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Abstract

Robust Intelligent Sensing and Control Multi Agent Analysis Platform for Research and

Education

by

Douglas Spencer Maughan, Master of Science

Utah State University, 2016

Major Professor: Dr. Rajnikant Sharma
Department: Electrical and Computer Engineering

The aim of this thesis is the development and implementation of a controlled testing

platform for the Robust Intelligent Sensing and Controls (RISC) Lab at Utah State Uni-

versity (USU). This will be an open source adaptable expandable robotics platform usable

for both education and research. This differs from the many other platforms developed

in that the entire platform software will be made open source. This open source software

will encourage collaboration among other universities and enable researchers to essentially

pick up where others have left off without the necessity of replicating months or even years

of work. The expected results of this research will create a foundation for diverse robotics

investigation at USU as well as enable attempts at novel methods of control, estimation and

optimization. This will also contribute a complete software testbed setup to the already

vibrant robotics open source research community.

This thesis first outlines the platform setup and novel developments therein. The

second stage provides an example of how this has been used in education, providing an

example curriculum implementing modern control techniques. The third section provides



iv

some exploratory research in trajectory control and state estimation of the tip of an in-

verted pendulum atop a small unmanned aerial vehicle as well as bearing-only cooperative

localization experimentation. Finally, a conclusion and future work is discussed.

(128 pages)
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Public Abstract

Robust Intelligent Sensing and Control Multi Agent Analysis Platform for Research and

Education

by

Douglas Spencer Maughan, Master of Science

Utah State University, 2016

Major Professor: Dr. Rajnikant Sharma
Department: Electrical and Computer Engineering

The aim of this thesis is the development and implementation of a controlled testing

platform for the Robust Intelligent Sensing and Controls (RISC) Lab at Utah State Uni-

versity (USU). This will be made available to other universities and researchers to use for

both education and research. This differs from the many other platforms developed that

keep their software for their own use. Our intent is this sharing of software will encourage

collaboration among other universities and enable researchers to essentially pick up where

others have left off without the necessity of replicating months or even years of work. The

expected results of this research will create a foundation for diverse robotics investigation

at Utah State University as well as enable attempts at novel methods of control, estimation

and optimization.

This thesis first outlines the platform setup and novel developments therein. The second

stage provides an example of how this has been used in education, providing an example

curriculum implementing modern control techniques. Finally, research regarding control

and estimation of a flying inverted pendulum and cooperative localization experimentation

is presented demonstrating the unique capabilities of the platform, after which a conclusion

is drawn.
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Chapter 1

Introduction

Many aspects of robotics are influenced by unpredictable dynamic environments in

ways that make reliable estimation and control challenging. Dealing with these challenges

in research can lead to confusing or even conflicting results [1]. Consequently, robotics

researchers have turned towards controlled testing platforms to validate theory [2] [3] [4].

These platforms generally use high cost cameras that provide high-frequency, low-latency

feedback. This feedback can be interpreted to provide accurate position and attitude mea-

surements. These systems allow in-depth analysis and achieve performance that would

otherwise be unattainable today in natural environments [5] [6].

Aside from providing superior accuracy and performance, these systems allow re-

searchers to decouple estimation and control. These testbeds aim to provide “ground-truth”

estimates that can be used in controls research for direct state feedback or in localization

studies for verification of state estimation. Such “ground-truth” estimates are so significant

to the world of robotics that the Journal of Autonomous Robots has published datasets

for collaborative analysis [7]. However, the systems developed and referenced thus far are

unique in their hardware and software. This limits collaboration among researchers requir-

ing significant work to reproduce hardware results that may be impossible given the current

differences between test-beds [8] [9].

The aim of this research is the development and implementation of a controlled testing

platform for the Robust Intelligent Sensing and Controls (RISC) Lab at Utah State Univer-

sity (USU). This platform differs from the many other platforms in that the entire platform

software and hardware will build upon open source robotics tools as much as possible. This

is intended to encourage collaboration among other universities and enable researchers to

essentially pick up where others have left off without the necessity of replicating months or
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even years of work.

This research will encompass three specific areas:

• Develop an open source adaptable expandable test bed platform for use in education

and research.

– Chapter 2 provides details related to the motion capture camera system. Speci-

fications and costs are outlined while pictures are included.

– Chapter 3 discusses the benefits and limitations of using the Robotics Operating

System (ROS). The main architecture is outlined. Some common tools are high-

lighted along with the supported languages. Finally efficiency and availability of

ROS are addressed.

– Chapter 4 offers the motivations for development of the Robust Intelligent Sens-

ing and Control Multi Agent Analysis Platform. Goals of the overall system

and how these are achieved is addressed followed by an outline of basic tools

developed for research.

– Chapter 5 outlines hardware systems currently used in the RISC MAAP includ-

ing the Parrot AR.Drone and 3DR Robotic’s IRIS+. Interface and control are

discussed along with relevant specifications.

• Demonstrate a complex control problem for use in education using the developed

platform.

– Chapter 6 provides sample curriculum is provided reproducing a recent rele-

vant research topic in controls [10]. Differential flatness is outlined along with

a demonstrated application. Results of labs are presented showing the student’s

demonstration in simulation as well as hardware.

• Extend modern controls research using the developed platform (Chapter 7).



3

– Flying Inverted Pendulum Trajectory Control on Robust Intelligent Sensing and

Control Multi-Agent Analysis Platform

– Using Extended Kalman Filter for Robust Control of a Flying Inverted Pendulum

– Cooperative Bearing-only Localization Experimentation

The expected results of this research will create a foundation for diverse robotics investiga-

tion at Utah State University as well as enable attempts at novel methods of control and

optimization. This will also contribute a complete software testbed setup to the already

vibrant robotics open source research community.
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Chapter 2

Motion Capture System

This chapter provides details related to the motion capture camera system. Specifica-
tions and costs our outlined while pictures are included.

The MotionAnalysis Motion Capture System relies on infrared cameras (figure 2.1) and

reflective markers (figure 2.2) to provide marker position estimates (2 mm S.D.1) through

imaging processing software named ”Cortex”“. These markers vary in size from radii of 2

to 14 mm.

Fig. 2.1: Infrared Camera Fig. 2.2: Reflective Marker

This system offers an important feature that allows tracking of specific rigid geometrical

configurations of markers known as an ”identifying template“. This template uses data

from all markers within the template to improve overall estimation of marker positions

and allows different objects to be distinguishable from one another as shown in figure

2.3. It is important when choosing the marker geometry to ensure a certain asymmetry

1Standard Deviation
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in configuration to improve unique marker recognition. While velocity and orientation

estimation is made available by MotionAnalysis at additional cost (approximately $4000),

such estimation was done in the lab and will be discussed in Chapter 4.

Fig. 2.3: Identifying Templates

The Robust Intelligent Sensing and Control Multi Agent Analysis Platform (RISC

MAAP) camera setup is currently using 16 infrared cameras to capture a total volume

of 44 cubic meters (2.4 × 4 × 4.6 m3). Data is sent over ethernet connection at 200 Hz.

Communication and marker data interpretation will be discussed in Chapter 4.



6

Chapter 3

Robotics Operating System

This chapter discusses the benefits and limitations of using the Robotics Operating
System (ROS). The main architecture is outlined. Some common tools are highlighted along
with the supported languages. Finally efficiency and availability of ROS are addressed.

Robotics Operating System (ROS) is not an operating system in the traditional sense of

process management and scheduling. ROS rather establishes a structured communications

layer above the host operating systems of a heterogeneous computational cluster. It provides

a flexible framework for writing robot software offering a collection of tools, libraries, and

conventions that aim to simplify the task of creating complex and robust robot behavior

across a wide variety of robotic platforms. Due to the many features and integration of

powerful libraries, it is not surprising that many of the world’s top engineers and researchers

in the field of robotics make use of the tools available through ROS [11].

ROS was initially designed to meet a specific set of challenges encountered when devel-

oping large-scale service robots as part of the STAIR1 project [12] at Stanford University

and the Personal Robots Program [13] at Willow Garage. However, the resulting architec-

ture is far more general than these and is gaining high popularity in robotics and other

fields [14]. The philosophical goals and basic framework of ROS has been summarized in

[15]. These central goals are as follows:

• Peer-to-peer: Each computer can act as a server for the others.

• Tools-based: Provide a modular framework of tools easily incorporated into projects.

• Multi-lingual: Allow use of a variety of programming languages and libraries.

• Thin: Lightweight communications

1Stanford Artificial Intelligence Robot

http://www.ros.org/about-ros/
http://www.ros.org/core-components/
http://www.ros.org/integration/
http://www.ros.org/testimonials/
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• Free and Open-Source

ROS has many aspects, this paper will focus on detailing only the central features

which are currently used in the RISC MAAP. These are:

• General Communication

• Navigation

• Message Passing

• Data Logging

• Data Visualization

• Serial Interfacing

• Transforms

• Roslaunch

The following descriptions are summaries of Willow Garage, Stanford University, and MIT2

publications outlining ROS [15, 16, 17].

3.1 General Communication

ROS consists of a number of processes, potentially on a number of different hosts,

connected at runtime in a peer-to-peer topology.

2Massachusetts Institute of Technology
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Fig. 3.1: Peer to Peer

This configuration avoids unnecessary traffic flow in contrast to the central-server-based

alternative. This allows networking to high-power off-board machines that are running

computation-intensive tasks such as computer vision or speech recognition to be much more

efficient.

This peer-to-peer topology requires some sort of look up mechanism that allow processes

to find each other at runtime. This process is termed “master” and will be described shortly.

In an effort to manage the complexity of ROS, developers have opted for a microkernel

design, where a large number of small tools are used to build and run the various ROS

components.

These tools perform assorted tasks: e.g., navigate the source code tree, get and set con-

figuration parameters, visualize the peer-to-peer connection topology, measure bandwidth

utilization, graphically plot message data, auto-generate documentation, and so on. This

modularity loses some efficiency compared to implementing core services such as a global

clock and a logger inside. However, this is more than offset by the gains in stability and

complexity management.
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The central components of general communication in ROS are as follows:

• Packages

• Nodes

• Messages

• Topics

• Parameters Server

• Master

3.1.1 Packages

Software in ROS is organized in packages. A package might contain anything that

logically constitutes a useful module. The goal of these packages it to provide functionality

in an easy-to-consume manner so that software can be easily reused. Packages are often

lightweight and contribute to the “Thin” aspect of the ROS philosophy.

ROS packages are merely folders that are linked to the ROS file system and can be

used to build code into usable executable files under the package umbrella. Many packages

have been developed for use in the RISC lab and will be discussed in Chapter 4.

3.1.2 Nodes

Nodes are processes that perform computation. ROS is designed to be modular at

a fine-grained scale. Therefore, a system is typically comprised of many nodes. In this

context, the term node is interchangeable with software module. Use of the term node

arises from visualizations of ROS-based systems at runtime: when many nodes are running,

it is convenient to render the peer-to-peer communications as a graph, with processes as

graph nodes and the peer-to-peer links as arcs. Nodes communicate with each other by

passing messages.

http://wiki.ros.org/Packages
http://wiki.ros.org/ROS/Tutorials/BuildingPackages
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Fig. 3.2: Typical Setup

3.1.3 Messages

A message is a strictly typed data structure. Standard primitive types (integer, floating

point, boolean, etc.) are supported, as are arrays of primitive types and constants. Messages

can be composed of other messages, and arrays of other messages, nested arbitrarily deep.

This is discussed further in Section 3.3.

3.1.4 Topics

A node sends a message by publishing it to a given topic, which is simply a string such

as trajectory or controls. A node that is interested in a certain kind of data will subscribe

to the appropriate topic. There may be multiple concurrent publishers and subscribers for a

single topic, and a single node may publish and/or subscribe to multiple topics. In general,

publishers and subscribers are not aware of each other’s existence. This allows a flexible

node graph that can contain cycles, one-to-many or many-to-many connections.

3.1.5 Parameters Server

A Parameter Server is a shared, multi-variate dictionary that is accessible via network

APIs3. Nodes use this server to store and retrieve parameters at runtime. As it is not

3Application Program Interfaces

http://wiki.ros.org/Parameter Server
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designed for high-performance, it is best used for static, non-binary data such as config-

uration parameters. It is meant to be globally viewable so that tools can easily inspect

the configuration state of the system and modify if necessary. This is especially useful for

setting simulation or hardware parameters and is widely used in the RISC MAAP.

Fig. 3.3: Node Graph

3.1.6 Master

The ROS Master provides naming and registration services to the nodes in the ROS

system. It tracks publishers and subscribers to topics. The role of the Master is to enable

individual ROS nodes to locate one another. Once these nodes have located each other

they communicate with each other peer-to-peer. The Master also provides the Parameter

Server. An example image processing node graph is shown in figure 3.3.

3.2 Navigation

The ROS file system is composed of packages and manifests. Packages are the software

organization unit of ROS code. Each package can contain libraries, executables, scripts,

or other artifacts. Each package also contains a manifest. The manifest is a description

of the package and serves to define dependencies between packages and to capture meta-

http://wiki.ros.org/Master
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information about the package like version, maintainer, and license. Given the highly

modular framework of the ROS file system, navigation via command-line tools such as ls

and cd can be very tedious. Fortunately, ROS developers have provided navigation tools

to avoid this. These consist of rosbash and rospack commands.

3.2.1 rosbash

The following command line utilities are included in rosbash:

• roscd - change directory starting with package, stack, or location name

• rosd - lists directories in the directory-stack

• rosls - list files of a ROS package

• rosed - edit a file in a package (the default editor is vim)

• roscp - copy a file from a package

• rosrun - run executables of a ROS package

3.2.2 rospack

rospack is a command-line tool for retrieving information about ROS packages avail-

able on the file system. It implements a wide variety of commands ranging from locating

ROS packages in the file system, to listing available stacks, to calculating the dependency

tree of stacks. It is also used in the ROS build system for calculating build information for

packages. Some useful commands are:

• rospack find - return the absolute path to a package

• rospack depends - return a list of all of a package’s dependencies

• rospack depends-on - return a list of packages that depend on the given package

• rospack export - return flags necessary for building and linking against a package

http://wiki.ros.org/rosbash
http://wiki.ros.org/rospack
http://docs.ros.org/independent/api/rospkg/html/rospack.html
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3.3 Message Passing

Nodes communicate with each other by publishing and subscribing to messages via

topics. These are generally asynchronous. In ROS, synchronous message passing is called

a service.

3.3.1 Subscribers and Publishers

ROS currently supports publishing and subscribing using four very different languages:

C++, Python, Octave, and LISP, with other language ports in various states of completion

(JAVA, Ruby). The RISC MAAP software is written using C++ and Python. This language

neutrality in ROS is possible due to the IDL4 to describe the messages sent between modules.

The IDL uses short text files to describe fields of each message, and allows composition of

messages as illustrated by the complete IDL file for a point cloud message:

Header header

Point32[] pts

ChannelFloat32[] chan

Code generators for each supported language then generate native implementations and

are automatically serialized and deserialized by ROS as messages are sent and received.

This saves considerable programmer time and reduces errors. The previous 3-line IDL file

automatically expands to 137 lines of C++, 96 lines of Python, 81 lines of Lisp, and 99 lines

of Octave. Because the messages are generated automatically from such simple text files, it

becomes easy to rapidly create custom messages to meet diverse needs. Custom messages

used in the RISC MAAP are outlined in Chapter 4. This allows for mixing and matching

of subscriber/publisher programming languages.

3.3.2 Services

Synchronous transactions can significantly simplify the design of some nodes. In ROS,

this synchronous message passing is called a service, defined by a string name and a pair of

4interface definition language

http://wiki.ros.org/ROS/Tutorials/ExaminingPublisherSubscriber


14

strictly typed messages: one for the request and one for the response. Unlike topics, only

one node can advertise a service of any particular name.

3.4 Data Logging

3.4.1 rosbag

rosbag is a set of tools for recording from and playing back to ROS topics. It is intended

to be high performance and avoids deserialization and reserialization of the messages. It

can be used in command-line as well as within C++ or Python code to store data. Current

list of supported commands:

• record - Record a bag file with the contents of specified topics

• info - Summarize the contents of a bag file

• play - Play back the contents of one or more bag files

• check - Determine whether a bag is playable in the current system, or if it can be

migrated

• fix - Repair the messages in a bag file so that it can be played in the current system

• filter - Convert a bag file using Python expressions

• compress - Compress one or more bag files.

