , 

and concentrated. 

The procedure involved the use of the bisulfite addition reaction to form 

water soluble o( -hydroxysulfonate derivatives. During the extraction, the 

water-soluble derivatives were not extracted by ethyl ether. This resulted in 

a subtraction of carbonyls from the original aroma extract and a Sllbsequent 

suppression of corresponding peaks compared to the original chromatogram. 

Gas chromatographic separation of aroma concentrates 

A Micro-Tek Model GC 2500 R gas chromatograph with dual falme 

ionization detector connected to a Westronics recorder with a chart speed of 

15 inches per hour was employed to separate the concentrated extracts. 

Separation for recollecting the compollUds representing the peaks of 

interest were carried out with a thermal conductivity detector system. 

GC conditions employed during separation and collection of volatiles 

have been presented In Table 2. 

Collection of separated fractions 

As the fraction representing a peak of interest emerged out of the GC 

column, it was trapped in a glass - teflon U-tube cooled with dry ice-acetone 

mixture (-80 C). The U-tube was made of 22 inch glass tube (2 mm i. d., 3 mm 

o, d.) and to this a 3 inch teflon tube (3 mm i. d. , 3. 5 mm o. d.) was joined. The 

joint was leak -proofed with an epoxy cement. The teflon tube end was attached 

to the thermal conductivity detector outlet as the peak of interest emerged on 

the recorder chart. The tube was disco:mected as the completion of the peak 
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'l'able 2. Conditions employed during the gas chromatographic analysis of 
tomato volatile extracts 

Condition 

Column 

Liquid phase 

Carrier gas 

Air 

Hydrogen 

Column condi tlon 

Temperature programming 

Amount of sample injected 

Input attenuation 

Output attenuation 

Inlet block temperature 

Ionization detector block 
temperature 

Cell heater block 
temperab.lre 

Bridge current 

Flame ionization 

Slainless steel 
1/4" (o. d.) x 10' 

10 per cent 
Carbowax 20 M 

Helium, 40 p. s. i. 
60 ml/mln 

15 p.s.i. 
1. 2 CFH 

20p.s.i. 
40 ml/min 

70 C Initial hold 
isothermal for 7 min. 

5 C/min for 30 min. 
220 C final hold 

4 pl each time 

2 
l x 10 

4X, 8X 

200 C 

240 C 

Detector 

Thermal conductivity 

Stainless steel 
1/4" (o . d.) x 1.0' 

10 per cent 
Carbowa:x 20 M 

Helium, 22 p. s. I. 
20 ml/min 

7 0 C Initial hold 
isothermal for 7 min. 

5 C/min for 30 min . 
220 C final hold 

50 pl each ti me 

4X, BX, 32 X 

200 C 

240 C 

300 ma 
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on the chart Inferred total collection of the fraction. The procedure was 

repeated in the subsequent runs to have individual fractions quantitatively 

sufficient for infrared spectroscopy. Known amounts of authentic compounds 

were trapped by the above method and by comparison of peak areas, it was 

observed that the recovery was about 70 per cent. 

Enrichment technique 

The authentic compounds were purified by gas chromatographic 

separation on a Carbowax 20 M column. The purified compound was gas 

chromatographed with the aroma extract. When the peak represented by a 

tomato volatlle and an authentic sample was coincident, the tomato volatile 

was tentatively identified as the authentic one. 

Infrared spectroscopY 

A Beckman m 8 infrared spectrophotometer with a reference beam 

attenuator, a wedge cell, and a beam condenser attachment was employed to 

obtain infrared spectra of the trapped fractions. 

The U-tube containing a fraction was rinsed three times with a total 

quantity of 100 pl of spectragrade chloroform. The extract was collected in 

a 1 ml teflon beaker and the solvent was evaporated under hood to approxi­

mately 10 pl. A sodium chloride cell (type D, Connecticut Instrument 

Corporation, 0. 1 mm path length) was fllled with the above solution by using 

a microsyringe. 

