New capabilities of diffuser calibration lab at GSFC NASA to support remote sensing instrumentation

Jinan Zeng¹, Jim Butler², and Jack Xiong²

¹Fibertek Incorporation, 13605 Dulles Technology Dr., Herndon, VA 20171 ²Coddord Space Elight Conten Creenholt, MD, 20771 USA

²Goddard Space Flight Center, Greenbelt, MD, 20771 USA

Meeting on Characterization and Radiometric Calibration for Remote Sensing, CALCON 2016 Aug 22 – 25, 2016, USU, Logan, UT

New capabilities of diffuser calibration lab at GSFC NASA to support remote sensing instrumentation

Jinan Zeng¹, Jim Butler², and Jack Xiong²

¹Fibertek Incorporation, 13605 Dulles Technology Dr., Herndon, VA 20171 ²Goddard Space Flight Center, Greenbelt, MD, 20771 USA.

The on-orbit calibration with solar diffuser (SD) for the reflective solar band is significantly important for the operation of the satellite sensors, and sensor data record (SDR). Much efforts have been contributed to the pre-launch calibration for the solar diffuser, and its associated components. The BRDF measurement of the SD, and BTDF measurement for its associated components are required at different incident angles due to the solar season and from viewing angles based on the instrument geometry. The new diffuser calibration facility consists of two scatterometer instruments, one is the table-top version, and the other one is the robot-arm based version. The light sources for the new scatterometers are currently equipped with a 20 W supercontinuum fiber laser from 400 nm to 2500 nm, and two laser diode driven plasma lamp sources from 200 nm to 900 nm. The detection systems consist of Si and extended InGaAs detectors with low NEP down to 10^{-15} and 7×10^{-14} W/(Hz)^{1/2}, respectively, with/without input integrating sphere for light collection. The development of the table-top scatterometer has reached the final stage for optimization, meanwhile the 6-axis robot-arm has been scheduled to be delivered soon. The light source tests on the spectral output and a short term stability were conducted, and the preliminary results will be presented together with the discussion about the requirements of on-orbit calibration with solar diffuser.

Keywords: BRDF, table-top based scatterometer, robot-arm based scatterometer, reflective solar band, solar diffuser, supercontinuum laser, laser diode driven plasma source, Si detector, and extended InGaAs detector

Outline

- 1. Motivation and goal
- 2. Requirement of measurements
- 3. New scatterometer and key components
- 4. Status of development
- 5. Preliminary test results
- 6. Summary and future work

1. Motivation and goal

Spectral tri-function automated reference reflectometer (STARR)

Description:

STARR is the national reference instrument for spectral reflectance measurements of spectrally neutral, non-fluorescent samples at room temperature.

The illuminator has two sources, a xenon (Xe) arc lamp and a quartz-tungsten-halogen (QTH) incandescent lamp, order-sorting filters, a shutter, a single-grating monochromator, a parabolic mirror, a chopper, and a polarizer. An in-plane goniometer is used for bi-directional measurements, meaning the sample normal, illumination axis, and receiver axis are all in a horizontal plane. The receiver is attached to the goniometer and has a precision aperture, a lens, and a photodiode detector, either silicon (Si) or extended indium-gallium-arsenic (InGaAs). An integrating sphere is used for directional-hemispherical measurements, and can accommodate Si and extended InGaAs photodiode detectors.