• decompress - Decompress one or more bag files

• reindex - Reindex one or more broken bag files

rosbag recording is very lightweight and can handle large data storage at high rates if the

bag file is local. For example, storing to the main hard drive would be noticeably easier

than if you are attempting to write a bag file through a USB5 port. In the latter case you

5Universal Serial Bus

http://wiki.ros.org/rosbag
http://wiki.ros.org/rosbag/Commandline
http://wiki.ros.org/rosbag/Code%20API
http://wiki.ros.org/rosbag/Commandline#record
http://wiki.ros.org/rosbag/Commandline#info
http://wiki.ros.org/rosbag/Commandline#play
http://wiki.ros.org/rosbag/Commandline#check
http://wiki.ros.org/rosbag/Commandline#fix
http://wiki.ros.org/rosbag/Commandline#filter
http://wiki.ros.org/rosbag/Commandline#compress
http://wiki.ros.org/rosbag/Commandline#decompress
http://wiki.ros.org/rosbag/Commandline#reindex
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will likely notice lag for large data sets at high frequency (ex: 2+ HD6 video streams, sensor

and motion capture data).

3.5 Data Visualization

Along with the multilingual features of ROS, there are many methods of visualizing

data.

3.5.1 rostopic

rostopic is a command-line tool that prints relevant information about a specific

topic in the command window. The available commands are:

• rostopic bw - bandwidth used by topic

• rostopic echo - print messages to screen

• rostopic find - find topics by type

• rostopic hz - publishing rate of topic

• rostopic info - info about active topic

• rostopic list - list active topics

• rostopic pub - publish data to topic

• rostopic type - print topic type

Rostopic can be very useful for debugging or briefly inspecting performance.

3.5.2 rviz

rviz is a powerful tool that allows for real time 3D7 data visualization in consumable

form. It integrates robot states, maps, point clouds, trajectories, laser scanners, force plates,

etc. This is particularly useful for debugging and getting a big picture view of data quality.

6High Definition
73-Dimensional

http://wiki.ros.org/rostopic
http://wiki.ros.org/rviz
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It incorporates the robot simulation tool Gazebo. This allows use and sharing robot 3D

CAD8 models.

Fig. 3.4: rviz Example

3.5.3 Rqt

rqt is a flexible GUI9 that integrates various plugins for data visualization. This

simplifies management of distributed tasks in one modular GUI. The features available

using rqt are extensive and will not be covered here.

8Computer Aided Drafting
9Graphical User Interface

http://wiki.ros.org/rqt
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Fig. 3.5: rqt Example

3.5.4 Python

Python enables the generation of plots using matplotlib, plotly, and other similar

libraries [18]. Many plugins provided for rqt are generated using these libraries. However,

these can be used directly in code to generate custom plots on demand.

Fig. 3.6: Python Plotting Example

http://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/
https://plot.ly/python/
https://wiki.python.org/moin/NumericAndScientific/Plotting
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3.6 Serial Interfacing

rosserial is a general protocol for wrapping standard ROS serialized messages and

sending them over serial links such as a UART10 or network socket.

3.6.1 protocol

The rosserial protocol is aimed at point-to-point ROS communications over a serial

transmission line. It uses the same serialization/de-serialization as standard ROS messages,

simply adding a packet header and tail which allows multiple topics to share a common

serial link.

3.6.2 rosserial client

rosserial client contains the generic client-side rosserial implementation. It is

designed for microcontrollers and it can run on any processor for which an ANSI11 C++

compiler and a serial port connection to a computer running ROS is used.

3.6.3 rosserial arduino

rosserial arduino contains Arduino-specific extensions required to run rosserial client

on an Arduino.

3.6.4 Arduino IDE Setup

The open-source Arduino software (IDE)12 can be modified to allow ROS communica-

tion. This can be done as follows.

• Install recent Arduino IDE

• Install rosserial and rosserial arduino packages

10universal asynchronous receiver/transmitter
11American National Standards Institute
12 Integrated Development Environment

http://wiki.ros.org/rosserial
http://wiki.ros.org/rosserial/Overview/Protocol
http://wiki.ros.org/rosserial_client/Tutorials
http://wiki.ros.org/rosserial_arduino/Tutorials
http://arduino.cc/en/Main/Software
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• Add ros lib to the Arduino Environment using rosrun

rosrun rosserial_arduino make_libraries.py .

• Add custom messages from risc msgs package to the Arduino Environment using

rosrun

rosrun rosserial_client make_library.py <>/libraries risc_msgs

<> represents the file path to saved sketches used in the Arduino IDE.

• Restart Arduino IDE and check and see if desired libraries are present
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Fig. 3.7: ROS Libraries

More information on how this is used for hardware interfacing in the RISC MAAP will

be provided in Chapter 5.

3.7 Transforms

tf13 is a package that lets the user keep track of multiple coordinate frames over time.

tf maintains the relationship between coordinate frames in a tree structure buffered in

time, and lets the user transform vector data or points between any two coordinate frames

at any desired point in time. A robotic system, such as a quadrotor, typically has many 3D

coordinate frames that change over time, such as a world frame, vehicle frame, body frame,

etc. These frames of reference specific to the quadrotor are covered in detail in Chapter

13 Tully Foote

 http://wiki.ros.org/tf
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6. tf keeps track of all these frames over time. tf can operate in a distributed system.

This means all the information about the coordinate frames of a robot are available to all

ROS components on any computer in the system. There is no central server of transform

information.

Fig. 3.8: Transforms Visualization

3.8 Roslaunch

ROS provides a tool called roslaunch, which reads an XML14 description of a graph

and instantiates the graph on the cluster, optionally on specific hosts. The end-user expe-

rience of launching the navigation system then boils down to a single string of script such

as:

roslaunch package_name launch_file.xml

This tool allows for a single Ctrl-C key stroke to close all associated processes. This

functionality significantly aids sharing and reuse of large demonstrations of integrative

robotics research.

14Extensible Markup Language

http://wiki.ros.org/roslaunch
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Chapter 4

RISC MAAP Framework

In this chapter the motivations for development of the Robust Intelligent Sensing and
Control Multi Agent Analysis Platform are provided. Goals of the overall system and how
these are achieved is addressed followed by an outline of basic vision tools developed for
research.

Many aspects of robotics are influenced by unpredictable dynamic environments in ways

that make reliable estimation and control challenging. Consequently, robotics researchers

have turned towards controlled testing platforms to validate theory [2, 3, 5]. While many

testbeds have used supplementary open source software, to our knowledge, no testbed itself

has been made open source. Therefore, those who wish to accelerate research using these

controlled environments often require months or even years of development and setup before

a realizable platform is available.

The central goal of the RISC MAAP is to provide an open-source-adaptable-expandable

testbed framework to allow researchers and students to spend their time on the specific

research/academic problems rather than on implementing the many necessary, but unrelated

parts of the system. To realize this goal, similar to ROS, these four aspects must be

addressed [17]:

• Complexity Management

• Information Access

• Advanced Tools

• Open Source

Before describing how the RISC MAAP deals with these specific elements an outline of the

RISC MAAP structure will be provided.
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4.1 Structure

The overall structure of the RISC MAAP is displayed in figure 4.1. The cameras

provide data to the Cortex software which in turn provides marker position data. This

data is gathered along with wireless sensor data and processed in ROS using RISC MAAP

software. The RISC MAAP software then generates control inputs and sends corresponding

wireless commands to the agent. In this example, the AR.Drone is used as the agent. The

AR.Drone will be described in detail in Chapter 5.

Fig. 4.1: Camera Feedback System

In figure 4.1 ROS is treated as a “black box” for the RISC MAAP software. This

software can be described by the combined RISC MAAP packages. These packages that

have been developed to meet the needs of the RISC lab and encompass key areas of research:

• Control

• Estimation

• Simulation

• Visualization
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• Data Management

4.1.1 RISC MAAP Packages

Control

• risc control: This package contains the software for control algorithms, trajectory

generation, and frame of reference transformations. Some control strategies and tra-

jectories used will be discussed in Chapters 6 and 7.

Estimation

• risc estimation: This package contains the software for the state estimation/fil-

tering algorithms for providing feedback necessary for proper control such as kalman

filtering, least squares, low pass filters, etc. This will be discussed in greater detail in

Section 4.4.

Simulation

• risc simulator: This package currently contains the python based simulations for

systems of interest. Quadrotor and 3D Inverted Pendulum are the simulations pro-

vided thus far and mimic the actual hardware interfacing using the ROS communica-

tion setup.

Visualization

• risc visual: This package provides access to various image processing and visu-

alization tools. Among these are cortex visualization, edge detection, optical flow,

color thresholding, and landmark detection. This will be discussed in greater detail

in Section 4.4.
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Data Management

• cortex ros: This package automatically establishes communication with the Motion

Analysis Software (Cortex) sharing the same network as the computer running ROS.

It provides marker data and names of templates set up within that system.

• risc msgs: This package is used to define all custom messages that aid in complexity

management.

• data extraction: This package was originally authored by Shane Lynn and extracts

data from a rosbag file and converts it to a csv1 file for use in Matlab or elsewhere.

This has been significantly modified to include many of the RISC MAAP custom

messages. This is useful for providing data to those unfamiliar with ROS or for use

in Matlab.

4.1.2 Other Packages:

These other packages are also used in the RISC MAAP software. However, they did

not originate here and are all well documented on ROS or github websites. Therefore, no

extensive description will be provided herein.

• ardrone autonomy: Provides ardrone driver and sensor data.

• roscopter: Incorporates the Mavlink library for interfacing with the PixHawk using

the USB radio provided by 3DR Robotics. The PixHawk is a central component to

the IRIS+ quadrotor used in the RISC lab.

• uvc cam: Enables publishing web cam video feed in ROS using the libuvc camera

driver. This is very useful for testing image processing code using built-in or USB

web cams.

1Comma Separated Values

http://www.motionanalysis.com/html/industrial/robotics.html
http://www.motionanalysis.com/html/industrial/robotics.html
http://shanelynn.ie/index.php/csv-data-extraction-tool-for-ros-bag-files/
https://github.com/AutonomyLab/ardrone_autonomy
https://code.google.com/p/roscopter/
https://github.com/mavlink/mavlink
http://wiki.ros.org/uvc_camera
http://wiki.ros.org/libuvc_camera
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4.2 Complexity Management

Complexity management is addressed by using carefully constructed data structures

that are intuitive and expandable. These can be easily cycled through using for loops. This

permits a solution for a single agent to be quickly integrated to a multi agent system. The

structures are multi-lingual due to the IDL message definitions. All of the files referenced

below can be found in the risc msgs package.

4.2.1 Custom Message Structures:

• Motion Capture Data: Defined by these three files:

– Mocap marker.msg

– Mocap markers.msg

– Mocap data.msg

Mocap data Structure:

[risc_msgs/Mocap_data]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

risc_msgs/Mocap_markers[] Obj

string name

float64 residual

risc_msgs/Mocap_marker[] marker

float64 x

float64 y

float64 z
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• Quadrotor States: Defined by these two files:

– States.msg

– Cortex.msg

Cortex Structure:

[risc_msgs/Cortex]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

risc_msgs/States[] Obj

string name

bool visible

float64 x

float64 y

float64 z

float64 u

float64 v

float64 w

float64 phi

float64 theta

float64 psi

float64 p

float64 q

float64 r

• Quadrotor Control: Defined by these two files:

– Control.msg
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– Controls.msg

Controls Structure:

[risc_msgs/Controls]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

risc_msgs/Control[] Obj

string name

float64 phi

float64 theta

float64 psi

float64 T

• Bearing and Visual Data: Defined by these six files:

– Angle.msg

– Angles.msg

– Observed angles.msg

– Risc roi.msg

– Risc rois.msg

– Observed rois.msg

Observed angles Structure:

[risc_msgs/Observed_angles]:

std_msgs/Header header

uint32 seq
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time stamp

string frame_id

risc_msgs/Angles[] Obj

string name

risc_msgs/Angle[] landmarks

string name

bool visible

float64 azim

float64 elev

risc_msgs/Angle[] quads

string name

bool visible

float64 azim

float64 elev

Observed rois Structure:

[risc_msgs/Observed_rois]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

risc_msgs/Risc_rois[] Obj

string name

risc_msgs/Risc_roi[] landmarks

string name

bool visible

int32 x

int32 y
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float32 width

float32 height

float64 angle

risc_msgs/Risc_roi[] quads

string name

bool visible

int32 x

int32 y

float32 width

float32 height

float64 angle

• Trajectories: Defined by these two files:

– Trajectory.msg

– Trajectories.msg

Trajectories Structure:

[risc_msgs/Trajectories]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

risc_msgs/Trajectory[] Obj

string name

float64 x

float64 y

float64 z

float64 psi
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float64 xdot

float64 ydot

float64 zdot

float64 psidot

float64 xddot

float64 yddot

float64 zddot

float64 psiddot

• Landmarks: Defined by these two files:

– Landmark.msg

– Landmarks.msg

Landmarks Structure:

[risc_msgs/Landmarks]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

risc_msgs/Landmark[] Obj

string name

float64 x

float64 y

float64 z

• Pendulum Estimated States: Defined by this file:

– Pen with cov.msg



32

Pen with cov Structure:

[risc_msgs/Pen_with_cov]:

std_msgs/Header header

uint32 seq

time stamp

string frame_id

bool visible

float64 x

float64 y

float64 xdot

float64 ydot

float64[16] cov

The general convention among these structures permit two means of object identifi-

cation via index and string name. This redundancy allows for increased robustness and

ensures that sent/retrieved data is to/from the intended object. This consistency greatly

reduces complexity in code length as well as comprehensibility of multi agent system data.

4.3 Information Access

Access to all relevant information is made readily accessible using the tools already

provided by ROS described in Chapter 3. These tools include:

• rostopic

• rviz

• rqt

• rosbag
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4.4 Advanced Tools

While many advanced robotics tools are available through ROS, the following are being

used on the RISC MAAP:

• General Estimation

• OpenCV

• Camera Calibration

• Camera to Body Frame Estimation

• Landmark Recognition

4.4.1 General Estimation

In the package risc estimation two general methods of estimation are widely used:

Least Squares and Extended Kalman Filter (EKF).

Least Squares Estimation

The method of least squares is a standard approach to gain the best estimate of an

overdetermined system such as: y = Ax, where y and A are known and A is a tall non-

invertible matrix. The method of least squares provides an overall solution the minimizes

the sum of the squared error:

min
x

(y −Ax)T (y −Ax) (4.1)

x̂ = (ATA)−1AT y (4.2)

Where x̂ is the solution that minimizes the sum of the squared error. This method can

be used to estimate the coefficients for any polynomial given an overdetermined data set.

Using a vector of stored position data method of least squares can estimate the slope or
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velocity of the data. This is implemented in states estimation.py in the risc estimation

package using the Numpy library.

Extended Kalman Filter

The EKF is an extension of the well-known Kalman Filter as described in [19]. An

EKF provides an approximate linearized estimate of the states, despite the nonlinear char-

acteristics of the system [20]. A generic EKF can be summarized as follows:

Propagate:

• x̂i+1 = f(x̂i, ui)

x̂i = state estimate at iteration i

f(x̂i, ui) = Nonlinear model

• P̂i+1 = ΦiPiΦ
T
i +Qd,i

Φi = I + ∂f(x̂i,ui)
∂x |x̂i,ui∆t (Approximate Jacobian)

Qd,i = Process noise covariance

Pi = Covariance of estimate

Update:

• Measurement: zi

• Residual: yi = zi − x̂i

• Residual Covariance: Ri = HiPiH
T
i +R

Where R is the measurement noise covariance and Hi is the observation model matrix.

• Kalman Gain: Ki = P−i H
T
i R
−1
i

• Update State: x̂+i = x̂−i +Kiyi
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• Update Covariance: P+
i = (I −KiHi)P

−
i

Thus, x̂+i is the new estimated mean and P+
i is the corresponding covariance.