A reference beam attenuator is an adjustable screen capable of 

attenuating radiant energy continuously over a wide range. It is excellent 



for use in a reference beam when sample-beam transmission is so low that 

the range of built-in control is not sufficient to set the 100 per cent trans­

mission line at a desired level. 
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A wedge cell is a sandwich of two sodium chloride windows assembled 

in a mount with a wedge-shaped spacer. The spacer permits a variable path ­

length range of 0. 061 mm to O. 122 mm. A wedge cell was used to balance out 

solvent absorption. 

A beam condenser is essentially a lens system utilized to get approxi­

mately five-fold reduction in cross-sectional area of sample beam, thereby 

resulting in a five-fold increase in the beam energy passing through the sample. 

The sample beam is magnified to an original size at a later stage. A beam 

condenser was employed to obtain distinct absorption characteristics, rather 

difficult to obtain otherwise With micro-quantity samples. 
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RESULTS AND DISCUSSION 

The chromatogram patterns from the direct fruit extract and the 

steam distillate were similar. A t,.-pical a1·omagram from the field -ripe 

tomatoes showed 60 peaks (Figure la). The functional group property of 

individual peaks (Figure lb and c) were derived by treating the steam dis­

tillate of the field-ripe fruits. Approximately, aldehydes and ·ketoncs repre­

sented 32 per cent, short-chain (C
3
-c

6
) alcohols 10 per cent, and hydro­

carbons, long-chain alcohols, and esters were in 58 per cent of the total 

amount of the volatiles from the field-ripe tomatoes. 

A comparison of volatiles concentrations of artificially ripe, field­

ripe, and overripe tomatoes were made on chromatograms (Figure 2a, b, 

and c) from the fruit extracts. Tlte concentrations of the major components 

are presented with analytical data in Table 3 (see page 38 of this report). 

The chromatographic peaks (Figure la) were categorized in two fractions. 

The peaks 1 to 20 designated as the " lower fraction" and the peaks from 21 

to 60 were included in the "hi gher fraction." The column temperature at 

the dividing point was approximately 160 C. 

Lower ft·action 

Major components in this class were identified by functional group 

analysis and by an enrichment technique using Carbowax 20 M column. The 

compounds of this group identified during ihe study were: 3-pentanol (peak 13) 
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,! 81 
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FIELD _.IPENEO 

Tinr/ltnp :ntwt 

Fib"ure 1. a. Volatiles from field-ripe tomatoes. 
b. Tomato volatiles after removal of carbonyls. 
c. ·romato volatiles after removal of alcohols. 
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.. 
m I ARTIFICIAll Y RIPEN ED .. 

a 

Figure 2. a. Volatiles from artifically ripe "bra ker" tomatoes. 
b. Volatiles from field-ripe tomatoes. 
c. Volatiles from overr·ipe tomatoes. 



and propyl acetate (peak 6). Among the alcohols that have been reported 

(Table 1) to contribute to the tomato aroma, the presence of 2-propano l 

(peak 2), t -butanol (peak 10), 2- methyl - 1- blltanol (peak 11), 2- methyl-3-

hexanol (peak 14) and 3-hexen-1-ol (peak 17) was confirmed. The contri­

bution of carbonyls such as 3-methyl butanal (isovaleraldchyd e) (peak 4), 

and 1-hexanal (peak 9) was established. The presence of isopentyl butyrate 

(peak 18) and isopentyl isovalerate (peak 19) also was confirmed. 
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Isovaleraldehyde, 1-hexanal, and 2 -methyl-3-hexanol were found in 

higher concentrations In the artificially ripe tomatoes than in field-ripe fruits 

(Figures 2a and b, Table 3). Dalal (1965) noted that lsovaleraldehyde and 

1-hexanol contributed to the "green tonato" aroma and that these compounds 

were found to be In their maximum concentrations at the breaker and large­

gr een stages of maturation, respectively. Notably, in our studies a pulp 

from the artificially ripe tomatoes lacked the characteristic "ripe tomato" 

aroma. 

