PICS Normalization:

Improved Temporal Trending Using PICS

CalCon Utah State University, Aug 22-24,2016

Dennis Helder, Harika Vuppula, Leah Ervin, Ruchira Tabassum, Morakot Kaewmanee

1

Background

- PICS (Pseudo Invariant Calibration Site) have been used for on-orbit radiometric trending of optical satellite sensors for many years,
- Highly regarded sites used by the calibration community are located in the Sahara desert, Northern Africa, i.e. well known-Libya4, Libya1, Egypt1, Niger1, Niger2, Sudan1
- If the site is invariant, any change we see from the trending indicates the change in sensor responsivity.

Drift Estimates – The Problem

Stability of ETM+ after 2013

- Since OLI launch, ETM+ is behaving similarly.
 - However ETM+ is very stable when the lifetime statistics are calculated.
 - So the gain changes observed in Libya 4 PICS is possibly because of the change in site rather than the sensor.

- Stability of ETM+ over different 3 years time period vary compared to lifetime stability
- This would mean that 3 years time may not be adequate to average out the noise inherent with PICS, primarily site variability.

(Courtesy Nischal Mishra, SGT-USGS EROS)

ETM+ gain change at different times

 ETM+ gain was updated in 2013 with about 14 years of data over PICS.

• The uncertainty has \sqrt{N} dependence hence will decrease with time when the number of observations increase.

≈USGS

 The trend indicates that the gain estimate started converging after 6-8 years for most bands

(Courtesy Nischal Mishra, SGT-USGS EROS)

Proposed Solution

- Limitation on data acquisition
 - Every 16 days,
 - Cloudy scenes
- Recent study shows that small number of acquisitions (less than 2 years) not adequate enough to s

- 3 years) not adequate enough to show sensor degradation
- New Approach PICS Normalization Process (PNP): use all 6 PICS site to increase number of data acquisitions, and align them with reference to well-known Libya4
 - Increase temporal resolution of data acquisition
 - Normalize each site to Libya4

PICS Normalization: Increasing Temporal Resolution

CorrectionMap : Normalized to Optimal Reference

PROCEDURE (Normalization within the PICS site)

- Find <u>optimal reference region</u>: a 3% Spatially, Temporally and Spectrally stable region for each PICS site.
 - One year, 12 months Cloud Free images.
 - Perform smoothing filter to the images and stack the 12 smoothed images together.
 - Calculate temporal mean, standard deviation then calculate temporal uncertainties map.
 - Create a temporal stability mean map having 3% temporal uncertainty.
 - Use Histogram to find a range of TOA Reflectance most occurred in the 3% temporal stability mean map.
 - Take a mean of this range, call it '<u>Temporal Spatial Mean</u>', then find pixels having TOA reflectance within 3% from '<u>Temporal Spatial Mean</u>'.
 - Create a 3% Temporal and Spatial Stability Map.
 - Repeat the process for all the bands and combine the results to find a region having 3% spatial, temporal and spectral stability called 'OPTIMAL STABILITY REGION'.
 - Calculate the mean TOA Reflectance => 'Optimal Reflectance' of the PICS site.
 - Calculate correction Map for each image-month: Normalizing the smoothed image to the 'Optimal Reflectance'.

New ROI with SDSU Cloud Mask Filter

PICS Normalization : ACROSS Sites

Smoothed Image (ROI)

CorrectionMap (ROI)

SF2Libya4

PICS Normalization

- Su-Band1 - Su-Band2 - Su-Band3 - Su-Band4 - Su-Band5 - Su-Band6 - Su-Band7

PICS Normalization: 6 PICS sites

Mean of Each scene after PICS Normalization : Libya4-PNP 6 Sites

PICS Normalization : 6 PICS sites

Statistical Z-test : PICS Mean vs Libya4- After Normalization at 95% Confidence Level