Implementation of this filter on the RISC MAAP generally followed this form. One

of the many benefits of using this method is the possibility of data loss detection using a

chi-square test given a state mean x and covariance P with measurement noise covariance

R [21]. The description of the EKF design for our specific research using the RISC MAAP

is provided in Chapter 7.

4.4.2 OpenCV

OpenCV (Open Source Computer Vision Library) is an open source computer vision

and machine learning software library. OpenCV was built to provide a common infrastruc-

ture for computer vision applications and to accelerate the use of machine perception in

commercial products. OpenCV is maintained by WillowGarage and is fully integrated into

ROS. Some of the algorithm templates available in the /risc visual package are:

• Edge Detection

• Drawing

• Optical Flow

• Face Recognition

• Thresholding and Image Segmentation

• Camshift Tracking

• Shape Detection

4.4.3 Camera Calibration

The majority of cameras on the market today are built at relatively low cost. This

results in imperfections that are manifest by distortion to the generated images. Two major

distortions are radial distortion and tangential distortion.
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Due to radial distortion, straight lines will appear curved. Its effect increases away from

the center of image. An image of a doorway taken from the AR.Drone front camera is shown

below. Lines expected to be straight near the perimeter are bulging out uncharacteristic of

reality.

Fig. 4.2: AR.Drone Front Camera View

This distortion can be described as follows:

xcorrected = x(1 + k1r
2 + k2r

4 + k3r
6)

ycorrected = y(1 + k1r
2 + k2r

4 + k3r
6)

Similarly, another distortion is the tangential distortion which occurs because image

taking lense is not aligned perfectly parallel to the imaging plane. Therefore, some areas in

image may appear closer than expected.

This distortion can be described as follows:

xcorrected = x+ [2p1xy + p2(r
2 + 2x2)]

ycorrected = y + [p1(r
2 + 2y2) + 2p2xy]
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Five parameters known as distortion coefficients are given by:

Distortion coefficients =

[
k1 k2 p1 p2 k3

]
In addition to this, intrinsic parameters of a camera must be known to fully describe

the camera. Intrinsic parameters are specific to a camera. It includes information like focal

length (fx, fy), optical centers (cx, cy) etc. It is also called the camera matrix. It depends

on the camera only. Once determined, it can be stored for future purposes. It is expressed

as a 3x3 matrix:

camera matrix =


fx 0 cx

0 fy cy

0 0 1


In order to find all these parameters, sample images of a well-defined pattern (eg, chess

board) must be provided. Then a solution can be found given enough data. Fortunately,

ROS has integrated an OpenCV-based package called camera calibration that provides a

convenient gui interface to accomplish this. Using a predefined checkerboard size this pack-

age can provide a matrix description of a camera that will take an image like that shown

in figure 4.3 and correct it to produce images like that shown in figure 4.4.

Fig. 4.3: Distorted Image Fig. 4.4: Corrected Image



38

4.4.4 Camera to Body Frame Estimation

Camera calibration takes care of intrinsic characteristics. However, in order to interpret

camera data with respect to an agent, a mapping from camera frame to body frame is

required. For example, the body frame of a quadrotor is defined as Fb. The origin is the

center-of-gravity, îb points out the nose of the airframe, ĵb points out the right wing, and

k̂b points out the belly. In contrast, the camera frame of the AR.Drone Fc is centered at

the focal point of the camera with an associated rotation relative to the body frame.

A correct mapping of the translation and rotation from body frame to camera frame

allows for proper interpretation of camera data. This can be a challenging process and is a

vast area of current research [22, 23, 24]. Using the RISC MAAP, a novel gui-based tuning

method has been developed to achieve this relative pose calibration. Using landmarks

tracked using the camera sensor and motion capture system, a 3D representation of the

expected position of the landmarks can be compared to the actual using rviz. The expected

position of the landmarks relative the camera frame is shown by rays and the actually

landmarks are represented using spheres as shown in figure 4.5. The user then tunes the

three axes rotation translation values to visually match the expected value to the true data

streaming from motion capture data. The result is a highly accurate camera pose estimate.

Given proper use of this relative pose calibration the camera data can be used to gain

azimuth and elevation angles of targets reliably. In summary, pixel to angle mapping can

be done as follows:

• Calibrate the camera, obtaining the camera matrix and distortion parameters.

• Remove the nonlinear distortion from the pixel positions of interest.

• Back-project the pixels of interest into rays (unit vectors with the tail at the camera

center) in camera 3D coordinates, by multiplying their pixel positions in homogeneous

coordinates times the inverse of the camera matrix.

• The angle is between the above vectors and

[
0 0 1

]T
, the vector associated to the

camera’s focal axis.
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Fig. 4.5: Camera Frame to Body Frame Calibration

Fig. 4.6: Angle to Pixel Mapping

This can also be done in the reverse

direction when adjusted for data transport

delay. This could possibly be used for

automatic image labeling or for providing

highly accurate synthetic camera measure-

ments for use in research without the need

of performing real-time image processing.

4.4.5 Landmark Recognition

In order to perform autonomous visual localization research reliable object detection

and tracking is necessary. Real-time robust object tracking is an important and active

research area in robotics. This is a complex problem due to:

• loss of information caused by projection of the 3D world on a 2D image

• noise in image

• complex object motion
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• nonrigid or articulated nature of objects

• partial and full object occlusions

• complex object shapes

• scene illumination changes

• real-time processing requirements

There are many approaches to object tracking and detection [25]. In the RISC Lab reliable

“Landmark” object tracking is required to be robust to invariant lighting, backgrounds,

blur, loss of field of view, and also remains computationally efficient enough to run in

real-time. A solution has been devised using the following tools:

• Relatively Invariant Shape and Coloring

• Broad Hue Saturation Value Thresholding

• Contour Detection and Sorting

• Perimeter Histogram Comparison

Relatively Invariant Shape and Coloring

The ideal invariant shape would be a sphere. However, a sphere can be difficult to

work with due to mounting difficulties and multicolor configurations become variant to

perspective. Multicolored discs were chosen as they can always be described as an ellipse

when projected from 3D to a 2D image plane. Coloring was chosen to use only two color

rings significantly separated with respect to the visual spectrum. Example landmarks are

shown in figures 6.2, 6.3, and 6.4.
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Fig. 4.7: Landmark 1 Fig. 4.8: Landmark 2 Fig. 4.9: Landmark 3

Broad Hue Saturation Value Thresholding

Image data is generally provided using the Red Green Blue (RGB) color model. This

significantly simplifies display as it mimics how are eyes perceive images. However, it does

not inherently separate luma, or the image intensity, from chroma similar to how our brains

interpret what is seen. This is remedied by using the Hue Saturation Value (HSV) color

model. Obtaining this model from RGB values can be done by the following transformation:

Vmax ← max (R,G,B)

Vmin ← min (R,G,B)

L← Vmax + Vmin
2

S ←


Vmax−Vmin
Vmax+Vmin

ifL < 0.5

Vmax−Vmin
2−(Vmax+Vmin) ifL ≥ 0.5

H ←



60(G−B)
S ifVmax = R

120+60(B−R)
S ifVmax = G

240+60(R−G)
S ifVmax = B

V ← Vmax
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Using an 8-bit image the resulting values are:



H = H/2

S = S ∗ 255

V = V ∗ 255

Using this convention a broad image mask can be created as shown in figure 4.11 from

the original image shown in figure 4.10.

Fig. 4.10: Original Image Fig. 4.11: Hue Threshold

Contour Detection and Sorting

Contour detection is supported by the OpenCV library and uses the algorithm described

in [26]. The method used is the second algorithm described by Suzuki. These contours are

found using border-following algorithms by determining the surroundness relations among

the borders of a binary image. Suzuki’s second algorithm follows only the outermost borders.

As suggested by Suzuki, this can be effectively used in component counting, shrinking, and

topological structural analysis of binary images. This algorithm provides contour or blob

descriptions that can easily be sorted by size and shape.
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Fig. 4.12: Contours Blobs

These blobs, shown in figure 4.12, can be sorted by size threshold and similarity to an

ellipse using the moment of the shape. Given a continuous function f(x,y) defining a shape

the moment of order (p+ q) is defined as:

Mpq =

∞∫
−∞

∞∫
−∞

xpyqf(x, y) dx dy (4.3)

This is implementation is described in [27]. The result is an assortment of candidate blobs

organized such that a probability of landmark existence can be determined.

Perimeter Histogram Comparison

To further determine if a landmark truly exists, these candidate blobs can be used to

build a mask about the perimeter as shown in figure 4.13. This mask can then be used to

gain a histogram of bordering pixels to the blob as shown in figure 4.14. Since the landmark

color configurations are already known this results in a positive or negative detection based

on a threshold determined by the user.
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Fig. 4.13: Outer Ring

Fig. 4.14: Color Histogram

While this process may seem involved this has shown to be relatively robust to invariant

lighting, backgrounds, blur, loss of field of view, and also remains computationally efficient

enough to run in real-time.

4.5 Open Source

Nothing is really open source unless it is accessible and can be easily studied. The

entire RISC MAAP software will be made available on GitHub noted as the world’s largest

code hoster [28] [29]. GitHub is a web-based Git repository hosting service, which offers all

of the distributed revision control and SCM2 functionality of Git as well as added features.

Using GitHub, all of the code is easily inspected, as is its entire history.

2source code management
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Chapter 5

Current Hardware Systems

In this chapter hardware systems currently used in the RISC MAAP are outlined in-
cluding the Parrot AR.Drone and 3DR Robotic’s IRIS+. Interface and control are discussed
along with relevant specifications.

The RISC lab’s systems of interest have recently centered around Vertical Take-Off

and Landing (VTOL) Unmanned Aerial Vehicles (UAVs). Two quadrotor platforms are

currently set up and in use: Parrot AR.Drone and 3DR Robotic’s IRIS+.

5.1 AR.Drone

Fig. 5.1: Parrot AR.Drone

The AR.Drone shown in figure 5.1 is an electrically powered quadcopter initially in-

tended for augmented reality games. As shown in figure 5.2 it consists of a carbon-fiber

support structure, plastic body, four high-efficiency brushless motors, sensor and control

board, two cameras and various removable hulls. This model is designed to be lightweight,

user-friendly and safe. It includes the safety feature of instantly locking the propellers in
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case of a foreign body contact, while also assisting the user with difficult maneuvers such as

takeoff and landing. The user can set directly its roll, pitch, yaw, and vertical speed while

the on-board controller adjusts the motor speeds to stabilize the drone at the required pose.

The drone can achieve speeds over 5 m/s and its battery provides enough energy up to 13

minutes of continuous flight [30].

Fig. 5.2: AR.Drone Hardware

The main on-board computer is based on the ARM9 processor running at 468MHz

with 128 MB of DDR1 RAM2 running at 200MHz. The sensory equipment consists of a 6-

degree-of-freedom inertial measurement unit, sonar-based altimeter, and two cameras. The

first camera is aimed forward and provides 640 x 480 pixel color image. The second one,

mounted on the bottom, provides color image with 176 x 144 pixel resolution [30].

Once the AR.Drone is initialized, an ad-hoc WiFi appears and an external computer

might connect to it using a fetched IP3 address from the drone DHCP4 server. Using the

ROS package ardrone autonomy the ardrone driver may be initialized to communicate with

the vehicle to retrieve sensor data as well as send desired roll, pitch, yaw rate, and vertical

1Double Data Rate
2Random Access Memory
3Internet Protocol
4Dynamic Host Configuration Protocol
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speed. The channel receives commands at 30 Hz. Sensor data (including cameras) can be

received at rates up to 35 Hz.

Getting Data from AR.Drone

As soon as the ardrone autonomy driver is running, the corresponding Navdata message

will be published as a rostopic. This data includes:

• batteryPercent: The remaining charge of the drone’s battery (%)

• state: The Drone’s current state: 0: Unknown, 1: Inited, 2: Landed, 3,7: Flying, 4:

Hovering, 5: Test, 6: Taking off, 8: Landing, 9: Looping

• rotX: Roll Position (In Degrees)

• rotY: Pitch Position (In Degrees)

• rotZ: Yaw Position (In Degrees)

• magX, magY, magZ: Magnetometer readings

• pressure: Pressure sensed by Drone’s barometer (Pa)

• temp : Temperature sensed by Drone’s sensor

• wind speed: Estimated wind speed

• wind angle: Estimated wind angle

• wind comp angle: Estimated wind angle compensation

• altd: Estimated altitude (In Millimeters)

• motor1..4: Motor PWM values

• vx, vy, vz: Linear velocity (mm/s) (Not published)

• ax, ay, az: Linear acceleration (g)

• tm: Number of micro-seconds passed since Drone’s boot-up

https://github.com/AutonomyLab/ardrone_autonomy
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Sending Data to the AR.Drone

While the ardrone driver node is running, the AR.Drone is subscribing to the following

topics:

• ardrone/takeoff

• ardrone/land

• ardrone/reset (Publishing an empty message to any of these three topics will result

in the corresponding action.)

• cmd vel This message type is geometry twist. The corresponding actions from inputs

are as follows:

– -linear.x: pitch backward

– +linear.x: pitch forward

– -linear.y: roll right

– +linear.y: roll left

– -linear.z: down

– +linear.z: up

– -angular.z: yaw left

– +angular.z: yaw right

AR.Drone Mapping to Generalized Inputs

The generalized quadrotor model commonly used in research assumes the inputs to the

system are roll, pitch, yaw, and thrust. However, the AR.Drone takes vertical speed in lieu

of thrust. Therefore, an input mapping must take place in order to apply the generalized

model. The generalized quadrotor model, state definitions and corresponding frames of

http://docs.ros.org/api/geometry_msgs/html/msg/Twist.html
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reference are described in Chapter 6. The following is the mapping of thrust command to

vertical velocity command:

Rv2b =


cos(φ) 0 sin(φ)

0 1 0

− sin(φ) 0 cos(φ)

 (5.1)

Rv1v2 =


1 0 0

0 cos(θ) − sin(θ)

0 sin(θ) cos(θ)

 (5.2)

Therefore, the acceleration in the vehicle 1 frame of the quad, av, can be determined by:

av = Rv2b R
v1
v2

[
0 0 T

]T
(5.3)

Where T is the commanded thrust. The desired vertical velocity, żc, can then be found given:

the current vertical velocity żact, an estimate of the transport delay (δ), the z component

of acceleration av(3), the mass of the quad (m), and gravity (g).

żc = żact + δ(
av(3)

m
− g) (5.4)

Performance Among Competing Networks

Competing WiFi networks around the 2.4 GHz frequency are common in developed

locations such as a university campus. The AR.Drone relies on this frequency for com-

munication. Though the communication is rarely compromised, delays upwards of 300

milliseconds have been documented when more than ten networks are competing on the

same channel as shown in figure 5.3. This issue only becomes problematic when low latency

is in high demand. For example, attempting aggressive maneuvers using off-board controls.

This network interference is likely out of the control of the user. Instead of modifying the
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AR.Drone in attempts to decrease these latencies, the IRIS+ has been integrated into the

RISC MAAP.

5.2 IRIS+

Fig. 5.3: Competing Networks
The IRIS+ shown in figure 5.4 is an electrically powered quadcopter intended for

hobbyists and video recording. It can be described by the following specifications:

• Motor to motor dimension: 550 mm

• Height: 100 mm

• Weight (with battery): 1282 g

• Average flight time: 9 - 14 minutes

• 400 g payload capacity

• Battery: 3-cell 11.1 V 3.5 Ah lithium polymer with XT-60 type connector. Weight:

262 g

• Propellers: (2) 10 x 4.7 normal-rotation, (2) 10 x 4.7 reverse-rotation
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• Motors: AC 2830, 850 kV

• Telemetry/Control radios available in 915 MHz or 433 MHz

• 32-bit Pixhawk autopilot system with Cortex M4 processor (flight control unit)

• GPS5 receiver with integrated magnetometer

This model is designed to be very stable and easy to use. It is significantly more powerful

when compared to the AR.Drone. It maintains an average flight time of 15 minutes continual

flight. The IRIS+ has the advantage of following the conventions of RC6 flight and uses the

general inputs of roll, pitch, yaw rate and thrust. This can be flown using the DX7s 7-Ch

DSMX Radio System shown in figure 5.5. The on-board reciever and data transmitter are

decoupled. This contributes significantly to decreased latency such that delay is physically

imperceptible during manual flight as opposed to the AR.Drone.