Yu (1967) observed that the crude enzyme preparations from green 

tomatoes synthesized lower carbonyls when alanine, leucine, and valine 

were used as substrates . The enzyme preparations at this stage were in­

active for other amino acids. At a later stage of maturation, however, the 

enzyme preparations were active with a greater number of amino acids .. 

This shows that as the fruil ripens, more intricate enzyme systems become 

operative and utilize several kinds of substrates. It also is interesting to 

note that c
6

-compo unds are the first to be formed in appreciable amounts 

when the enzyme preparations from fruits are treated with fatty acids as 
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substrates. Hultin and Proctor (1962) added oleic acid to a crude enzyme 

preparation from bananas and concluded that the fatty acid might be a pre ­

cursor of 2-hexanal and 2-pentanone. Drawert et al. (1965) obs erved the bio­

synthesis of 1-hexanal from linolenic acid and that of 2-hexenal from linoleic 

acid when the fatty acids were employed as substrates for a cr ude enzym e 

preparation from apples. Both the aldehydes were formed in substantial 

amounts with no apparent intermediates. An oxidative degradation of the 

fatty acids had likely occurred. 

In the light of the above experiments the higher concentration of lower 

fraction compounds, expecially the c
6

-aldehyde and alcohol , in the artificially 

ripened tomatoes ls striking. Apparent:y, these compounds are formed ln 

their maximum concentrations during the early stages of maturation. Under 

the conditions of restricted nutrient availability and limited enzymatic activity 

during artificial ripening, the more flav ·~rful "higher fraction " compounds 

arc not synthesized appreciably. Thus, the earlier formed "lower fraction" 

compounds are major contributors to the total aroma volatiles. 

Photosynthesis, as performed by green plants , has a major role in the 

blosyntb.esis of volatiles. Fulfillment of photosynthetic requirements such as 

light, water , carbon dioxide, temperature (climatic conditions) and an avail­

ability of soil nutrients for the cultivation of fruits or vegetables with desired 

organoleptic characteristics hardly need emphasis. For this investigation 

on tomato volatiles, ib.e fruits were harvested during the summer months in 

the years 1964··1967. The field-ripe fruits of 1964 had volatiles in appreciably 

higher concentrations than the following years. This internal variation in the 
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fruits of the same cultivar can not be explained precisely except by the influ­

ence of photosynthetic reactions. 

Higher fraction 

This fraction comprised of lor,g-chain alcohols, higher carbonyls, 

terpenes, and esters . These compounds were significantly mor e abundant 

in the field-ripe than the artificially ripe fruits (Figure 2a and b). 

Carbonyls . The functional group property was verifi ed by sub­

tractive group analysis (Figure lb). T:1ese compounds were tentatively 

identified by an enrichment technqiue. The major components of this group 

were: 1-nonanal (peak 21), benzaldehyde (peak 25), 1-decanal (peak 26), 

citral b (neral) (peak 34), and 1-dodecanal (peak 35). The contribution of 

bcnzaldehyde and neral (Table 1) as volatiles of tomato fruit was thus con­

firmed. The present study contributes the aliphatic carbonyls as volatile 

components of tomatoes. The aliphatic nature of these compounds suggests 

a possibllfty of their biogcnesis from an oxidative degradation of fatty acids. 

The origin of benzaldehyde and other aromatic compounds (Tabl e 1) could 

be traced back to shik!mic acid which is derived from erytbrose -4-phosphate 

and pyruvic acid, the components of carbohydrat e metabolism. 

Esters. By functional group analysis it was inferred that the major 

components (peak 40-60) of this fraction were neither short - chain alcohols 

nor carbonyls. Thus they could be terpene hydrocarbons, esters, or long­

chain alcohols. 
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The infrared spectra of the major tomato volatiles are presented In 

Figures 3, 4, ands. The Interpretation of the infrared spectra were made by 

comparative and confirmational study of the works of Nakanishi (1962) and 

Rao (1963). Absorptions in 3000 cm - l region were assigned to symetrical 

and asymetrical stretching of alkanes. Asymetrical deformation around 1450 

cm-
1 

and symetr!cal deformation of 1365 cm -l of alkanes were decisive. 