Specifications / Capabilities:

Conditions for reflectance measurements using STARR

	Bi-di	Directional-	
			hemispherical
	Specular	Diffuse	
Geometrical			
Illumination Angle	0° to +80°	0° to +80°	6º (specular included)
			0° (specular excluded)
Viewing Angle	0° to +80°	0° to +80°	Hemisphere
Sampling Aperture	17 mm	17 mm	25 mm
Spectral			
Wavelength	250 mm to 2500 nm	250 nm to 1100 nm	250 nm to 2500 nm
Bandwidth	14 mm	14 nm	14 nm
Polarization	0° to 90°	0° to 90°	Slight
Sample Size	50 mm to 300 mm	50 mm to 300 mm	50 mm to 300 mm
Measurand			
Quantity	Reflectance	BRDF, Reflectance factor	Reflectance factor
Technique	Absolute	Absolute	Relative to PTFE
Range	0.001 to 1	0.001 to 1	0.001 to 1
Uncertainty (k=2)	0.1% to 0.2%	0.15% to 0.6%	0.15% to 0.6%

Contact

Name: Catherine Cooksey Phone: 301-975-6208 Email: ccooksey@nist.gov Address: 100 Bureau Drive, M/S 8442 Gaithersburg, MD 20899-8442

Spectral range, and out-of-plane capability

OPO tunable laser

2. Requirement of measurements

1. Wavelengths:

a.400, 550, 700, 850, 1000, 1200, 1600, 2250 (or filter wavelengths) 2.Measurements:

a.6 degree/directional hemispherical reflectance at above wavelengths b.BRDF

i.Incident angles:

 $1.\Theta_i$: -51.9 deg, -56.75 deg, and -55.6 deg.

2.Φ_i: -7.40 deg, 0 deg, +7.40 deg.

ii.Reflectance angles:

1.VIIRS θ_s: **37.9** deg

2.SDSM θ_s : -18.3 deg

3.Samples:

a.4 Space-grade Spectralon samples: one sample maintained in lab as a control and three other samples measured by our lab and others.

Polarimetric measurement of BRDF

3. New scatterometer and key components

1. Robot arm based Scatterometer

2. Table top goniometer

Methodology

Incident light fixed Sample manipulation — in-plane/out-of-plane BRDF In-plane detection

Technical specifications of goniometer

Incident angle: ±85°

Sample manipulation Yaw: ±90° Pitch: ±90° Roll: ±180°

Detection angle: ±180°

Accuracy: 0.01°

Fig 5-2 : Outline structure of robot arm

Specifications

*2: Limits on the operating range for the front part. When the J1-axis angle is inside the range of J1 ≥ +130° or J1 ≤ -140°, the operating range of the J2-axis is limited to -90° ≤ J2 ≤ +130°. *3: Make sure to leave enough space open for cable connections between devices.

14: Specify a thread engagement length of 10 to 9 mm.

Туре		Unit	RV-13F(M)(C)	RV-13FL(M)(C)		
Machine class			Standard/ Oi	I mist/ Clean		
Protection degree			IP40 (standard)/ IP67 (o	il mist) *1/ ISOclass3 *7		
Installation			Floor type, ceiling type,	(wall-mounted type *2)		
Structure			Vertical, multi	ple-joint type		
Degrees of freedom			6			
Drive system			AC servo motor			
Position detection method			Absolute encoder			
Maximum load capacity		kg	Maximum: 13	(Rated: 12) *8		
Arm length	NO1 arm	mm	410 + 550	565 + 690		
Maximum reach radius		mm	1094	1388		
	J1		380(±	:190)		
J Operating range	J2	deg	240 (-90 to +150)			
	J3		167.5 (-10 to +157.5)			
	J4		400 (±200)			
	J5		240 (-120 to +120)			
	J6		720 (±360)			
	J1	deg/sec	290	234		
Maximum speed Maximum composite speed *3 Cycle time *4	J2		234	164		
Maximum around	J3		312	219		
Maximum speed	J4		375	375		
	J5		375	375		
	J6		720	720		
Maximum composite speed *3		mm/sec	10450	9700		
Cycle time *4		sec	0.53	0.68		
Position repeatability		mm	±0.	05		
Ambient temperature		°C	0 to	0 to 40		
Mass		kg	120	130		
	J4	Nm	19.3			
Tolerable moment J5 J6	J5		19.3			
	J6		11			
	J4		0.4	17		
Tolerable amount of inertia	J5	kgm²	0.47			
	J6		0.1	14		
Tool wiring			Hand: 8 input points/8 ou Serial signal cable for parallel LAN X 1 <100 BAS	tput points (20 pins total) I/O (2-pin + 2-pin power line) SE-TX> (8-pin)) *5		
Tool pneumatic pipes			Primary:	δ x 8, φ4 x 4 (With wrist attached)		
Machine cable			7m (connector	7m (connector on both ends)		
Connected controller			CR750, CR751 (CR750; Japar	CR750, CR751 (CR750; Japan, Europe, U.S.; CR751; Asia)		