Fig. 5.4: 3DR IRIS+ Quadrotor

5.2.1 ARM Based ROS Integration

5Global Positioning System
6Radio Controlled
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Fig. 5.5: DX7s 7-Ch DSMX Radio System

In order to take advantage of

the low latency connection using the

DX7s a Pulse Position Modulation

(PPM) signal is generated and sent

to the trainer port of the radio. This

was done using the AT91SAM3X8E

ARM-Based MCU7 on the Arduino

Due board shown in figure 5.6.

ARM-based MCU PPM Signal Gen-

eration code is included in Appendix

A. A PPM signal modulation is a

common method of communication

among RC units. This signal en-

codes values by the amount of time measured between pulses as shown in figure 5.7.

Fig. 5.6: Arduino DUE
Once the signal is generated using the setup described in Appendix A, the signal can

be fed to the trainer port as shown in figure 5.8. The simple wiring is shown in figure 5.9.

7Microcontroller
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This is a desirable solution as it can be expanded to many RC-based communications.

Fig. 5.7: Example PPM Stream Quadrotor

5.2.2 State/Input Mapping

Fig. 5.8: Hardware Setup

Fig. 5.9: Simplified Diagram

Roll, pitch and yaw rate input to state

mappings are configured using PixHawk

conventions and can be understood as ex-

act angle and angular rate units. However,

the thrust commanded varies with battery

level. Deriving a simple PID8 controller for

position hold we were able to gather sta-

ble hovering flight data from the IRIS. This

data was interpreted using method of least

squares to map from battery level to the

throttle midpoint as shown in figure 5.10.

The battery percentage B is an integer

value 0 to 100. Throttle output is from -1

8Proportional Integral Derivative
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to 1. A fourth order fit was used to match the sigmoidal behavior of the desired throttle.

Method of least squares results in the following mapping to desired hover throttle Tdes:

c0 = 0.491674747062374

c1 = −0.024809293286468

c2 = 0.000662710609466

c3 = −0.000008160593348

c4 = 0.000000033699651

Tdes =

4∑
i=0

ciB
i (5.5)

This mapping requires battery feedback and allows more exact mapping of desired to

actual thrust expected from the quadrotor.

Fig. 5.10: Throttle Mapping
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Chapter 6

Educational Use

In this chapter a sample curriculum is provided reproducing a relevant research topic in
controls [10]. Differential flatness is outlined along with a demonstrated application. Results
of student labs are presented showing demonstration in simulation and hardware.

Given the rapid development and success of the RISC MAAP integration into educa-

tional use has already been made possible. The RISC MAAP was used Spring Semester

2015 as a lab portion of the Small Unmanned Aerial Systems course taught at Utah State

University. Students gained understanding of sensor limitations as well as the similari-

ties between simulation and hardware. They developed control methods in simulation and

demonstrated them on hardware. As solutions and software will likely be used for further

courses they will be provided only upon request. An outline of the curriculum follows:

6.1 Curriculum

Students were able to demonstrate a recent paper outlining a novel use of differential

flatness control for aggressive trajectory tracking on a quadrotor [10] as well as familiarize

themselves with the RISC MAAP.

6.1.1 Differential Flatness Control

Flatness in terms of systems theory can be thought of as an extension of the notion

of controllability from linear systems to nonlinear dynamical systems. This general idea

can be traced back to works by D. Hilbert and E. Cartan in the early 1900s on under-

determined systems of differential equations, where the number of equations is strictly less

than the number of unknowns [31] . A dynamic system which is linearizable via endogenous

feedback is said to be (differentially) flat. The terminology flat is due to the fact that the
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output plays an analogous role to the flat coordinates in the differential geometric approach

to the Frobenius theorem [32, 33]. The flatness of a nonlinear system can be characterized by

its tangent approximation [34]. If a system is differentially flat the state and input variables

can be directly expressed in terms of the (fictitious) flat output and a finite number of its

derivatives without integrating any differential equations. This property has been found

to be useful in trajectory tracking [10, 31]. This method of control has received increasing

attention and been developed as a general solution for various applications [35].

6.1.2 Frames of Reference

Frames of reference for this course have been adopted from [36]. The coordinate frames

of interest are defined as follows:

• F i = the inertial coordinate frame unit vector îi is directed North, ĵi is directed East,

and k̂i is toward the center of the earth. Due to the small workspace required for this

project, we shifted the origin of this frame from earth centered to a locally determined

point for convenience.

• Fv = the vehicle frame. These axes are aligned with those of F i. However, the origin

is at the center of mass of the quadrotor.

• Fv1 = the vehicle 1 frame. Fv1 shares the same origin as Fv. However, Fv1 is

positively rotated about k̂v by the yaw angle ψ so that if the airframe is not rolling

or pitching, then îv would point out the nose.

• Fv2 = the vehicle 2 frame. Fv2 shares the same origin as both Fv and Fv1. This

frame is obtained by rotating Fv1 in a right-handed rotation about the ˆjv1 axis by

the pitch angle θ. If the roll angle is zero, then ˆiv2 points out the nose of the airframe.

• Fb = the body frame. This is obtained by rotating Fv2 in a right handed rotation

about ˆiv2 by the roll angle φ. Therefore, the origin is the center-of-gravity, îb points

out the nose of the airframe, ĵb points out the right wing, and k̂b points out the belly.
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6.1.3 Quadrotor General Dynamic Model

All equations of motion for the quadrotor are independent of any trajectory and can

therefore be generalized to a variety of cases. The state variables of the quadrotor are the

following twelve quantities:

• pn = displacement along îi in F i

• pe = displacement along ĵi in F i

• h = displacement along −k̂i in F i

• u = the body frame velocity along îb in Fb

• v = the body frame velocity along ĵb in Fb

• w = the body frame velocity along k̂b in Fb

• φ = the roll angle defined with respect to Fv2

• θ = the pitch angle defined with respect to Fv1

• ψ = the yaw angle defined with respect to Fv

• p = the roll rate measured along îb in Fb

• q = the pitch rate measured along ĵb in Fb

• r = the yaw rate measured along k̂b in Fb

Derivations of the following model for the quadrotor dynamics given these states can be

found in [36]. ṗnṗe
ḣ

 =

cθcψ sφsθcψ − cφsψ cφsθcψ + sφsψ

cθsψ sφsθsψ + cφcψ cφsθsψ − sφcψ

sθ −sφcθ −cφcθ


uv
w

 (6.1)


u̇

v̇

ẇ

 =


rv − qw

pw − ru

qu− pv

+


−gsθ

gcθsφ

gcθcφ

+
1

m


0

0

−F

 (6.2)
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φ̇

θ̇

ψ̇

 =


1 sφtθ cφtθ

0 cφ −sφ

0 sφ
cθ

cφ
cθ




p

q

r

 (6.3)


ṗ

q̇

ṙ

 =


Jy−Jz
Jx

qr

Jz−Jx
Jy

qr

Jx−Jy
Jz

qr

+


1
Jx
τφ

1
Jy
τθ

1
Jz
τψ

 (6.4)

Jx, Jy, and Jz represent the quadrotor’s inertial constants, g is the acceleration of gravity

(9.80665 m/s2), c:=cos, s:=sin, t:=tan and F :=thrust due to rotors.

6.1.4 ROS

Students familiarize themselves with ROS walking through key concepts:

• Packages

• Node Communication

• Writing Subscribers/Publishers

• Plotting and Data Visualization

6.1.5 RISC MAAP

Students manually flew the AR.Drone using RISC MAAP conventions via joystick and

compared Motion Capture Data to the on board sensor data and commanded versus actu-

al/interpreted output generating plots using python. A screen shot of a students labwork

is seen in figure 6.1

6.1.6 Simulation to Hardware

Students used the generic quad model to derive a differential flatness-based controller

using the AR.Drone simulation included in the RISC MAAP software for verification. They

flew 3 Trajectories shown below using rviz.
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This was then seamlessly demonstrated on hardware using the same configurations used

in simulation. The only modification was using a new launch file to initialize the camera

system and the communication with the AR.Drone.

Fig. 6.1: Lab Work Screenshot

Fig. 6.2: Circle Fig. 6.3: Slanted Figure 8 Fig. 6.4: Flat Figure 8
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Chapter 7

Research Use

Following the conventions of the RISC MAAP and using the software/hardware sup-
ported therein, two novel research papers have been submitted for review [37, 38]. Both have
been accepted to the IEEE International Conference on Unmanned Aircraft Systems and
the IEEE Signal Processing & SP Education Workshop 2015 respectively. These papers are
provided herein. Two more novel research papers will be submitted within the year. One
demonstrates bearing-only cooperative localization. The other will generally showcase the
RISC MAAP and be submitted to the Journal of Intelligent and Robotic Systems.

Flying Inverted Pendulum Trajectory Control on Robust Intelligent Sensing

and Control Multi-Agent Analysis Platform

We demonstrate trajectory control of the tip of an inverted pendulum atop a small
unmanned aerial vehicle. In this paper we discuss how exploiting the differential flatness of
combined systems provides a realization of adequate control. A differential flatness controller
is derived for trajectory control of a pendulum tip. Simulation results are presented for tip
trajectory tracking with and without added noise. A framework for hardware demonstration
is established. Vertical take-off and landing (VTOL) system capabilities are further explored
as well as active/passive manipulation using quadrotors.

7.1 Introduction

The inverted pendulum is well known as one of the classic control problems. It offers

a well described and realizable nonlinear unstable system. As such, this problem has been

investigated for several decades [39, 40]. Vertical takeoff and landing (VTOL) systems are

emerging as a popular platform on which to demonstrate various control techniques such

as reinforcement learning [41], neural networks [42], and fuzzy control [43] to name a few.

The complex control problem of an inverted pendulum on top of a small unmanned aerial

system (SUAS) has been achieved only recently [44]. This was done using an infinite-

horizon linear-quadratic regulator (LQR) design [45]. The combination of these systems is

relatively new and currently limited by the availability of a visual feedback system providing
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high accuracy indoor control [46]. Differential flatness based control has been shown to be

simple and robust [47, 48, 49]. In this paper we propose and demonstrate a control strategy

for this combined system exploiting the property of differential flatness.

Maintaining robust control of an unmanned VTOL system is a vast area of current

research. However, extending controllability of a quadrotor to cooperate in tandem with

an inherently unstable passive system such as an inverted pendulum has received little

attention [44, 50, 51]. In order for VTOL systems to become viable options for various

applications such as bridge/industrial inspection, service industry or indoor automation

further exploration must occur. This research contributes to that exploration. This high

level extended trajectory control given the under powered and actuated system has been,

as yet, unrealized [52]. While some comparable work has been done on flying inverted

pendulums [44], trajectory control extended to the passive system has not been attempted

until now. The main contributions of this paper are as follows:

• A differential flatness controller is derived for trajectory control of a pendulum tip.

• Simulation results are presented for tip trajectory tracking with and without added

noise.

• A framework for hardware demonstration is established.

Section 2 will introduce the dynamic models used in the controller design. Section 3

presents the benefits of differential flatness based controller design and the corresponding

state mappings. The simulation model and results are shown in Section 4 and conclusions

are drawn in Section 5, where an outlook is also presented.

7.2 DYNAMIC MODELS

All equations of motion for the quadrotor and the inverted pendulum are independent

of any trajectory and can therefore be generalized to a variety of cases. It is also important

to note that in the derivations of these models the effect of the pendulum mass on the

quadrotor is neglected. This assumption and relating justifications have been discussed by
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Hehn [44]. Frames of reference and the general model of the quadrotor were provided in

Chapter 6.

7.2.1 Inverted Pendulum

Definition of variables:

• xv = displacement along îv in Fv

• yv = displacement along ĵv in Fv

• ẋv = velocity along îv in Fv

• ẏv = velocity along ĵv in Fv

• L = length of the pendulum.

• ζ =
√
L2 − x2v − y2v , displacement along −k̂v in Fv

• ẍ = quadrotor acceleration along îv in Fv

• ÿ = quadrotor acceleration along ĵv in Fv

• z̈ = quadrotor acceleration along −k̂v in Fv

The pendulum’s equations of motion were derived using Lagrange’s method and are given

by: 
ẍv

ÿv

 =


α(ζ2+x2v)−βxvyv
(ζ2+x2v)−

x2vy
2
v

ζ2+y2v

β − ẍvxvyv
(ζ2+y2v)

 (7.1)

α= −ζ2

(ζ2+x2v)
(ẍ+

ẋ2vxv+ẏ
2
vxv

ζ2
+
ẋ2vx

3
v+2ẋvẏvx

2
vyv+ẏ

2
vy

2
vxv

ζ4
−xv(z̈+g)

ζ
) (7.2)

β= −ζ2

(ζ2+y2v)
(ÿ+

ẏ2vyv+ẋ
2
vyv

ζ2
+
ẏ2vy

3
v+2ẏvẋvy

2
vxv+ẋ

2
vx

2
vyv

ζ4
− yv(z̈+g)

ζ
) (7.3)

*For a more detailed derivation of the above equations refer to Appendix D.
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The control design will require measurement of the states of the pendulum tip for

trajectory control. These are functions of previously defined states.

• xi = pn + xv, displacement along îi in F i

• yi = pe + yv, displacement along ĵi in F i

• zi = h− ζ displacement along k̂i in F i

• ẋi = ṗn + ẋv velocity along îi in F i

• ẏi = ṗe + ẏv velocity along ĵi in F i

• żi = ḣ− ζ̇ velocity along k̂v in F i

7.3 CONTROLLER DESIGN

A two-tier hierarchal controller was designed for any arbitrary trajectory using full

state feedback and feedforward methodology by exploiting the differential flatness of the

system.

7.3.1 Pendulum Tip Trajectory Controller

The first tier in the hierarchal controller seeks to control the trajectory of a simple

point mass (our pendulum tip). We use an infinite-horizon linear-quadratic regulator (LQR)

design for feedback [45] and provide feedforward from the given trajectory.

Appropriate states for a given trajectory:

x̄r =

[
xir yir zir ˙xir ˙yir ˙zir

]T
(7.4)

Actual states of the pendulum tip:

x̄ =

[
xi yi zi ẋi ẏi żi

]T
(7.5)
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State space for computing the LQR gain matrix:

˙̄x = Ax̄+Bū (7.6)

A =

03×3 I3×3

· · · 03×6

 and B =

03×3

I3×3


Desired acceleration given the LQR gain matrix K:

ū = −K(x̄r − x̄) (7.7)

Input for a given trajectory:

ūr =

[
ẍir ÿir z̈ir

]T
(7.8)

upm = ū+ ūr (7.9)

Total input to the point mass system:

ud = upm +

[
0 0 g

]T
(7.10)

7.3.2 Mapping to Quadrotor/Pendulum System

To realize the desired acceleration, upm, on the pendulum tip we require a mapping

from input variables to system state variables. This is provided given the assumption that

the quadrotor can only act on the pendulum tip in the direction along the pendulum shaft
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as seen in figure 7.1.

Fig. 7.1: Acceleration Mapping

Thus, the required system states can be found as follows:

xvr = L
ud(1)

‖ud‖
(7.11)

yvr = L
ud(2)

‖ud‖
(7.12)

pnr = xi − xvr (7.13)

per = yi − yvr (7.14)

hr = zi −
√
L2 − x2vr − y2vr (7.15)

ψr = 0 (7.16)

The following have been set to zero since an appropriate mapping would require estimating

a desired jerk applied to the pendulum tip.

˙xvr = ˙yvr = ur = vr = wr = 0 (7.17)
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7.3.3 Quadrotor/Pendulum System Controller

The second tier in our hierarchal controller seeks to control the state of combined sys-

tem of the inverted pendulum and quadrotor. We use the same methods as those described

in the first tier. However, there is no reference acceleration.