. -1 
Absorption between 1430-1420 cm exhibited the terpene character of the 

compounds. Alkane groups show abso r ptions in the 1300-1100 cm - l. These 

arc caused by CR
2 

wagging, CH
2 

twisting, and CH
3 

rocking. They are usually 

weak, but when the molecule contains E. polar group they are sometimes strong, 

in certain cases the strongest in the spectrum. Other skeletal vibrations 

also occur in this region and therefore these bands are of little value In the 

interpretation. A strong carbonyl absorption at 1710-1705 cm-l confirmed 

-1 
that these compounds are esters. A strong absorption at 1690 cm (Figure 

3 and 5) as a shoulder exhibited 1he presence of an o( , ~-unsaturation in the 

-1 -1 
molecules. The weak doublet at 1365 cm and 1340 cm could be inferred 

as geminal dimethyl absorptions. Thus these compounds were tentatively 

identified as terpene esters. 

The infrared spectra of the tomato volatiles were matched with the 

ones of the GC purified authentic compounds. The volatiles were ident[fied 

as linalyl propionate (peak 56), citronellyl butyrate (peak 58), and geranyl 

butyrate (peak 60). The results were o~nfirmed by enriching the tomato 

extract with the purified authentic compounds. The infrared spectra of the 

tomato volatiles represented by pea ks 57 and 59 had so me discre pancies in 
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-1 
the band a.rea 1300-1100 cm when compared to the authentic spectra of 

citronellyl propionate and geranyl acetate, respectively. The volatiles were 

thought of as the authentic compounds by an enrichment technique. However, 

as to the above discrepancies which could be due to the sample dilution or the 

malfunctioning of the filter, the volatiles have been tentatively identified as 

oitronellyl propionate (peak 57) and geranyl acetate (peak 59). 

Biogonosis of tcrpenoids 

Spencer and Stanley (1954) were perhaps the first to brive an indication 

of the presence of terpene compounds in tomato volatiles . They reported that 

a comparatively nonvolatile fraction which contained t.erpenes was to a greater 

extent reminiscent of "ripe tomato" aroma. The present study confirms the 

observation. c(-Pinenc (Dalal, 1965, Hein and Fuller, 1963), limonene (Pyne 

and Wick, 1965), citral and citronella! (Hein and Fuller, 1963) have been 

shown to be the components of tomato volatiles. The present study contributes 

linalyl propionate , oltronellyl propionate, citronellyl butyrate, geranyl acetate 

and geranyl butyrate, to the terpeno!ds of the tomato fruit, The concentration 

of terpene compounds in higher plants is critically dependent of varietal and 

seasonal (photosynthetic) characteristics (Haggen-Smit, 1948). The major 

contribution of the terpenoids to ripe tomato aroma is evident. In this 

respect, it would be important to discuss the possible metabolic pathways for 

the formation of these compounds. 

Tho biogonetic isoprone rule of Ruzicka (1953) implies that all 

terpenoids should have a common precursor. Mevalonic acid was shown 
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(Tavormina , Gibbs, and Huff, 1956) to be a specific precursor for each group 

of terpenes, Among the monoterpenes, mevalonic acid has been demonstrated 

as a precursor of citronellal in Eucalyptus citriodora, c!neole in Eucalvptus 

globulus (Birch et al. , 1959), carvone and limonene in Anethum graveolens 

(Sandermann and Bruns, 1965), c( -pinene in Pinus attenuata (Stanl ey, 1958), 

and thujone in Thl!ia occidentalis (Sandermann and Schweers, 1962). 

The biosynthetic pathway from acetate to mevalonate and thence to 

isopentenyl pyrophosphate is well established (Figure 6) for yeast and 

mammalian systems. Isopentenyl pyrophosphate was identified as an active 

intermediate of terpeno biogenesis by Chayk!n et al. (1958). The features of 

the pathway involve the sequential formation of acetoacetyl co-enzyme A 

and hydroxymethylglutaryl co-enzyme A prior to the formation of mevalonate. 