Im	age Scenes	Band1	Band2	Band3	Band4	Band5	Band6	Band7
Libya4PNP	45	0.2298	0.2482	0.3346	0.4543	0.5789	0.6709	0.5889
Libya-1	38	Band1	Band2	Band3	Band4	Band5	Band6	Band7
mean		0.2291	0.2469	0.3332	0.4527	0.5786	0.6721	0.5864
Diff(L4 vs L1)		-0.31%	-0.51%	-0.42%	-0.35%	-0.05%	0.17%	-0.43%
Null Hypothesis		Accepted						
Sudan-1	44	Band1	Band2	Band3	Band4	Band5	Band6	Band7
mean		0.2291	0.2474	0.3338	0.4523	0.5770	0.6699	0.5838
Diff(L4 vs S1)		-0.28%	-0.31%	-0.26%	-0.43%	-0.33%	-0.16%	-0.86%
Null Hypothesis		Accepted						
Egypt-1	54	Band1	Band2	Band3	Band4	Band5	Band6	Band7
mean		0.2297	0.2480	0.3361	0.4690	0.5893	0.6788	0.5901
Diff(L4 vs E1)		-0.04%	-0.07%	0.45%	3.24%	1.79%	1.18%	0.22%
Null Hypothesis		Accepted						
Niger-1	41	Band1	Band2	Band3	Band4	Band5	Band6	Band7
mean		0.2306	0.2486	0.3343	0.4517	0.5745	0.6653	0.5805
Diff(L4 vs N1)		0.36%	0.14%	-0.09%	-0.58%	-0.76%	-0.84%	-1.42%
Null Hypothesis		Accepted						
Niger-2	47	Band1	Band2	Band3	Band4	Band5	Band6	Band7
mean		0.2297	0.2475	0.3338	0.4539	0.5789	0.6697	0.5815
Diff(L4 vs N2)		-0.05%	-0.26%	-0.24%	-0.10%	-0.01%	-0.18%	-1.24%
Null Hypothesis		Accepted						

Uncertainty Budget Analysis

PICS Uncertainty –OLI Trending						Difference between L4Mean and PICS site after PNP									
	C/A	Blue	Green	Red	NIR	SWIR-1	SWIR-2		C/A	Blue	Green	Red	NIR	SWIR-1	SWIR-2
Libya4	0.96	0.92	0.83	0.78	0.59	0.54	1.94	Libya4	0	0	C	0	0) C) 0
Libya1	2.16	2.19	1.32	0.68	0.45	0.61	1.4	Libya1	-0.31	-0.51	-0.42	-0.35	-0.05	0.17	-0.43
Sudan1	1.23	1.25	0.95	0.97	0.62	0.35	1.71	Sudan1	-0.28	-0.31	-0.26	-0.43	-0.33	-0.16	-0.86
Egypt1	1.37	1.39	1.21	1.16	0.89	0.55	2.04	Egypt1	-0.04	-0.07	0.45	3.24	1.79	1.18	0.22
Niger1	1.48	1.41	0.85	0.66	0.48	0.6	1.87	Niger1	0.36	0.14	-0.09	-0.58	-0.76	-0.84	-1.42
Niger2	2.12	2.19	1.22	1.03	0.76	0.42	2.23	Niger2	-0.05	-0.26	-0.24	-0.10	-0.01	-0.18	-1.24

Uncertainty of Libya4						= Sqrt(PICSUncertainty^2+Diff Mean^2										
	C/A	Blue	Green	Red	NIR	SWIR-1	SWIR-2	IR-2 Uncertainties Budget		Incertainties Budget +L4Uncertainty^2)						
Libva4	0.96	0.92	0.83	0.78	0 59	0 54	1 94		C/A	Blue	Green	Red	NIR	SWIR-1	SWIR-2	
	0.50	0.52	0.05	0.70	0.55	0.54	1.54	Libyo/	1 26	1 20	1 17	1 10	0 02	0.76	2 74	
Libva1	0.06	0 0 2	0 02	0.70	0 50	0 54	1.04	LIDYd4	1.50	1.50	1.1/	1.10	0.05	0.70	2.74	
прат	0.90	0.92	0.65	0.76	0.59	0.54	4 1.94	Libyo1	2 20	2 / 2	1 61	1 00	0.74	0 02	2 / 2	
Sudan1	0.00	0.02	0.00	0 70	0 50	0 5 4	1 0 4	спрат	2.30	2.43	1.01	1.09	0.74	0.05	2.45	
Suuani	0.96	0.92	0.83	0.78	0.59	0.54	1.94	Sudan1	1 59	1 58	1 29	1 32	0 92	0.66	2 73	
Equat1	0.00	0.00	0.02	0.70	0.50	0 5 4	1.04	Juuani	1.35	1.50	1.25	1.32	0.52	0.00	2.75	
сдургт	0.96	0.92	0.83	0.78	0.59	0.54	1.94	Fount1	1 67	1 67	1 54	3 53	2 09	1 41	2 82	
A11									1.07	1.07	1.54	5.55	2.05	1.71	2.02	
Niger	0.96	0.92	0.83	0.78	0.59	0.54	1.94	Niger1	1.80	1.69	1.19	1.18	1.08	1.16	3.04	
Niger2	0.96	0.92	0.83	0.78	0.59	0.54	1.94	Niger2	2.33	2.39	1.49	1.30	0.96	0.71	3.21	