Appropriate states given the previous mapping:

xr =
[
xvr yvr ˙xvr ˙yvr pnr per hr ur vr wr ψr

]T

Actual states of the system:

x =

[
xv yv ẋv ẏv pn pe h u v w ψ

]T

State space for computing the LQR gain matrix:

˙̄x = Ax+Bu (7.18)

A =



02×2 I2×2 02×7

· · · 02×11 · · ·

03×7 I3×3 03×1

· · · 04×11 · · ·


, B =



· · · 02×6

I2×2 02×4

· · · 03×6

04×2 I4×4


Desired acceleration given the LQR gain matrix K:

u = −K(xr − x) (7.19)
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7.3.4 Mapping to Quadrotor Inputs

Assuming the pendulum states to be small values, the system is linearized about a

balanced pendulum. This results in:

ẍv
ÿv

 =

α(ζ
2+x2

v)−βxvyv
(ζ2+x2

v)−
x2vy

2
v

ζ2+y2v

β − ẍvxvyv
(ζ2+y2v)


∣∣∣∣∣∣∣∣
xeq

(7.20)

Thus, ẍv
ÿv

 ≈
−ẍ
−ÿ

 (7.21)

Therefore u can be expressed as:



up1

up2

up3

up4


=



u3 − u1

u4 − u2

u5

u6


(7.22)

For the general model of the quad we define the vector of inputs to be:

ν =

[
Td Φd θd rd

]T
(7.23)

The on-board attitude controller closes the loop on the desired input commands which

eliminates the need to provide any further control on the system. The mapping from u to

ν has been adopted from Ferrin’s text [10]. Let mq be defined as the mass of the quad.

Td = mq

∥∥∥∥∥
[
up1 up2 up3

]T∥∥∥∥∥ (7.24)

z = −R(ψ)

[
up1 up2 up3

]T mq

Td
(7.25)
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Φd = sin−1(−z2) (7.26)

θd = tan−1(
z1
z3

) (7.27)

rd = up4 (7.28)

The limits and benefits of this approach are described in [10].

7.4 Results

Fig. 7.2: AR.Drone with Pendulum

The algorithms presented were imple-

mented initially using Simulink and then

transferred to the Robust Intelligent Sens-

ing and Control Multi-Agent Analysis Plat-

form (RISC MAAP) using python as de-

scribed in [53]. We present results demon-

strating the performance of the controller

designed in the previous section. Two vehi-

cles were evaluated for demonstration. The

Parrot AR.Drone (suggested by Krajnik for

use in education [30]) and the 3DR IRIS (a

Pixhawk based system from 3D Robotics).

These unmanned aerial systems are signifi-

cantly different. Thus, our simulation was designed for a generic case using the RISC MAAP

as shown in figure 4.1. The RISC MAAP is equipped with an infrared motion tracking sys-

tem that provides accurate vehicle position and attitude measurements at 200 Hz. The

communication systems for both vehicles are wireless and can be assumed to incorporate

some delay. The inverted pendulum is composed of a carbon fiber tube approximately

1 meter in length. The top end of the pendulum is mounted with similar markers as the

quadrotor, allowing the position of this point to be determined through the motion tracking

system.
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7.4.1 Simulation

A flat figure eight trajectory was chosen since it is a simple path that is mathematically

realizable. The system’s initial conditions were set outside the given trajectory to demon-

strate stability. Keeping in mind our assumed data rates and delays, we see a tightly held

trajectory in figure 7.3. Desired and actual trajectories for each axis can be seen in figure

7.4, while overall positional errors are displayed in figure 7.5. These results include a 2mm

S.D. white noise on the position of the pendulum and the quadrotor. This is to account for

the noise in the RISC MAAP system.
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Fig. 7.4: Figure Eight Trajectory and Position

As can be seen in the above figures, the

actual states converge to the desired trajec-

tory within a short time frame (∼10 sec-

onds). While there is some oscillation about

the trajectory, the pendulum tip remains

stabilized within acceptable bounds. This

was achieved with minimal tuning. How-

ever, for demonstration on hardware more

aggressive tuning will likely be necessary.

7.5 CONCLUSION

We have demonstrated trajectory con-

trol in simulation of the tip of an inverted

pendulum atop a small unmanned aerial ve-

hicle. State mapping permitted through ex-

ploitation of the differential flatness of the

combined systems has proven a useful tool

for extending control to a passive system.

The simulation displayed significant robustness in the presence of noise well within the

bounds expected using the RISC MAAP (2 mm S.D.). Given the data provided in this

paper, this experiment is expected to be realizable on the current RISC MAAP system.
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Fig. 7.5: Figure Eight Trajectory Errors

This research explores and exposes as

yet unrealized capabilities and possibilities

of VTOL platforms. We suggest there is

still much research to be done in order

to understand the possible extensions to

the sensing/acting capacities of these un-

manned aerial systems.

Using Extended Kalman Filter for Robust Control of a Flying Inverted

Pendulum

We propose the use of an Extended Kalman Filter (EKF) for reliable state estimation
in order to permit advanced control of the tip of a flying inverted pendulum while main-
taining safety. We demonstrate the capabilities of an EKF in tandem with an accurate
model to overcome bad or false data from a multiple camera motion capture system used for
positioning.

7.6 Introduction

Many aspects of robotics are influenced by unpredictable dynamic environments in

ways that make reliable estimation challenging. Consequently, robotics researchers have

turned towards controlled testing platforms [2] [3] to validate theory. Perhaps among the

most famous of these is The Flying Machine Arena at ETH Zurich, which contains a net-

enclosed workspace of one thousand cubic meters [5]. These platforms aim for a controlled

environment that provides reliable ground truth estimates of robotic systems. This is usually

achieved using high frequency, low latency feedback from cameras interpreted to provide

accurate position measurements. These systems allow in-depth analysis and performance

that would otherwise be unattainable today in natural environments.

While these camera systems can provide useful data, under suboptimal conditions they

may also supply false data. These undesirable conditions result in two significant difficul-
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ties. First, false data is indistinguishable from desired data due to lack of a model-driven

estimator. Second, overall quality of state estimation degrades and system observability

over time is lacking. For aggressive applications on powerful highly mobile robotics this

situation can be dangerous or even life-threatening.

We propose implementation of an Extended Kalman Filter (EKF) for difficult aggres-

sive tasks of a well modeled system to overcome these pitfalls. Specifically, we demonstrate

the capabilities of advanced filtering to solve the problem of controlling a flying inverted

pendulum tip to follow a desired trajectory using a quadrotor. This control strategy was

previously developed in [37] and exploits differential flatness using a hierarchal infinite hori-

zon linear quadratic regulator.

7.7 SENSOR CHALLENGES

Fig. 7.6: Flying Inverted Pendulum

The Robust Intelligent Sensing and

Control (RISC) Lab uses the Multi-Agent

Analysis Platform (MAAP) [37] camera

setup illustrated in figure 4.1. This sys-

tem uses MotionAnalysis infrared cameras

(shown in figure 2.1) and reflective mark-

ers to provide position estimates of objects.

An array of markers in a fixed geometry

provides the object template. This tem-

plate can be used to provide pose estima-

tion. From experience using this system we

have developed the following list of poten-

tial drawbacks.

• Poor marker template geometry can decrease accuracy

• Infrared spectrum interference due to natural lighting or unwanted reflective materials

will result in false data
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• Vibrations affecting the camera pose require constant recalibration requirements

• Unfocused or suboptimal camera setup creates uneven volume capture

• Camera view obstruction results in data loss

This list is not exhaustive. However, it is intended to illustrate the limitations of this sensing

environment. Even the high quality systems require constant calibration and maintenance

to compensate for these issues. False information becomes unavoidable in lower quality or

suboptimal operating locations.

Fig. 7.7: Actual Data From RISC MAAP

Data similar to that depicted in figure

7.7 is not improbable. The dark bars on

the plot signify detectable data loss. Data

loss detection without an EKF is currently

done by eliminating data points that lie

outside the physically realizable space. In

the absence of data the controller drives

the quadrotor to produce zero acceleration

since an alternative estimate does not ex-

ists. However, this has been insufficient to

deal with sensing deficiencies and will be discussed further in Section 5.

7.8 EXTENDED KALMAN FILTER

The EKF is an extension of the well-known Kalman Filter as described in [19]. An

EKF provides an approximate linearized estimate of the states despite the nonlinear char-

acteristics of the system [20]. A generic EKF can be summarized as follows:

7.8.1 Propagate:

• x̂i+1 = f(x̂i, ui)

x̂i = state estimate at iteration i
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f(x̂i, ui) = Nonlinear model

• P̂i+1 = ΦiPiΦ
T
i +Qd,i

Φi = I + ∂f(x̂i,ui)
∂x |x̂i,ui∆t (Approximate Jacobian)

Qd,i = Process noise covariance

Pi = Covariance of estimate

7.8.2 Update:

• Measurement: zi

• Residual: yi = zi − x̂i

• Residual Covariance: Ri = HiPiH
T
i +R where R is the measurement noise covariance

and Hi is the observation model matrix.

• Kalman Gain: Ki = P−i H
T
i R
−1
i

• Update State: x̂+i = x̂−i +Kiyi

• Update Covariance: P+
i = (I −KiHi)P

−
i

Thus, x̂+i is our new estimated mean and P+
i is the corresponding covariance.

Our implementation generally followed this form. One exception was the necessity of

using the estimated acceleration of the quad as an input to the pendulum base model. Data

loss detection was performed using a chi-square test given a state mean x and covarianceP

with measurement noise covariance R [21]. Overall, the flying inverted pendulum relies on

valid estimates of the 16 states as defined in Section 2. Due to limited space in this paper,

Jacobians and derivations have been added in Appendix E and F while simulation videos

are available on our website [53].



74

The resulting EKF performance is depicted in figure 7.8 and 7.9. The estimate closely

follows the true data in the presence of noise and accurately displays the degradation of

information while data is lacking.

7.9 RESULTS

Fig. 7.8: Pendulum Position Estimate

Fig. 7.9: Quadrotor Position Estimate

The EKF developed in this paper is in-

tended to enable the advanced control task

of flying inverted pendulum tip to follow

a desired trajectory as described in [37] in

a suboptimal motion capture environment.

These simulations focus on a following a fig-

ure eight trajectory as depicted in figure

7.10.

.

Results are evaluated using the ideal

controller with complete and accurate data

defining the baseline. Therefore, effective-

ness of the estimate is evaluated with re-

spect to the root mean squared error of

the pendulum tip and the desired position

in figure 7.11 and velocity in figure 7.12.

The ideal controller performance is shown

as complete data. The noisy data relies on a simple law setting the desired quad accelera-

tion to zero if data is recognized as false or absent.

As can be seen below, without the EKF the pendulum is unable to maintain

the trajectory. While, the controller using the EKF estimates better tracks the

ideal.
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Fig. 7.11: Pendulum Position Errors Fig. 7.12: Pendulum Velocity Errors

7.10 CONCLUSION

Fig. 7.10: 3D Trajectory

In this paper we have argued that mo-

tion capture camera systems can provide use-

ful data. However, these systems may require

significant filtering such as an EKF for reliable

state estimation in advanced applications such

as flying inverted pendulum control. By em-

ploying this model driven filter we have over-

come two significant difficulties. First, the un-

reliable or bad-data can be distinguished from

desired data due to a model-driven estimator.

Second, the estimator provides a measurement of data quality allowing the user to gain a

better understanding of system observability over time. This enables the user to achieve

greater safety and control in potentially harmful and aggressive maneuvers. The benefits

of this method were demonstrated in a realistic example.

This paper has considered only specific aspects of misinformation from motion capture

systems. Future work will deal with hardware implementation of this specific problem and

likely exploration into more advanced applications.
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Cooperative Bearing-only Localization Experimentation

Software and hardware setup for multi agent systems are explained. Vision-based land-
mark detection is discussed.

7.11 EXPERIMENTAL MOTIVATION

Cooperative Localization is a vast area of current research and experimental validation

of theoretical results is difficult due to the involvement and coordination of many systems

and the necessity of reliable “ground-truth” for validation [54] [55] [56]. The focus of this

experimental setup will be to provide validation of bearing-only cooperative localization as

an extension of Sharma’s work [57] to a 3D environment using quadrotors. The following

aspects of this experiment will be discussed: Hardware, Communication, Software and Data

Collection.

7.12 DATA COLLECTION

Much of the data analysis was implemented in Matlab. This required a conversion from

rosbag to csv1 file. This was done using a significantly modified version of Shane Lynn’s

data extraction package. The data gathered in experimentation were the following:

• 3 HD cameras streamed over a wireless network at 30 hz

• Navdata provided by AR.Drone SDK

• Observed landmark bearing angles

• Control inputs to the AR.Drones

• Camera to body frame transforms

• Regions of interest of detected landmarks

• Desired trajectories

1Comma Separated Value

http://shanelynn.ie/index.php/csv-data-extraction-tool-for-ros-bag-files/
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• Ground truth estimates of quadrotor states

• Ground truth landmark positions

These data in form of bag files are quite large. 10 minutes of data corresponds to 8

GB of data. The majority of this data was visualized in real-time using rviz tools. An

experimental setup is shown in figure 7.13 and the corresponding rviz representation of

the same experiment can be seen in figure 7.14.

Fig. 7.13: Multi-agent Analysis in RISC Lab Fig. 7.14: Multi-agent Analysis in rviz

There are many benefits of using bagged data. One of these is the ease of playing

back any portion of interest in real-time. This enables verification and analysis of research

algorithms that may be too computationally intensive to run during a live experiment.

Conclusions regarding these data have not yet been drawn. Further analysis and dis-

cussion of the significance of this experimentation data is the topic of current research in the

RISC Lab. However, the ability to readily perform such complex experiments repeatedly

illustrates the utility of the RISC MAAP.
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Chapter 8

Conclusion

As stated in the introduction, three goals of this research were:

• Develop an open source adaptable expandable test bed platform for use in education

and research.

• Demonstrate a complex control problem for use in education using the developed

platform.

• Extend modern controls research using the developed platform

All of these goals have been realized and will be discussed in turn, followed by an overview

of future work.

An open source adaptable, expandable test bed platform has been developed for use in

education and research. In Chapter 2 details related to the motion capture camera system

were provided while other relevant hardware used within the RISC MAAP was detailed in

Chapter 5. Software architecture was outlined in Chapter 3 along with the benefits and

limitations of using the Robotics Operating System (ROS) as a foundation. Goals regarding

efficiency and usability of the overall system and how these are addressed was provided in

Chapter 4.

The Robust Intelligent Sensing and Control Multi Agent Analysis Platform has been

shown to be adaptable and expandable. This encourages reuse of code and solutions for

future work ensuring that redundant work is avoided. This allows researchers to focus on

specific research/academic problems rather than on implementing the many necessary, but

unrelated parts of the system.

Given the rapid development of this platform, it has already been used extensively for

education. Chapter 6 provided sample curriculum for reproducing a relevant research topic
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in controls [10]. Results of lab work were presented showing the student’s demonstration

in simulation as well as hardware. This demonstrated a complex control problem for use

in education using the developed platform. Aside from being indispensable to research and

education in the RISC Lab, the flexibility of the platform has encouraged use for projects

and research by the electrical, civil and mechanical engineering departments.

Chapter 7 provided examples of how modern controls and localization research has

been extended using this developed platform. Trajectory control in simulation of the tip

of an inverted pendulum atop a small unmanned aerial vehicle was demonstrated. State

mapping permitted through exploitation of the differential flatness of the combined systems

has proven a useful tool for extending control to a passive system. The simulation displayed

significant robustness in the presence of noise well within the bounds expected using the

RISC MAAP. Exploration of motion capture camera systems has provided useful insight in

the role of model driven filtering while performing aggressive maneuvers. Also, multi-agent

experimentation has been shown to be achievable in a manageable repeatable framework.

Future work will likely include the support of ground or even aquatic vehicles. This

system is especially equipped to facilitate exploratory research in areas of GPS-denied or

indoor navigational systems as well as aggressive controls. Structural analysis, ground effect

characterization, and system identification are also current topics of future work discussed.

In summary, future work related to the RISC MAAP will likely expand far beyond the topics

discussed herein. However, this research explores and exposes the possibilities of sharing

work across a unified testbed. The hope is that this work can be used not only at Utah

State University but throughout the world to accelerate robotics research and encourage

collaboration.
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[14] A. Jiménez-González, J. R. Mart́ınez-de Dios, and A. Ollero, “An integrated testbed for

cooperative perception with heterogeneous mobile and static sensors,” Sensors, vol. 11,

pp. 11 516–11 543, 2011.