Phosphorylation and decarboxylation are involved in the conversion of 

mavalonate to isopentenyl pyrophosphate. The later is isomerised to dimethyl 

ally! pyrophosphate by an enzyme system which Is inhibited by iodoacetamide. 

Dimethyl allyl pyrophosphate then forms geranyl pyrophosphate which has long 

been recognized as a progenitor of the monoterpenes. A single monoterpene 

goes through many interconversions resulting in the synthesis of different 

terpenoids. The importance of a bioger.etic isoprene unit in the biosynthesis 

of terpenoids as submitted by Ruzicka (1953) is evident. It is also possible 

that the dimethyl allyl pyrophosphate which acts as a starter unit for the bio­

synthesis of terpenoids, may in certain circumstances, originate from other 

pathways (Hanson, 1967). ~ -methyl c:otonic acid was specifically 
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incorporated into pulegonc (Sandermann and Stockmann, 1958) in Mentha 

pulegium. Valine, an amino acid with an isopcntane structure, was thought to 

be a precursor of terpenoids (Hultin and Proctor, 1962) in bananas. These 

findings support the presumption that other pathways lead to dimethyl allyl 

pyrophosphate in the biogenesis of terpenoids. 

In the light of the above presumption the author visualizes other iso­

pentanes such as isoamyl alcohol, isovaleraldehyde , isovaleric acid, and 

senecoic acid as prec ursors of terpenoids through dimethyl allyl pryo­

phosphate. Valine and leucine, the amino acids with isopropyl group could 

form terpenoids in a similar manner. Dalal (1965) reported the presence of 

isopentanal, isopentanol, and various isopentyl esters, in tomato volatiles. 

Some of these compounds exhibited "green leafy" odor. Along this line the 

author suggests as a possibility, that the isopentane parts of these compounds 

can be intermediates in the formation of more flavorful terpenoids of tomato 

aroma. 

The established pathway for the biogenesls of terpenoids expresses 

acetyl coenzymc A as a building unit, An oxidative degradation of fatty acids 

serves as a major source of acetyl coenzyme A. It is also known that the 

tomatoes at a red ripe stage of matur~ n contains very minute amounts of 

lipid fraction. It is high_!y _erobable that the lipid fraction is utilized in the 

formation of terpenoids during the rjpenu;ig. 

Chemical changes during overripening 

A visual comparison of the aroma chromatograms from the field -ripe 
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(Figure 2b) and overripe tomatoes (Figure 2c) distinguishes lhe changes in 

the concentrations of individual compounds during overripening. The actual 

changes have been presented in Table 3. The concentration of 2, 3-butanedi one 

(diacetyl) (peak 30), isopentyl butyrate (peak 18) citronellyl butyrate (peak 58), 

and geranyl butyrate (peak 60) increased. Simultaneously, the amounts of 

alcohols , aldehydos, acetates and proplonates generally decreased during 

overrlpenlng. This suggests possible formations of diacetyl and butyric acid 

at the onset of a senescent period in the fruit. Explanations on the probable 

mechanisms for the above changes are discussed herewith. 

Explanations of the formation of 2, 3-butanedione. Diacetyl and 

acetylmethylcarbinol are metabolic products of yeast growth (Saccharomyoes) 

and certain acid-tolerant bacteria, such as Lactobaolllus and Leuconostoc 

(Ledingham and Neish, 1954). 'fhe microbial quality of apple juice (Fields, 

!964), citrus products (Hill and Wenzel, 1957), and wine (Fornachon and 

Lloyd, 1965) has been correlated with the amounts of diacetyl and acetyl­

methyloarbinol present in the products. Off-flavor, typical of cultured 

dairy products, persists when the diacetyl content becomes sufficiently high. 

