GeorgiaInstitute offechnology

SmallSat Aerocapture Demonstration

Development of an Earth SmallSat Flight Test to Demonstrate Viability of Mars Aerocapture

Jet Propulsion Laboratory California Institute of Technology

Aerocapture Benefits & Control

Benefits of Aerocapture

- Minimal propellant requirements
- Potential large savings in mass and cost
- Studies have shown conceptual & technical viability

Lack of flight demonstration inhibits use of aerocapture on actual missions

Aerocapture Control: Drag Modulation

- Ballistic coefficient changes used to alter vehicle's trajectory
- Simple to implement compared to traditional lifting methods:
 - No CG offset required
 - Simple avionics algorithms

So easy, a SmallSat can do it

Example Aerocapture ("A/C") Mass Savings						
	Mission	A/C Mass (kg)	Non-A/C Mass (kg)	% Increase		
	Venus Low-Circular Orbit	5078	2834	79		
	Venus Elliptical Orbit	5078	3542	43		
	Mars Low Circular Orbit	5232	4556	15		
	Jupiter Low Circular Orbit	2262	N/A	Enabling		
	Saturn Circular Orbit	494	N/A	Enabling		
	Titan Circular Orbit	2630	691	280		
	Uranus Elliptical Orbit	1966	618	218		
	Neptune Elliptical Orbit	1680	180	832		

Adapted from: Hall et al, "Cost-Benefit Analysis of the Aerocapture Mission Set", Journal of Spacecraft & Rockets, 2005

Discrete Single-Event Drag Modulation

Mission Concept

Purpose: Develop SmallSat mission concept for flight test demonstrating aerocapture at Earth **Philosophy:** Prioritize simplicity & affordability

Requirements:

- 1. Aerocapture ΔV : ~2 km/s
- 2. Successful raise maneuver
- 3. Telemetry data return
- **Deliverable:** Fully-documented mission concept in anticipation of future SmallSat proposal opportunities

Mission Timeline

ŧ	Event	Details	
L	GTO	Period: 10 hrs	5. Atmospheric Interface 4. Descent Orbit
2	Separation from Host	1 hr before apogee	9. Final Orbit
3	Perigee Lowering Maneuver (PLM)	ΔV: ~10 m/s	8. Perigee Raise
ļ	Descent Orbit	Duration: 5 hrs	Maneuver Lowering
5	Atmospheric Interface	Altitude: 125 km Velocity: 10.3 km/s	6. Aerocapture 7. Post Aerocapture Onlying
5	Aerocapture	ΔV: ~2000 m/s	Orbit
7	Post-Aerocapture Orbit	60 km x 1750 km	1. Geosynchronous 2. Separation
3	Perigee Raise Maneuver (PRM)	ΔV: ~40 m/s	Transfer Orbit (GTO) Trom Host
)	Final Orbit	200km x 1750 km	$\Delta rocapture \Delta V: 2 \text{ km/s}$

Michael Werner / Bryce Woollard / Anirudh Tadanki / Swapnil Pujari / Dr. Robert Braun Space Systems Design Laboratory, Georgia Institute of Technology

> Rob Lock / Adam Nelessen / Ryan Woolley Jet Propulsion Laboratory, California Institute of Technology

A <25 kg flight system based on COTS CubeSat hardware meets all mission requirements

Flight Computer

UHF Transceiver

Foreshell

Monte Carlo Summary				
Parameter	Value			
Mean	1746.0 km			
3σ Error	169.4 km			
Minimum	1596.1 km			
Maximum	1813.7 km			

Michael Werner mwerner9@gatech.edu