	Coastal	Blue	Green	Red	NIR	SWIR-1	SWIR-2
%Drift/yr ± 2σ	-0.19±0.26	-0.14±0.26	-0.13±0.18	-0.24±0.24	-0.22±0.16	-0.17±0.12	-0.37±0.23
p-Value	0.1406	0.2810	0.1335	0.0525	0.0059	0.0062	0.0011
Null hypothesis	Fail to	Fail to	Fail to	Fail to	Poioct	Poioct	Poiect
(Siope-0)	Reject	Reject	Rejett	Rejett	Rejett	Reject	Rejett

	Uncertainty						
Danda	PNP-6Sites						
Banus	(269 scenes CF)						
Band 1	Coastal Aerosol	1.88%					
Band 2	Blue	1.92%					
Band 3	Green	1.29%					
Band 4	Red	1.77%					
Band 5	NIR	1.18%					
Band 6	SWIR-1	0.92%					
Band 7	SWIR-2	1.70%					

CONCLUSIONS

 Individual PICS limited to measuring drift ≥ 0.5%/yr for time periods < 3 years postlaunch

Libya 4 may be one of the worst offenders!

• PICS Normalization Process (PNP) combines and normalizes multiple PICS to Libya 4.

Simple averaging and normalization approach

- Using PNP with 6 PICS reduces uncertainties in drift measurement for time periods of 3 years or less
 - Application to Landsat 8 improved drift measurement accuracy from ~0.5% to nearly 0.2%/year
 - Consistent with onboard systems at shorter wavelengths, still showing drift at longer wavelengths (NIR & SWIR)

Future Work

- Refine the normalization process
- Expand PICS Normalization to longer time periods
- Include Atmospheric Model with PICS Normalization
- Apply PICS Normalization to other sensors to create additional calibration opportunities

THANK YOU

BACK UP SLIDES

Summary : OLI Trending

Landsat Bands	Trending -OLI Temporal Uncertainty since launch with CloudMask										
	Libya4	Libya1	Niger1	Niger2	Sudan1	Egypt1					
Coastal											
Aerosol	0.96%	2.16%	1.48%	2.12%	1.23%	1.37%					
Blue	0.92%	2.19%	1.41%	2.19%	1.25%	1.39%					
Green	0.83%	1.32%	0.85%	1.22%	0.95%	1.21%					
Red	0.78%	0.68%	0.66%	1.03%	0.97%	1.16%					
NIR	0.59%	0.45%	0.48%	0.76%	0.62%	0.89%					
SWIR-1	0.54%	0.61%	0.60%	0.42%	0.35%	0.55%					
SWIR-2	1.94%	1.40%	1.87%	2.23%	1.71%	2.04%					

- Temporal uncertainties over Green, Red, NIR and SWIR-1 within 1.5% in general for all 6 Sites
- Higher uncertainties in coastal aerosol, blue and SWIR-2 bands within 2.5 %
- All bands within 2.5% for all 6 PICS sites
- OLI Drift Estimate There is no statistically significant drift shown over Sudan1, Egypt1 and Niger1
 - Niger2, depicts statistically drift in only NIR
 - Libya1, depicts statistically drift in Red, NIR and SWIR2
 - Lybya4, depicts statistically drift in all Bands except SWIR-2