Apparently, the presence of dlacetyl in cultured dairy products is desirable 

(Eakle, 1963). Tho presence of diacetyl in the above products is an indication 

of microbial growth. The onset of fermentation could be caused by yeast or 

acid-tolerant bacteria. The formation of diacetyl by a yeast enzyme (Juni, 

1952) and by bacteria (Fornachon and Lloyd, 1965) is thought to arise from 

pyruvic acid. The mechanism is explained in Figure 7a and 7b. In the yeast 
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enzyme system, pyruvic acid seems to be incorporated with acetaldehyde 

while the bacterial type fermentation originates from the coupling of two 

pyruvic acid molecules. Carbohydrates, through glycolysis and glucogenic 

amino acids could serve as the main sources of P}Tuvic acid. 
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It was indeed striking to observe that diacetyl in the fresh field-ripe 

tomatoes (Figure la) amounted to 0. 76 ppm (Table 3). The presence of 

diacetyl in the tomato also had been reported previously (Table 1). At this 

stage of investigation it would be rather premature to state that the enzyme 

systems, such as decarboxylase and cocarboxylase, very similar to those 

of certain yeasts and bacteria are operative during the ripening of the tomato 

fruit. However, the possibility of such enzyme systems is postulated when the 

availability of the substrates pyruvic acid and acetaldehyde would be abundant 

through metabolic events during fruit ripening. The increased concentration of 

diacetyl during overripening would be the result of increased activity of the 

inherent mechanism rather than a microvial growth. 

Explanation of the formation of butyric acid. The increased concen­

tration of isopentyl butyrate, cltroncllyl butyrate, and geranyl butyrate can only 

be explained as a result of butyric acid production with subsequent esterification 

with the alcohol moieties during overripening. Ledingham and Neish (1954) 

especially noted butyric and fermentation by Cl. acetobutylicum and Cl. 

butyricum. Butyric acid fermentation by Cl. pastuerianum in commercially 

canned pears and tomatoes also was reported by Bowen et al. (1954). However, 

on the basis of cultural relations, the butyr!c acfd producing anaerobes isolated 

from spoiled tomatoes were related more closely to CL butyricum than to Cl. 



pasteurianum (Clark and Dehr, 1947). 

Davies (1943) studied the enzyme acetoacetic decarboxylase of Cl. 

acetobutylicum. The enzyme system was specific for acetoacetic acid to 
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derive butyric acid and it was also observed that the addition of pyruvic acid 

to the substrate had no effect on the final concentration of the fatty acid. The 

projected pathway (Umbrelt , 1960) from even-numbered carbon atom fatty 

acids and ketogenic itm!no acids is presented in Figure 8. The emphasis is 

given to the fact that the above butyric acid esters are present in significant 

concentrations in the field-ripe tomatoes. The overripe fruits were micro­

bially unaffected. Thus the increase i:i the concentrations of the butyrates could 

only be due to an internal mechanism which is different from the one connected 

with butyric acid fermentation. At this stage of investigation, however, it 

would be difficult to pinpoint the enzyrr.e systems and substrates in the formation 

of butyric acid in tomatoes . 

Changes in the concentrations of alcohols and aldehydes. Partial 

oxidative degradation of alcohols and aldehydes to respective acids is thought 

to occur during overripening of the fru its. This is difficult to prove, however, 

because organic acids are difficult to extract with ethyl ether from an aqueous 

system as they arc more soluble in water than in the solvent. Carbowax 20 M 

which is used as a liquid phase in the gas chromatographic column, has a 

great number of hydroxyl groups in a molecular chain. Any free acid present 

in the volatiles extract would be csterified with the hydroxyl groups during gas 

chromatographic separation and remain attached to the liquid phase. This 

reaction would be particularly probable at the column temperature (70-220 C) 
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during the separation. The water formed in the process of esterification would 

evaporate easily with no recording by the water-non-active flame ionization 

detector. In addition, the absence of additional peaks suggests that the com­

pounds have been converted to respective acids rather than any other functional 

character which should have appeared on the chromatogram. It is also probable 

that the acids were utilized to some extent in the formation of respective esters, 

especially butyrates. 