*1: Please contact Mitsubishi Electric dealer since the environmental resistance may not be secured depending on the characteristics of oil you use.

*2: The wall-mounted specification is a custom specification where the operating range of the J1-axis is limited.

*3: This is the value at the surface of the mechanical interface when all axes are composited.

*4: The cycle time is based on back-and-forth movement over a vertical distance of 25 mm and horizontal distance of 300 mm when the load is 5 kg.

*5: Can also be used as a spare line (0.13 sq. mm, 4-pair cable) for conventional models. Provided up to the inside of the forearm.

*6: Select either controller according to your application. CR751-D: Standalone type, CR751-Q: iQ Platform compatible type.

*7: Preservation of cleanliness levels depends on conditions of a downstream flow of 0.3 m/s in the clean room and internal robot suctioning. A q8-mm coupler for suctioning is provided at the back of the base.

8: The maximum load capacity indicates the maximum payload when the mechanical interface is facing downward (+10 to the percendicular)

Light sources

Light sources: Xenon, Laser-induced plasma lamp (D2 lamp) Monochromater-based lamp source system, focus on 230 nm to 1000 nm first, Si detector Requirement of power (1 mW), and stability (<1%)

Design: Xenon - input optics - monochromator - spatial filter - monitor/polarization - sample

Test plan:

1. Power stability: Xe lamp, Out of the monochromator-based system (full scan repeated 10 times, or selected wavelengths)

2. Relative spectrum (Output power as a function of wavelength)

3. Power stability with feedback (repeat 1, 2)

Light sources: MIRA/MIRA OPO Laser, NKT SC Laser

Monochromater-based laser source system , 400 nm to 1000 nm, Si & Ext InGaAs detectors Requirement of power (1 mW), and stability (<1%)

Design: Xenon - input optics - monochromator - spatial filter - monitor/polarization - sample

Test plan:

1. Power stability: Laser, Out of the monochromator-based system (full scan repeated 10 times for SC, or selected wavelengths)

2. Spectral stability

3. Power stability with feedback (repeat 1, 2)

Detectors

		-
Gain	10 ¹⁰ to 10 ⁴ volts/amp	
Range	Eight decades automatic or manual dial control	About Gamma Scientific
Output	0 to 10 VDC for each gain setting	With over 80 years of experi ence in developing light me
Linearity	<0.25% non-linearity for all ranges	urement instruments, Gamm Scientific is trusted by the world's leading organization to provide accurate results.
Temperature Variation	<5 ppm (parts -per-million) per degree Celsius	
Noise	<20 microvolts on the 10 ¹⁰ range	Based in San Diego, Gamma
Frequency Roll -Off	<10 Hz on 1010 range for output >1 volt	Gamma Scientific also opera an ISO 17025, NVLAP accred ed laboratory performing EL ERGY STAR, LM-79 and LM-6
Length (Amplifier)	4.15 inches (10.5 cm)	
Diameter (Amplifier)	2.5 inches (6.4 cm)	
Length (TE Cooler control box)	12 inches (30.5 cm)	
Width (TE Cooler control box)	11.3 inches (28.7 cm)	tests for LEDs.
Height (TE Cooler control box)	4.5 inches (11.4 cm)	
Temperature Stability	Short term (1 hr.) <0.001 °C, long term (24 hr.) <0.003 °C	
Bipolar Output Current	+ 1.5 amp max	
Maximum TEC Output Power	12 watts	
Power	100-240 VAC, 50-60 Hz	

About Gamma Scientific

With over 80 years of experiance in developing light measrement instruments, Gamma cientific is trusted by the vorld's leading organizations o provide accurate results.

lased in San Diego, Gamma cientific manufactures laboraory grade spectroradiometers, pectrometers, spectrophotom

eters and integrating spheres.