[15] M. Quigley, K. Conley, B. Gerkey, J. FAust, T. Foote, J. Leibs, E. Berger, R. Wheeler,

and A. Mg, “ROS: an open-source Robot Operating System,” ICRA, vol. 3, p. 5, 2009.

[16] WillowGarage, “Robot Operating System(ROS),” 2012.

[17] M. Fleder, “ROS : Robot Operating System,” in RSS, 2012, pp. 1–15. [Online].

Available: http://courses.csail.mit.edu/6.141/spring2012/pub/lectures/Lec06-ROS.

pdf

[18] P. Green, “Using Python for Interactive Data Analysis,” Reading, vol. 100, p. 144,

2007. [Online]. Available: http://stsdas.stsci.edu/perry/pydatatut.pdf

http://www.ros.org/testimonials/
http://www.ros.org/testimonials/
http://courses.csail.mit.edu/6.141/spring2012/pub/lectures/Lec06-ROS.pdf
http://courses.csail.mit.edu/6.141/spring2012/pub/lectures/Lec06-ROS.pdf
http://stsdas.stsci.edu/perry/pydatatut.pdf


82

[19] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,”

Transactions of the ASME-Journal of Basic Engineering, vol. 82, pp. 35–45, 1960.

[Online]. Available: http://fluidsengineering.asmedigitalcollection.asme.org/article.

aspx?articleid=1430402

[20] G. Einicke and L. White, “Robust extended Kalman filtering,” IEEE Transactions on

Signal Processing, vol. 47, 1999.

[21] B. Brumback and M. Srinath, “A Chi-square test for fault-detection in Kalman filters,”

IEEE Transactions on Automatic Control, vol. 32, pp. 552–554, 1987.

[22] S. Weiss, M. W. Achtelik, S. Lynen, M. Chli, and R. Siegwart, “Real-time onboard

visual-inertial state estimation and self-calibration of MAVs in unknown environ-

ments,” in Proceedings - IEEE International Conference on Robotics and Automation,

2012, pp. 957–964.

[23] J. Kelly and G. S. Sukhatme, “Fast Relative Pose Calibration for Visual and Inertial

Sensors,” in Springer Tracts in Advanced Robotics, vol. 54, 2009, pp. 515–524.

[24] J. Lobo and J. Dias, “Relative Pose Calibration Between Visual and Inertial Sensors,”

pp. 561–575, 2007.

[25] A. Yilmaz, O. Javed, and M. Shah, “Object tracking: A survey,” ACM Computing

Surveys, vol. 38, p. 13, 2006. [Online]. Available: http://dx.doi.org/10.1145/1177352.

1177355

[26] S. Suzuki and K. Abe, “Topological structural analysis of digitized binary images by

border following,” p. 396, 1985.

[27] M. K. Hu, “Visual Pattern Recognition by Moment Invariants,” IRE Transactions on

Information Theory, vol. 8, pp. 179–187, 1962.

[28] G. Gousios, B. Vasilescu, A. Serebrenik, and A. Zaidman, “Lean GHTorrent:

GitHub data on demand,” Proceedings of the 11th Working Conference on

http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://fluidsengineering.asmedigitalcollection.asme.org/article.aspx?articleid=1430402
http://dx.doi.org/10.1145/1177352.1177355
http://dx.doi.org/10.1145/1177352.1177355


83

Mining Software Repositories - MSR 2014, pp. 384–387, 2014. [Online]. Available:

http://dl.acm.org/citation.cfm?doid=2597073.2597126

[29] “Robust intelligent sensing and control multi agent analysis platform for education and

research,” https://github.com/riscmaster/risc maap, 2015.
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Appendix A

ARM-based MCU PPM Signal Generation

The following code was developed to setup a standard or inverted PPM signal using in-

terrupts on a Atmel ARM-based MCU. Register definitions can be found using the “SAM3X

/ SAM3A Series Atmel — SMART ARM-based MCU Datasheet”. Page references in code

refer to this datasheet.

1 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

2 ∗ Globa ls , Constants and D e f i n i t i o n s

3 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

4 #define PPM PIN 2 // PPM output pin ,

Pin 2 , PB25 ∗∗Page41∗∗

5 #define MAX PPM CHANNELS 4 // Number o f PPM

channe ls

6 #define PPM FRAME LENGTH 20000 // Frame l e n g t h

u s u a l l y 20−22.5ms in microseconds . . . not c r i t i c a l

7 #define PPM PULSE LENGTH 250 // Pulse l eng th , not

c r i t i c a l . This i s the h igh time

8 #define TICKS PER us 42 // Timer i s c l o c k e d

at 42MHz, so 42 t i c k s per us

9

10 volat i le int ppm[MAX PPM CHANNELS] ; // Array o f

channels , t h i s w i l l s t o r e the commanded p e r i o d s

11 int PPMmin = 900 ; // Minimum p u l s e

width in useconds , on ly used in i n i t i a l i z a t i o n
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12 byte PPM cur ch = 0 ; // Index o f curren t

channel in use . DO NOT USE OUTSIDE OF INTERRUPT

13 unsigned int PPM sum = 0 ; // Running measure

o f curren t used frame . DO NOT USE OUTSIDE OF INTERRUPT

14

15

16 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

17 ∗ Setup Function runs once to c o n f i g u r e

18 ∗ a l l t h a t which r e q u i r e s c o n f i g u r i n g

19 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

20 void setup ( ) {

21 pinMode (PPM PIN, OUTPUT) ; //

Port B pin 25 c o n f i g u r e as output ∗∗Page

6 ,41∗∗

22 analogWrite (PPM PIN, 1) ; //

Al lows b y p a s s i n g Arduino c o n f i g s

23

24 // Timer counter d e s c r i p t i o n s s t a r t s on ∗∗Page 856∗∗

25 REG PIOB PDR = 1 << 25 ; //

D i s a b l e PIO , e nab l e p e r i p h e r a l ∗∗Page

634∗∗

26 REG PIOB ABSR = 1 << 25 ; //

S e l e c t p e r i p h e r a l B ( Timer counter 0 output ) ∗∗Page

656∗∗

27 REG TC0 WPMR = 0x54494D00 ; //

Enable w r i t e to r e g i s t e r s ”TIM” in ASCII ! ∗∗Page

908∗∗
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28 REG TC0 CMR0 = 0 b00000000000010011100010000000000 ; //

Set channel mode r e g i s t e r ( see d a t a s h e e t ) ∗∗Page

883∗∗

29 // REG TC0 CMR0= 0 b00000000000001101100010000000000 ; //

A l t e r n a t i v e CMR f o r i n v e r t e d output ∗∗Page 883∗∗

30 REG TC0 RC0 = 100000000; //

Counter per iod . . . j u s t any v a l u e to i n i t ∗∗Page

891∗∗

31 REG TC0 CCR0 = 0b101 ; //

Enable c lock , s o f t w a r e t r i g g e r ( k i c k s t a r t ) ∗∗Page

880∗∗

32 REG TC0 IER0 = 0b00010000 ; //

Enable i n t e r r u p t on counter = rc ∗∗Page

894∗∗

33 REG TC0 IDR0 = 0b11101111 ; //

D i s a b l e o th er i n t e r r u p t s ∗∗Page

896∗∗

34 REG TC0 RA0 = PPM PULSE LENGTH ∗ TICKS PER us ; //

Pulse l e n g t h s e t t i n g f o r RA compare

35

36 for ( int i = 0 ; i < MAX PPM CHANNELS; i++) { //

Set a l l channe l s to minimum to avoid i n t e r r u p t weirdness

37 ppm[ i ] = PPMmin;

38 }

39 NVIC EnableIRQ (TC0 IRQn) ; //

Enable TC0 i n t e r r u p t s

40

41 }
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42

43

44 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

45 ∗ Loop Function

46 ∗ This f u n c t i o n runs r e p e a t e d l y , f o r EVER ! . . .

47 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

48 void loop ( )

49 {

50 // This i s where the v a l u e f o r the PPM are se t , v a l u e s between

˜900 and ˜2000

51 // Channel order v a r i e s from manufacturer to manufacturer . . .

52 ppm [ 0 ] = 1000 ;

53 ppm [ 1 ] = 1500 ;

54 ppm [ 2 ] = 1500 ;

55 ppm [ 3 ] = 1000 ;

56

57 while (1 ) {}

58 }

59

60

61 /∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗

62 ∗ TC0 Handler

63 ∗ This f u n c t i o n i s the i n t e r r u p t

64 ∗ hand ler f o r Timer Counter 0(TC0)

65 ∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

66 void TC0 Handler ( )

67 {
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68 long dummy = REG TC0 SR0 ;

// V i t a l − read ing t h i s c l e a r s f l a g , MUST BE DONE!

69 i f ( PPM cur ch < MAX PPM CHANNELS)

// Do t h i s i f we haven ’ t output se n t a l l the channe l s y e t

70 {

71 REG TC0 RC0 = ppm[ PPM cur ch ] ∗ TICKS PER us ;

// Update RC to next channel in l i n e

72 PPM sum += ppm[ PPM cur ch ] ;

// Add channe ls run time to the running count o f time

73 PPM cur ch++;

// Increment channel index f o r the next i n t e r r u p t

74 }

75 else

// Do t h i s i f we ’ ve run out o f channe l s to update

76 {

77 REG TC0 RC0 = (PPM FRAME LENGTH − PPM sum) ∗ TICKS PER us ;

// Update RC to the remaining time so we j u s t i d l e

78 PPM cur ch = 0 ;

// Reset channel index

79 PPM sum = 0 ;

// Reset running count o f time

80 }

81 }

dueppm.ino



93

Appendix B

Cooperative Environment Setup Code

The following code was developed to setup a standard environment to allow operating

a remote machine with similar permissions and access. To function properly this file should

be located in the devel folder within the catkin workspace.

1 #! / usr / bin /env sh

2 # generated from catk in /cmake/ template / setup . sh . in

3

4 # Sets var i ous environment v a r i a b l e s and sourc e s a d d i t i o n a l

environment hooks .

5 # I t t r i e s i t ’ s bes t to undo changes from a p r e v i o u s l y sourced

setup f i l e b e f o r e .

6 # Supported command l ine opt ions :

7 # −−extend : s k i p s the undoing o f changes from a p r e v i o u s l y

sourced setup f i l e

8

9 # i nd i go environment setup

10

11 # generated from catk in /cmake/ templates /env . sh . in

12

13 i f [ $# −eq 0 ] ; then

14 / bin / echo ”Usage : env . sh COMMANDS”

15 / bin / echo ” Ca l l i ng env . sh without arguments i s not supported

anymore . Ins tead spawn a s u b s h e l l and source a setup f i l e

manually . ”
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16 e x i t 1

17 f i

18

19 # ensure to not use d i f f e r e n t s h e l l type which was s e t be f o r e

20 CATKIN SHELL=sh

21

22 # source setup . sh from same d i r e c t o r y as t h i s f i l e

23 CATKIN SETUP DIR=$ ( cd ” ‘ dirname ”$0” ‘ ” > /dev/ n u l l && pwd)

24 . ”$ CATKIN SETUP DIR/ setup . sh”

25 exec ”$@”

26

27

28 # s i n c e t h i s f i l e i s sourced e i t h e r use the provided

CATKIN SETUP DIR

29 # or f a l l back to the d e s t i n a t i o n s e t at c o n f i g u r e time

30 : ${ CATKIN SETUP DIR:=/home/ r i s c / ros ws / deve l }

31 SETUP UTIL=”$ CATKIN SETUP DIR/ s e t u p u t i l . py”

32 unset CATKIN SETUP DIR

33

34 i f [ ! −f ”$ SETUP UTIL” ] ; then

35 echo ” Miss ing Python s c r i p t : $ SETUP UTIL”

36 return 22

37 f i

38

39 # de tec t i f running on Darwin plat form

40 UNAME=‘uname −s ‘

41 IS DARWIN=0

42 i f [ ”$ UNAME” = ”Darwin” ] ; then
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43 IS DARWIN=1

44 f i

45 unset UNAME

46

47 # make sure to export a l l environment v a r i a b l e s

48 export CMAKE PREFIX PATH

49 export CPATH

50 i f [ $ IS DARWIN −eq 0 ] ; then

51 export LD LIBRARY PATH

52 else

53 export DYLD LIBRARY PATH

54 f i

55 unset IS DARWIN

56 export PATH

57 export PKG CONFIG PATH

58 export PYTHONPATH

59

60 # remember type o f s h e l l i f not a l r eady s e t

61 i f [ −z ”$CATKIN SHELL” ] ; then

62 CATKIN SHELL=sh

63 f i

64

65 # invoke Python s c r i p t to generate nece s sa ry export s o f

environment v a r i a b l e s

66 SETUP TMP=‘mktemp /tmp/ setup . sh .XXXXXXXXXX‘

67 i f [ $? −ne 0 −o ! −f ”$ SETUP TMP” ] ; then

68 echo ”Could not c r e a t e temporary f i l e : $ SETUP TMP”

69 return 1
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70 f i

71 CATKIN SHELL=$CATKIN SHELL ”$ SETUP UTIL” $@ > $ SETUP TMP

72 RC=$?

73 i f [ $ RC −ne 0 ] ; then

74 i f [ $ RC −eq 2 ] ; then

75 echo ”Could not wr i t e the output o f ’$ SETUP UTIL ’ to

temporary f i l e ’$ SETUP TMP ’ : may be the d i sk i f f u l l ?”

76 else

77 echo ” Fa i l ed to run ’\”$ SETUP UTIL\” $@ ’ : re turn code $ RC”

78 f i

79 unset RC

80 unset SETUP UTIL

81 rm −f $ SETUP TMP

82 unset SETUP TMP

83 return 1

84 f i

85 unset RC

86 unset SETUP UTIL

87 . $ SETUP TMP

88 rm −f $ SETUP TMP

89 unset SETUP TMP

90

91 # source a l l environment hooks

92 i =0

93 while [ $ i − l t $ CATKIN ENVIRONMENT HOOKS COUNT ] ; do

94 eva l e n v f i l e =\$ CATKIN ENVIRONMENT HOOKS $ i

95 unset CATKIN ENVIRONMENT HOOKS $ i
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96 eva l

e n v f i l e w o r k s p a c e=\$ CATKIN ENVIRONMENT HOOKS ${ i }WORKSPACE

97 unset CATKIN ENVIRONMENT HOOKS ${ i }WORKSPACE

98 # s e t workspace for environment hook

99 CATKIN ENV HOOK WORKSPACE=$ e n v f i l e w o r k s p a c e

100 . ” $ e n v f i l e ”

101 unset CATKIN ENV HOOK WORKSPACE

102 i=$ ( ( i + 1) )

103 done

104 unset i

105

106 unset CATKIN ENVIRONMENT HOOKS COUNT

coop.sh
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Appendix C

Cooperative Environment Setup Code

The following code was developed to setup a multiprocess experiment across multiple

remote machines and agents using a single launch command.

<launch>

<!-- Declare Machines -->

<machine name="risc1" address="129.123.5.240"

env-loader="/home/risc/ros_ws/devel/coop.sh"

user="" password="" />

<machine name="risc2" address="129.123.5.200"

env-loader="/home/risc/ros_ws/devel/coop.sh"

user="" password="" />

<machine name="risc3" address="129.123.5.59"

env-loader="/home/risc/ros_ws/devel/coop.sh"

user="" password="" />

<machine name="risc4" address="129.123.85.143"

env-loader="/home/risc/ros_ws/devel/coop.sh"

user="" password="" />

<!-- ========================

Main Nodes for Operation

======================== -->

<!-- Get Cortex marker data Streaming -->
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<node machine="risc1" pkg="cortex_ros"

type="stream_markers" name="stream_markers"

output="screen">

</node>

<!-- Get Cortex State estimation given Templates -->

<node machine="risc1" pkg="risc_estimation"

type="states_estimation.py" name="states_estimation"

output="screen">

</node>

<!-- Get trajectory -->

<node machine="risc1" pkg="risc_control"

type="circles3_traj.py"

name="trajectory"

output="screen">

</node>

<!-- Get Controls -->

<node machine="risc1" pkg="risc_control"

type="generic_DF_controller.py" name="controller"

output="screen">

</node>

<!-- ===============

Risc 2 Nodes

=============== -->
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<group ns="risc1">

<!-- Launch the AR.Drone driver -->

<node machine="risc2" name="ardrone_driver"

pkg="ardrone_autonomy"

type="ardrone_driver" output="screen"

clear_params="true">

<!-- Set up rosparams-->

<param name="outdoor" value="0" />

<param name="flight_without_shell" value="0" />

<param name="altitude_max" value="3000" />

<param name="altitude_min" value="50" />

<param name="euler_angle_max" value="0.349066" />

<param name="control_vz_max" value="1000" />

<param name="control_yaw" value=".349066" />

<param name="detect_type" value="10" />

<param name="detections_select_h" value="32" />

<param name="detections_select_v_hsync" value="128" />

<param name="enemy_colors" value="3" />

<param name="enemy_without_shell" value="0" />

</node>

<!-- Launch the joystick publisher -->

<node machine="risc2" name="joy_node" pkg="joy"

type="joy_node"

output="screen" clear_params="true">

<!-- Tell the computer where the joystick is connected.