38 

Table 3. Tomato volatiles and the analytical data 

Concentration 
(EEill in the fruit) 

Identificaiion Artificially Field a 
methodb Peak Compound ripe ripe overripe 

] FG Unidentified alcohol 0.56 0.41 0.30 

2 FG, ET c 2- Propanol 0.45 o. 93 0.24 

3 FG Unidentified alcohol 1. 00 1. 28 0.30 

4 FG, ET 
c 

3-Methyl butanal 7.16 2.22 2.38 

5 FG Unidentified ester 0.11 0.76 0. 98 

6. FG, ET d t 
Propyl acetate ' 1. 57 0.58 o. 79 

7-8 FG Unidentified esters 

9 l:i'G, ET 
c 

1- Hexanal 5.93 2.51 2. 68 

10 FG , ET c 1-Butanol 1.12 0.35 0.67 

11 FG , ET 2- Methyl-1-bu!anol c 
1. 57 0.76 0.91 

12 FG Unidentified ester 

13 FG, ET 
d t 

3-Pentanol ' 1. 57 1. 17 0.61 

14 FG, ET 
c 2-Methyl-3-hexanol 7.94 2.51 2.68 

15 FG Unidentified carbonyl 0.56 0. 23 0. 30 

16 FG Unidentified alcohol l. 23 0.70 0.55 

17 FG, ET 3-Hexen-1-ol 
c o. 78 1.28 0.79 

18 FG, ET Isopentyl butyrate 
c 

2.80 o. 82 3.17 

19 FG, ET Isopontyl isova lerate c 0. 11 0.23 0.18 

20 FG Unidentified ester 0.10 0.17 0.12 

21 FG, ET d t 
1-Nonanal ' 0.45 1.46 0.92 
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Table 3. Continued 

Concentration 
{eem in the fruit) 

Identification Artificially Field a 
methodb Peak Compound ripe ripe Overripe 

22 FG Unidentified carbonyl 0. 11 0.64 0.30 

23- 24 FG Unidentified esters 

25 FG, ET Benzaldebyde 
c 

0.22 1. 17 1.40 

26 FG, ET 
d t 

1-Decanal ' 0.67 t. 05 0.67 

27-29 FG Unidentified esters 

30 FG, ET 2,3-Butanedione c 
1. 68 0.46 2. 56 

31 FG Unidentified carbonyl 1. 23 0.46 0.31 

32 FG Unidentified ester 

33 FG Unidentified carbonyl 1. 67 0 . 64 1. 64 

34 FG, ET c Citral b(Neral) 1. 56 5.95 3.66 

35 FG, E1' d t 1-Dodecanal ' 2.24 7.71 2.68 

36 FG Unidentified carbonyl 7.50 3.04 3.00 

37-38 FG Unidentified esters or 
alcohols 

39 FG Unidentified carbonyl 1. 67 1. 23 1. 34 

40-41 FG Unidentified es:ers or 
alcohols 

42 FG Unidentified ca:bonyl 0.78 1.63 1.28 

43-47 FG Unidentified esters or 
alcohols 

48 FG Unidentified carbonyl 



Table 3. Continued 

a 
Peak 

Identification 
methodb Compound 

49 FG Unidentified ester or 
alcohol 

50-55 FG Unident ified esters or 
alcohols 

56 FG,ET,m Linalyl acetate d 

57 FG,ET,m Citronellyl propionate d, t 

58 FG,ET,m Citronellyl butyrated 

59 FG,ET,m d t Geranyl acetate ' 

60 FG,ET,ffi d 
Geranyl butyrate 

~Peak numbers of chromatogram in Figure la. 
FG, functional group analysis. 
ET, enrlchmeot technique. 
m, infrared spectral data. 

~J>reviously reported (Table 1). 
-iReported during this study. 
Tentative identification. 
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Concentration 
!l~~m in the fruit) 

Artificially Field 
ripe ripe Overripe 

1. 56 3.44 2. 56 

2. 80 2.28 1. 22 

5.82 17.87 7.14 

3.80 8.76 19.03 

2.78 2.92 2.38 

1.68 2. 80 4.02 
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SUl\1:MARY ANU GONCLlJSIONS 

Studies were conducted to identify major volatile components of 

tomato fruit, Simultaneously, the confirmation was extended to the reported 

tomato volatiles. The volatile compounds of field- and artificially-ripe fruits 

were compared qualitatively as well as quantitatively, and the differentiation 

was reasoned biogenetically. The changes occurring in the volatile components 

of the fruit at the onset of senescence also were delineated. The results of the 

investigations are summarized below. 