Gamma Scientific also operates an ISO 17025, NVLAP accredited laboratory performing EN-ERGY STAR, LM-79 and LM-80 tosts for LEDs.

Features

- · Temperature stabilized silicon and InGaAs detectors available covering 200 – 2600 nm Temperature stabilized correction filters available
- ٠
- High accuracy photopic correction f1'~0.8% ٠
- ANVIS compatibility filters and lenses
- · High sensitivity down to 10-15 Watts or 10-8 Lux
- · 8 decades of dynamic range
- + 0-to-10 volt output for each decade
- RS-232 computer control

Robot-based Scatterometer

Receiver geometry

Translation stage in z direction

Signal level evaluation

Signal level evaluation

4. Status of development

Table-top goniometer

RV-13FC with black paint of flat RAL 9011

Robot Controller delivery

ON reports and for the local			¥840.
Angeling sing		▲注意	為平均
and case it		ABEDRUISS, SALVES, OSHBODA, BREISTAR, KREI, RUPOUSS, SA, SARJ RURANS, SUISS,	10 1001 20 20 20 200 10 100 20 20 20 20 20 20 10 100 20 20 20 20 10 100 20
		PRESERVER. AND DESCRIPTION OF THE PERSON OF	200 0000 01 00 0000 200 0000 0003 3 000 2001 000 030 5300
the local age of the lo		DENGRATETAROVEDARI. ATELES DERCEMBER. DERRETER.	10 545 810 8381 758 105 54 1982 758 8 105 54 1982 758 8 105 55 1885 8113
ten sea such the process of our way and prove has such and such any least (char mathematical of such any least in such that because of during the mathematic our of a process of during the mathematic our our program and position that the chart of		各次100×5425+3188243 決決に各らなによるありた。	
		REPERTICAL OF COMPANY AND A CONTRACT OF COMP	
IN CASE OF			THE REPORT OF A PARTY
tion an Facth Lookage Breeser on the account approach the commution to problem in determine the count field Parloys in determine the count field the problem patient procession			an on on a case of a
ALL PERSONNEL	Tilt Ift ft state verei		
	of test Lates must princip Lates must princip	All hand and hand and hand and and hand and hand and hand and hand and hand and hand and hand and and and and and and and	

System integration

- 1. Sources:
 - a. Monochromator-based source from 200 nm to 2500 nm Laser-induced plasma, Xenon, Supercontinuum source
 - b. OPO tunable lasers
 - c. Fourier transform source
- 2. Detectors and data acquisition (Si, and Ex-IGA)
- 3. Motion Control
- I. Detector arm: a. Rotation ring b. Heavy-duty rotation stage
- II. Sample manipulation: a. Goniometerb. Robot arm
- 4. Software development
- 5. Alignment and test
- 6. Validation of system, and determination of uncertainty

Sub-systems --→ Operational Scatterometer

Instrument validation

- 1. Instrument validation is done by comparison of Spectralon sample measured at NIST
- 2. Comparison to the existing validated system

5. Preliminary test results

EQ-99 LDLS 20 min test

Intensity

Energetiq Tech EQ-99

Fianium SC Laser

Comparison of EQ-99 and Fianium SC Laser

6. Summary and future work

- ❀ Two types of scatterometers are being established to support on-orbit solar band calibration.
- Some of key components of the new system have been implemented, and some of them will be delivered soon.
- * Preliminary tests have been conducted.
- System integration and instrument validation are needed.