If you don’t know enter in terminal$ ls /dev/input
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and you should see something similar to the value below.-->

<param name="dev" type="str" value="/dev/input/js0"/>

</node>

<!-- Launch the joystick controller -->

<node machine="risc2" name="joystick_controller"

pkg="risc_control"

type="risc1_controller.py" output="screen"

required="true">

<!-- Configures the joystick button mapping -->

<param name="JoytoWay" value="0" />

<param name="ButtonEmergency" value="2" />

<param name="TakeoffLand" value="6" />

<param name="Up" value="9" />

<param name="Down" value="10" />

<param name="ShutDownNode" value="7" />

<!-- Configures the joystick axis mapping -->

<param name="AxisRoll" value="6" />

<param name="AxisPitch" value="7" />

<param name="AxisYaw" value="3" />

<!-- Configures the joystick mapping -->

<param name="ScaleRoll" value="3" />

<param name="ScalePitch" value="3" />

<param name="ScaleYaw" value="1" />
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<param name="ScaleZ" value="1" />

<!-- Configures Transition State Variables -->

<param name="Simulation" value="False" />

<param name="delay" value="0.3" />

<param name="/controller_status" value="False" />

</node>

</group >

<group ns="/risc1/ardrone/">

<!-- Camera Calibration -->

<node machine="risc2" name="image_proc"

pkg="image_proc"

type="image_proc"/>

<param name="camera_info_url"

value="file://$(find risc_visual)/

camera_calibration_files/risc1.yaml"/>

<!-- ===========================================

NOTE: There must exist the following file path

on the target machine:

"~/.ros/camera_info/ardrone_front.yaml"

This is used in initializing the

camera for calibration.
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============================================ -->

<!-- ===============

Risc 3 Nodes

=============== -->

<group ns="risc2">

<!-- Launch the AR.Drone driver -->

<node machine="risc3" name="ardrone_driver"

pkg="ardrone_autonomy"

type="ardrone_driver" output="screen"

clear_params="true">

<!-- Set up rosparams -->

<param name="outdoor" value="0" />

<param name="flight_without_shell" value="0" />

<param name="altitude_max" value="3000" />

<param name="altitude_min" value="50" />

<param name="euler_angle_max" value="0.349066" />

<param name="control_vz_max" value="1000" />

<param name="control_yaw" value=".349066" />

<param name="detect_type" value="10" />

<param name="detections_select_h" value="32" />

<param name="detections_select_v_hsync" value="128" />

<param name="enemy_colors" value="3" />

<param name="enemy_without_shell" value="0" />
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</node>

<!-- Launch the joystick publisher -->

<node machine="risc3" name="joy_node" pkg="joy"

type="joy_node"

output="screen" clear_params="true">

<!-- Tell the computer where the joystick is connected.

If you don’t know enter in terminal$ ls /dev/input

use something similar to the value below.-->

<param name="dev" type="str" value="/dev/input/js0"/>

</node>

<!-- Launch the joystick controller -->

<node machine="risc3" name="joystick_controller"

pkg="risc_control" type="risc2_controller.py"

output="screen" required="true">

<!-- Configures the joystick button mapping -->

<param name="JoytoWay" value="0" />

<param name="ButtonEmergency" value="2" />

<param name="TakeoffLand" value="6" />

<param name="Up" value="9" />

<param name="Down" value="10" />

<param name="ShutDownNode" value="7" />

<!-- Configures the joystick axis mapping -->

<param name="AxisRoll" value="6" />
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<param name="AxisPitch" value="7" />

<param name="AxisYaw" value="3" />

<!-- Configures the joystick mapping -->

<param name="ScaleRoll" value="3" />

<param name="ScalePitch" value="3" />

<param name="ScaleYaw" value="1" />

<param name="ScaleZ" value="1" />

<!-- Configures Transition State Variables -->

<param name="Simulation" value="False" />

<param name="delay" value="0.3" />

<param name="/controller_status" value="False" />

</node>

</group >

<group ns="/risc2/ardrone/">

<!-- Camera Calibration -->

<node machine="risc3" name="image_proc"

pkg="image_proc"

type="image_proc"/>

<param name="camera_info_url"

value="file://$(find risc_visual)/

camera_calibration_files/risc2.yaml"/>

</group >
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<!-- ===============

Risc 4 Nodes

=============== -->

<group ns="risc3">

<!-- Launch the AR.Drone driver -->

<node machine="risc4" name="ardrone_driver"

pkg="ardrone_autonomy" type="ardrone_driver"

output="screen" clear_params="true">

<!-- Set up rosparams -->

<param name="outdoor" value="0" />

<param name="flight_without_shell" value="0" />

<param name="altitude_max" value="3000" />

<param name="altitude_min" value="50" />

<param name="euler_angle_max" value="0.349066" />

<param name="control_vz_max" value="1000" />

<param name="control_yaw" value=".349066" />

<param name="detect_type" value="10" />

<param name="detections_select_h" value="32" />

<param name="detections_select_v_hsync" value="128" />

<param name="enemy_colors" value="3" />

<param name="enemy_without_shell" value="0" />

</node>

<!-- Launch the joystick publisher -->
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<node machine="risc4" name="joy_node" pkg="joy"

type="joy_node" output="screen" clear_params="true">

<!-- Tell the computer where the joystick is connected.

If you don’t know enter in terminal$ ls /dev/input

use something similar to the value below.-->

<param name="dev" type="str" value="/dev/input/js0"/>

</node>

<!-- Launch the joystick controller -->

<node machine="risc4" name="joystick_controller"

pkg="risc_control" type="risc3_controller.py"

output="screen" required="true">

<!-- Configures the joystick button mapping -->

<param name="JoytoWay" value="0" />

<param name="ButtonEmergency" value="2" />

<param name="TakeoffLand" value="6" />

<param name="Up" value="9" />

<param name="Down" value="10" />

<param name="ShutDownNode" value="7" />

<!-- Configures the joystick axis mapping -->

<param name="AxisRoll" value="6" />

<param name="AxisPitch" value="7" />

<param name="AxisYaw" value="3" />

<!-- Configures the joystick mapping -->
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<param name="ScaleRoll" value="3" />

<param name="ScalePitch" value="3" />

<param name="ScaleYaw" value="1" />

<param name="ScaleZ" value="1" />

<!-- Configures Transition State Variables -->

<param name="Simulation" value="False" />

<param name="delay" value="0.3" />

<param name="/controller_status" value="False" />

</node>

</group >

<group ns="/risc3/ardrone/">

<!-- Camera Calibration -->

<node machine="risc4" name="image_proc"

pkg="image_proc"

type="image_proc"/>

<param name="camera_info_url"

value="file://$(find risc_visual)/

camera_calibration_files/risc3.yaml"/>

</group >

<!-- =======================================

Nodes for Camera Calibration and Transforms

This Perhaps Should be Run on a Designated
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Image Processing Machine to decrease the

load on other machines.

======================================== -->

<!-- Landmark Recognition -->

<node machine="risc1" name="landmarks"

pkg="risc_visual"

type="risc_landmarks" output="screen"

required="true">

</node >

<!-- Angle Estimation -->

<node machine="risc1" name="angles"

pkg="risc_estimation"

type="angle_estimation.py"

output="screen" required="true">

</node >

<!-- Angle Drawing -->

<node machine="risc1" name="draw_angles"

pkg="risc_visual"

type="draw_angles" output="screen"

required="true">

</node >

<!-- ========================================

Nodes for Camera Calibration and Transforms

========================================= -->
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<!-- Create Transforms -->

<node machine="risc1" name="transform_tuner"

pkg="risc_control" type="transforms"

output="screen required="true">

</node >

<!-- =================================

Nodes for RVIZ Markers and MarkerArrays

================================== -->

<!-- Draw the RISC MAAP -->

<node machine="risc1" name="draw_risc_maap"

pkg="risc_visual" type="draw_risc_maap"

output="screen" required="true">

</node >

<!-- Draw Cortex Objects -->

<node machine="risc1" name="draw_cortex"

pkg="risc_visual"

type="draw_cortex" output="screen"

required="true">

</node>

<!-- Start RVIZ using Diff_flat config file -->

<node machine="risc1" name="rviz" pkg="rviz"

type="rviz" args="-d
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$(find risc_visual)/config/Trans_tuner.rviz"

output="screen"

required="true">

</node>

<!-- ==========

Bag Data

========== -->

<node machine="risc1" pkg="rosbag" type="record"

name="bagger"

args="record -o /tmp/coop_loc_data

/risc4/ardrone/image_rect_color

/risc2/ardrone/image_rect_color

/risc3/ardrone/image_rect_color

/states3 /cortex_raw /controls

/angles /risc4/ardrone/navdata

/risc2/ardrone/navdata /risc3/ardrone/navdata

/risc2/cmd_vel /risc3/cmd_vel /risc4/cmd_vel

/trajectory /tf /rosout"/>

</launch>
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Appendix D

Inverted Pendulum Equations of Motion Derivation

D.1 Inverted Pendulum

Let L = length of the pendulum, m = the mass of the pendulum, and x, y, z designate

the base of the pendulum while xv, yv, ζ designate the center of mass of the pendulum

relative to the base in the inertial frame. The center of mass of the pendulum is assumed

to be at the tip.

D.2 Description of ζ terms

With the above definition of ζ, the following is known:

ζ =
√
L2 − x2v − y2v (D.1)

Derivatives are taken for future use and defined as follows:

• ζxv = ∂ζ
∂xv

= −xv
ζ

• ζyv = ∂ζ
∂yv

= −yv
ζ

• ζ̇ = −xvẋv+yv ẏv
ζ

• ζ̇ẋv = ∂ζ̇
∂ẋv

= −xv
ζ

• ζ̇ẏv = ∂ζ̇
∂ẏv

= −yv
ζ

• ζ̇yv = ∂ζ̇
∂yv

= −( ẏvζ + y2v ẏv
ζ3

)

• ζ̇xv = ∂ζ̇
∂xv

= −( ẋvζ + x2vẋv
ζ3

)
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• d
dt ζ̇ẋv = −( ẋvζ −

xv ζ̇
ζ2

)

• d
dt ζ̇ẏv = −( ẏvζ −

yv ζ̇
ζ2

)

• ζ̈ = −xvẍv+yv ÿv+ẋ2v+ẏ
2
v

ζ

D.3 Kinetic Energy

T = 1
2m((ẋ+ ẋv)

2 + (ẏ + ẏv)
2 + (ż + ζ̇)2)

D.4 Potential Energy

V = mg(z + ζ)

D.5 Legrangian

L = T − V = 1
2m((ẋ+ ẋv)

2 + (ẏ + ẏv)
2 + (ż + ζ̇)2)−mg(z − ζ)

D.6 Partials and Derivatives

d
dt

∂L
∂ẋv

= m d
dt(ẋ+ ẋv + żζ̇ẋv + ζ̇ ζ̇ẋv)

m(ẍ+ ẍv + z̈ζ̇ẋv + ż ddt ζ̇ẋv + ζ̈ ζ̇ẋv + ζ̇ ddt ζ̇ẋv)

d
dt

∂L
∂ẏv

= m d
dt(ẏ + ẏv + żζ̇ẏv + ζ̇ ζ̇ẏv)

m(ÿ + ÿv + z̈ζ̇ẏv + ż ddt ζ̇ẏv + ζ̈ ζ̇ẏv + ζ̇ ddt ζ̇ẏv)

∂L
∂xv

= m((ż + ζ̇)ζ̇xv − gζxv)

∂L
∂yv

= m((ż + ζ̇)ζ̇yv − gζyv)

D.7 Legrangian Mechanics

d
dt(

∂L
∂ẋv

)− ∂L
∂xv

= 0 and d
dt(

∂L
∂ẏv

)− ∂L
∂yv

= 0
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m(ẍ+ ẍv + z̈ζ̇ẋv + ż ddt ζ̇ẋv + ζ̈ ζ̇ẋv + ζ̇ ddt ζ̇ẋv )− (m((ż + ζ̇)ζ̇xv − gζxv )) = 0

Expand only the terms containing ẍv. Therefore, only ζ̈ term is expanded.

m(ẍ+ ẍv + z̈ζ̇ẋv + ż d
dt
ζ̇ẋv + (−xv ẍv+yv ÿv+ẋ

2
v+ẏ

2
v

ζ
)ζ̇ẋv + ζ̇ d

dt
ζ̇ẋv )− (m((ż + ζ̇)ζ̇xv − gζxv )) = 0

ẍv(1−
xv ζ̇ẋv
ζ

) + ẍ+ z̈ζ̇ẋv + ż d
dt
ζ̇ẋv −

yv ÿv+ẋ
2
v+ẏ

2
v

ζ
ζ̇ẋv + ζ̇ d

dt
ζ̇ẋv − (ż + ζ̇)ζ̇xv + gζxv ) = 0

ẍv = 1

(1−
xvζ̇ẋv
ζ

)

(−ẍ− z̈ζ̇ẋv − ż
d
dt
ζ̇ẋv +

yv ÿv+ẋ
2
v+ẏ

2
v

ζ
ζ̇ẋv − ζ̇

d
dt
ζ̇ẋv + (ż + ζ̇)ζ̇xv − gζxv )

Expand and simplify

ẍv = 1

(1−
xvζ̇ẋv
ζ

)

(−ẍ− z̈ζ̇ẋv − ż d
dt
ζ̇ẋv +

yv ÿv+ẋ
2
v+ẏ

2
v

ζ
ζ̇ẋv − ζ̇ d

dt
ζ̇ẋv + (ż + ζ̇)ζ̇xv − gζxv )

Expand terms

ẍv = 1

(1+
x2v
ζ2

)
(−ẍ + z̈xv

ζ + żẋv
ζ −

ÿvxvyv
ζ2
− 2ẋ2vxv

ζ2
− ẋv ẏvyv

ζ2
− ẏ2vxv

ζ2
− żẏvxvyv

ζ3
+ żẋvx2v

ζ3
− 2ẋ2vx

3
v

ζ4
−

4ẋv ẏvx2vyv
ζ4

− 2ẏ2vy
2
vxv

ζ4
− żẋv

ζ −
żẋvx2v
ζ3
− żẏvxvyv

ζ3
− ζ̇ẋv

ζ −
ζ̇ẋvx2v
ζ3
− ζ̇ẏvxvyv

ζ3
+ gxv

ζ )

ẍv = 1

(1+
x2v
ζ2

)
(−ẍ+ z̈xv

ζ −
ÿvxvyv
ζ2
− ẋ2vxv

ζ2
− ẏ2vxv

ζ2
− 2ẋ2vx

3
v

ζ4
− 4ẋv ẏvx2vyv

ζ4
− 2ẏ2vy

2
vxv

ζ4
+ ẋ2vx

3
v

ζ4
+ ẋv ẏvx2vyv

ζ4
−

ẋv ẏvx2vyv
ζ4

+ ẏ2vy
2
vxv
ζ4

+ gxv
ζ )

Simplified to individual Terms

ẍv = ζ2

(ζ2+x2v)
(−ẍ+ z̈xv

ζ
− ÿvxvyv

ζ2
− ẋ2vxv

ζ2
− ẏ2vxv

ζ2
− ẋ2vx

3
v

ζ4
− 2ẋv ẏvx

2
vyv

ζ4
− ẏ2vy

2
vxv
ζ4

+ gxv
ζ

)