Sixty peaks were observed in a typical chromatogram from the field ­

r!pe tomatoes. The functional group properties of individual peaks were 

derived. It was approximated that short - chain (C
3 

-C
6

) alcohols represented 

10 per cent, aldehydes and ketones 32 per cent, and hydrocarbons, long -chain 

alcohols, and esters were in 58 per cent of the total amount of the volatiles 

from the field-ripe fruits. 

The peaks in the chromatogram were arbitrarily divided into two 

groups, viz.: a "lower fraction" and :; "higher fraction." The column temper­

ature at the mid-point was 160 C. The "lower fraction" contained short-chain 

alcohols, aldehydes, ketones, and esters. The compounds which were tenta­

tively identified during the course of this investigation were 3-pentanol and 

propyl acetate. The presence of the alcohols - -2-propanol, 1-butanol, 2-

methyl-1-butanol, 2-methyl-3-hexanol, and 3-hexen-1-ol--in tomato volatiles 

was confirmed. Among carbonyls, the volatiles extract from tomato fruit 



contained 3-methyl bLttanal, 1-hexanal, ben7.aldehyde, and 2, 3-butanedione 

(diacetyl). Tho presence of isopentyl butyrate and isopentyl isovalerat.e, 

which was reported previously, also was confirmed. 
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The "hi gher fraction," which contained terpenoids in large quantities, 

was contributory to ripe tomato aroma. Linalyl acetate, citronellyl butyrate, 

and geranyl butyrate were identified as the major components among the 

terpenoids. Other compounds of this group were 1-nonanal, 1-decanal, 1-

dodecanal, geranyl acetate, and citronel! yl propionate. These compounds 

were tentatively identified. The study confirmed the presence of cltral as 

a <.'Omponent of tomato volatiles. The importance of the tcrpenoids as con­

tributory to ripe tomato aroma was evident. Biogenesis of these compounds 

is a complex phenomenon. An attempt has been made to postulato the pre­

cursors of these volatile compounds. 

Comparisons of volatile concentrations of field- and artificially-ripe 

tomatoes were made. In the latter category of fruits the concentrations of 

1-butanol, 3-pentanol, 2-methyl-3-hexanol, 3-methyl-butanal, 2, 3-butanedione, 

propyl acetate, isopentyl butyrate, and other unidentified carbonyls were higher 

than those obse rved in the field-ripe fruits. These short-chain compounds, 

especially the c4-c 6 moities, probably are formed in their maximum concen­

trations during the early stages of maturation. Under the conditions of restricted 

nutrient availability and limited enzymE.tic activity during artificial ripening, the 

long-chain compounds are not synthesized appreciably. The concentrations of 

some of these short-chain compounds may be to a level of masking the effects 

of more desirable compounds contributory to ripe tomato aroma, Notably, a 
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pulp from the artificially ripe fruits lacked the characteristic ripe tomato 

aroma. The concentrations of the compounds representing the "higher 

fraction" generally were low in the artificially ripe tomatoes as compared 

to the field-ripe ones. This may indicate the Importance of the long-chain 

carbonyls and the terpene esters for r[pe tomato aroma. An attempt has 

been made to theorize the mechanisms of the biogenesis of these compounds. 

The concentrations of the volatiles from field-ripe and overripe 

tomatoes were compared. During overripcning the amounts of alcohols, 

aldehydes , ketones, acetates, and propionates generally decreased. However, 

the concentrations of diacetyl and those of but;Tic acid esters--isopentyl 

butyrate, citronellyl butyrate, and geranyl butyrate--increased. It was 

assumed that at the onset of senescence the metabolic pathways for the 

formation of diacetyl and butyrie acid were highly operative in tomato fruit. 

The mechanisms of these pathways were postulated. 
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