ÿv = ζ2

(ζ2+y2v)
(−ÿ + z̈yv

ζ
− ẍvxvyv

ζ2
− ẏ2vyv

ζ2
− ẋ2vyv

ζ2
− ẏ2vy

3
v

ζ4
− 2ẏv ẋvy

2
vxv

ζ4
− ẋ2vx

2
vyv
ζ4

+ gyv
ζ

)

α = ζ2

(ζ2+x2
v)

(−ẍ+ z̈xv
ζ −

ẋ2
vxv
ζ2 −

ẏ2vxv
ζ2 −

ẋ2
vx

3
v

ζ4 −
2ẋv ẏvx

2
vyv

ζ4 − ẏ2vy
2
vxv
ζ4 + gxv

ζ )

β = ζ2

(ζ2+y2v)
(−ÿ + z̈yv

ζ −
ẏ2vyv
ζ2 −

ẋ2
vyv
ζ2 −

ẏ2vy
3
v

ζ4 −
2ẏvẋvy

2
vxv

ζ4 − ẋ2
vx

2
vyv
ζ4 + gyv

ζ )

Thus,
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ẍv = α− ÿvxvyv
(ζ2+x2v)

ÿv = β − ẍvxvyv
(ζ2+y2v)

ẍv is still in terms of ÿv. Solving for ẍv we see:

ẍv = (α− βxvyv
(ζ2+x2v)ζ

2 )(1− x2vy
2
v

(ζ2+x2v)
2ζ4

)

Our Derivation results

ẍv = α(ζ2+x2v)−βxvyv
(ζ2+x2v)−

x2vy
2
v

ζ2+y2v

ÿv = β − ẍvxvyv
(ζ2+y2v)
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Appendix E

Quadrotor Jacobian Derivation

Starting from the Quadrotor Equations (1-3):

Ṗn = cθcψu+ (sφsθcψ − cφsψ)v + (cφsθcψ + sφsψ)w

∂Ṗn
∂u = cθcψ

∂Ṗn
∂v = (sφsθcψ − cφsψ)

∂Ṗn
∂w = (cφsθcψ + sφsψ)

∂Ṗn
∂φ = (cφsθcψ + sφsψ)v + (cφsψ − sφsθcψ)w

∂Ṗn
∂θ = −sθcψu+ (sφcθcψ)v + (cφcθcψ)w

∂Ṗn
∂ψ = −cθsψu+ (−sφsθsψ − cφcψ)v + (−cφsθsψ + sφcψ)w

Ṗe = cφsθcψu+ (sφsθcψ + cφcψ)v + (cφsθsψ − sφcψ)w

∂Ṗe
∂u = cφsθcψ

∂Ṗe
∂v = (sφsθcψ + cφcψ)

∂Ṗe
∂w = (cφsθsψ − sφcψ)

∂Ṗe
∂φ = −sφsθcψu+ (cφsθcψ − sφcψ)v + (−sφsθsψ − cφcψ)w

∂Ṗe
∂θ = cφcθcψu+ (sφcθcψ)v + (cφcθsψ)w

∂Ṗe
∂ψ = −cφsθsψu+ (−sφsθsψ − cφsψ)v + (cφsθcψ + sφsψ)w

ḣ = sin(θ)u− sin(φ) cos(θ)v − cos(φ) cos(θ)w

∂ḣ
∂u = sin(θ)

∂ḣ
∂v = − sin(φ) cos(θ)

∂ḣ
∂w = − cos(φ) cos(θ)

∂ḣ
∂φ = − cos(φ) cos(θ)v + sin(φ) cos(θ)w

∂ḣ
∂θ = cos(θ)u+ sin(φ) sin(θ)v + cos(φ) sin(θ)w
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∂ḣ
∂ψ = 0

u̇ = rv − qw − g sin(θ)

∂u̇
∂u = 0

∂u̇
∂v = r

∂u̇
∂w = −q
∂u̇
∂φ = 0

∂u̇
∂θ = −g cos(θ)

∂u̇
∂ψ = 0

∂u̇
∂p = 0

∂u̇
∂q = −w
∂u̇
∂r = v

∂u̇
∂F = 0

v̇ = pw − ru+ g cos(θ) sin(φ)

∂v̇
∂u = −r
∂v̇
∂v = 0

∂v̇
∂w = p

∂v̇
∂φ = g cos(θ) cos(φ)

∂v̇
∂θ = −g sin(θ) sin(φ)

∂v̇
∂ψ = 0

∂v̇
∂p = w

∂v̇
∂q = 0

∂v̇
∂r = −u
∂v̇
∂F = 0

ẇ = qu− pv + g cos(θ) cos(φ)− F
m

∂ẇ
∂u = q
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∂ẇ
∂v = −p
∂ẇ
∂w = 0

∂ẇ
∂φ = −g cos(θ) sin(φ)

∂ẇ
∂θ = −g sin(θ) cos(φ)

∂ẇ
∂ψ = 0

∂ẇ
∂p = −v
∂ẇ
∂q = u

∂ẇ
∂r = 0

∂ẇ
∂F = − 1

m

φ̇ = p+ sin(φ) tan(θ)q + cos(φ) tan(θ)r

∂φ̇
∂u = 0

∂φ̇
∂v = 0

∂φ̇
∂w = 0

∂φ̇
∂φ = cos(φ) tan(θ)q − sin(φ) tan(θ)r

∂φ̇
∂θ = sin(φ) sec2(θ)q + cos(φ) sec2(θ)r

∂φ̇
∂ψ = 0

∂φ̇
∂p = 1

∂φ̇
∂q = sin(φ) tan(θ)

∂φ̇
∂r = cos(φ) tan(θ)

θ̇ = cos(φ)q − sin(φ)r

∂θ̇
∂u = 0

∂θ̇
∂v = 0

∂θ̇
∂w = 0

∂θ̇
∂φ = − sin(φ)q − cos(φ)r

∂θ̇
∂θ = 0

∂θ̇
∂ψ = 0
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∂θ̇
∂p = 0

∂θ̇
∂q = cos(φ)

∂θ̇
∂r = − sin(φ)

ψ̇ = sin(φ)
cos(θ)q + cos(φ)

cos(θ) r

∂ψ̇
∂u = 0

∂ψ̇
∂v = 0

∂ψ̇
∂w = 0

∂ψ̇
∂φ = cos(φ)

cos(θ) q + − sin(φ)
cos(θ) r

∂ψ̇
∂θ = (sin(φ)q + cos(φ)r) sin(θ)

cos2(θ)

∂ψ̇
∂ψ = 0

∂ψ̇
∂p = 0

∂ψ̇
∂q = sin(φ)

cos(θ)

∂ψ̇
∂r = cos(φ)

cos(θ)
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Appendix F

Inverted Pendulum Jacobian Derivation

Equations to Differentiate:

ẍv = α(ζ2+x2v)−βxvyv
(ζ2+x2v)−

x2vy
2
v

ζ2+y2v

and ÿv = β − ẍvxvyv
(ζ2+y2v)

ÿv = β − ẍvxvyv

(ζ2+y2
v)

∂ÿv
∂ẍ = ∂ẍv

∂ẍ ( xvyv
ζ2+y2v

)

∂ÿv
∂ÿ = ∂β

∂ÿ −
∂ẍv
∂ÿ ( xvyv

ζ2+y2v
)

∂ÿv
∂z̈ = ∂β

∂z̈ −
∂ẍv
∂z̈ ( xvyv

ζ2+y2v
)

∂ÿv
∂ẋv

= ∂β
∂ẋv
− ∂ẍv

∂ẋv
( xvyv
ζ2+y2v

)

∂ÿv
∂ẏv

= ∂β
∂ẏv
− ∂ẍv

∂ẏv
( xvyv
ζ2+y2v

)

∂ÿv
∂xv

= ∂β
∂xv
− ∂ẍv

∂xv
( xvyv
ζ2+y2v

)− ẍv( ζ
2yv+y3v+2x2vyv

(ζ2+y2v)
2 )

∂ÿv
∂yv

= ∂β
∂yv
− ∂ẍv

∂yv
( xvyv
ζ2+y2v

)− ẍv( xv
ζ2+y2v

)

ẍv = α(ζ2+x2
v)(ζ

2+y2
v)−βxvyv(ζ2+y2

v)
ζ2(ζ2+x2

v+y2
v)

∂ẍv
∂ẍ = ∂α

∂ẍ ( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

)

∂ẍv
∂ÿ = ∂α

∂ÿ ( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− ∂β
∂ÿ ( xvyv(ζ2+y2v)

ζ2(ζ2+x2v+y
2
v)

)

∂ẍv
∂z̈ = ∂α

∂z̈ ( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− ∂β
∂z̈ ( xvyv(ζ2+y2v)

ζ2(ζ2+x2v+y
2
v)

)

∂ẍv
∂ẋv

= ∂α
∂ẋv

( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− ∂β
∂ẋv

( xvyv(ζ2+y2v)
ζ2(ζ2+x2v+y

2
v)

)

∂ẍv
∂ẏv

= ∂α
∂ẏv

( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− ∂β
∂ẏv

( xvyv(ζ2+y2v)
ζ2(ζ2+x2v+y

2
v)

)

∂ẍv
∂xv

= ∂α
∂xv

( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

) + α( 2xvy2v(ζ
2+x2v)

ζ4(ζ2+x2v+y
2
v)

)− · · ·
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· · · ∂β∂xv ( xvyv(ζ2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− β(yv(ζ
4+ζ2y2v−2ζ2x2v+2ζ2xvyv+2xvy3v)

ζ4(ζ2+x2v+y
2
v)

)

∂ẍv
∂yv

= ∂α
∂yv

( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

) + α(2(ζ
2+x2v)(x

2
vyv−ζ2xv+ζ2yv)

ζ4(ζ2+x2v+y
2
v)

)− · · ·

· · · ∂β∂yv ( xvyv(ζ2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− β( (ζ
2+y2v)(ζ

2xv+2xvy2v)
ζ4(ζ2+x2v+y

2
v)

)

Plug the ẍv derivatives back into the ÿv derivatives:

ÿv = β − ẍvxvyv

(ζ2+y2
v)

∂ÿv
∂ẍ = ∂α

∂ẍ ( (ζ2+x2v)xvyv
ζ2(ζ2+x2v+y

2
v)

)

∂ÿv
∂ÿ = ∂β

∂ÿ −
∂α
∂ÿ ( (ζ2+x2v)xvyv

ζ2(ζ2+x2v+y
2
v)

) + ∂β
∂ÿ ( x2vy

2
v

ζ2(ζ2+x2v+y
2
v)

)

∂ÿv
∂z̈ = ∂β

∂z̈ −
∂α
∂z̈ ( (ζ2+x2v)xvyv

ζ2(ζ2+x2v+y
2
v)

) + ∂β
∂z̈ ( x2vy

2
v

ζ2(ζ2+x2v+y
2
v)

)

∂ÿv
∂ẋv

= ∂β
∂ẋv
− ∂α

∂ẋv
( (ζ2+x2v)xvyv
ζ2(ζ2+x2v+y

2
v)

) + ∂β
∂ẋv

( x2vy
2
v

ζ2(ζ2+x2v+y
2
v)

)

∂ÿv
∂ẏv

= ∂β
∂ẏv
− ∂α

∂ẏv
( (ζ2+x2v)xvyv
ζ2(ζ2+x2v+y

2
v)

) + ∂β
∂ẏv

( x2vy
2
v

ζ2(ζ2+x2v+y
2
v)

)

∂ÿv
∂xv

= ∂β
∂xv

(1 + x2vy
2
v

ζ2(ζ2+x2v+y
2
v)

)− ∂α
∂xv

( (ζ2+x2v)xvyv
ζ2(ζ2+x2v+y

2
v)

)− . . .

. . . α(yv(ζ
2+x2v)(ζ

2+2x2v)
ζ4(ζ2+x2v+y

2
v)

) + β(2xvy
2
v(x

2
vζ

2+xvy3v+xvyvζ
2+y2vζ

2+ζ4)
(ζ2+y2v)ζ

4(ζ2+x2v+y
2
v)

)

∂ÿv
∂yv

= ∂β
∂yv

(1 + xvyv(ζ2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− ∂α
∂yv

( (ζ
2+x2v)(ζ

2+y2v)
ζ2(ζ2+x2v+y

2
v)

)− . . .

. . . α( (ζ
2+x2v)(2x

2
vyv−ζ2xv+2ζ2yv)

ζ4(ζ2+x2v+y
2
v)

) + β( (ζ
2+y2v)(ζ

2xv+2xvy2v)+x
2
vyvζ

2

ζ4(ζ2+x2v+y
2
v)

)

α = ζ2

(ζ2+x2
v)

(−ẍ + z̈xv

ζ −
ẋ2
vxv

ζ2 −
ẏ2
vxv

ζ2 −
ẋ2
vx

3
v

ζ4 −
2ẋvẏvx

2
vyv

ζ4 − ẏ2
vy

2
vxv

ζ4 + gxv

ζ )

∂α
∂ẍ = −ζ2

ζ2+x2v

∂α
∂ÿ = 0

∂α
∂z̈ = ζxv

ζ2+x2v

∂α
∂ẋv

= − 2ẋvxv
ζ2+x2v

− 2ẋvx3v
ζ4+ζ2x2v

− 2ẏvx2vyv
ζ4+ζ2x2v

∂α
∂ẏv

= − 2ẏvxv
ζ2+x2v

− 2ẋvx2vyv
ζ4+ζ2x2v

− 2ẏvxvy2v
ζ4+ζ2x2v

∂α
∂xv

= 2xvẍ−ẋ2v−ẏ2v
ζ2+x2v

+ (z̈+g)(ζ2−x2v)
ζ(ζ2+x2v)

− . . .

. . . (ẋvxv+ẏvyv)(2ẋvx3v+2ẏvyvx2v+3ẋvxvζ2+ẏvyvζ2)
ζ4(ζ2+x2v)



122

∂α
∂yv

= 2ẍx2vyv
(ζ2+x2v)

2 − 2ẋ2vxvyv
(ζ2+x2v)

2 − 2ẏ2vxvyv
(ζ2+x2v)

2 + xvyv(z̈+g)(ζ2−x2v)
ζ(ζ2+x2v)

2 − . . .

. . . (4ζ2yv+2yvx2v)(ẋ
2
vx

3
v+2ẋv ẏvx2vyv+ẏ

2
vy

2
vxv)+ζ

2(ζ2+x2v)(2ẋv ẏvx
2
v+2ẏ2vyvxv)

ζ4(ζ2+x2v)
2

β = ζ2

(ζ2+y2
v)

(−ÿ + z̈yv

ζ −
ẏ2
vyv

ζ2 −
ẋ2
vyv

ζ2 −
ẏ2
vy

3
v

ζ4 −
2ẏvẋvy

2
vxv

ζ4 − ẋ2
vx

2
vyv

ζ4 + gyv

ζ )

∂β
∂ẍ = 0

∂β
∂ÿ = − ζ2

ζ2+y2v

∂β
∂z̈ = ζyv

ζ2+y2v

∂β
∂ẋv

= −2yv(ẋv(ζ2+x2v)+ẏvyvxv)
ζ2(ζ2+y2v)

∂β
∂ẏv

= −2yv(ẏv(ζ2+y2v)+ẋvxvyv)
ζ2(ζ2+y2v)

∂β
∂xv

= 2xvyv(ÿyv−ẏ2v−ẋ2v)
(ζ2+y2v)

2 + xvyv(z̈+g)(ζ2−y2v)
ζ(ζ2+y2v)

2 − . . .

. . . 2yv(ẋvxv+ẏvyv)(ẋvx2vy
2
v+2ẋvx2vζ

2+ẏvxvy3v+2ẏvxvyvζ2+ẋvy2vζ
2+ẋvζ4)

ζ4(ζ2+y2v)
2

∂β
∂yv

= 2ÿyv−ẋ2v−ẏ2v
ζ2+y2v

+ (z̈+g)(ζ2−y2v)
ζ(ζ2+y2v)

− . . .

. . . (ẋvxv+ẏvyv)(2ẏvy3v+2ẋvxvy2v+3ẏvyvζ2+ẋvxvζ2)
ζ4(ζ2+y2v)
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