
COFFEE TO GO!

MODELING THERMOCLINES

IN MULTIVARIABLE CALCULUS

Andrea Bruder

Department of Mathematics and Computer Science

Colorado College

Colorado Springs, CO 80904, USA

Andrea.Bruder@coloradocollege.edu

Brynja R. Kohler

Department of Mathematics and Statistics

Utah State University

3900 Old Main Hill

Logan, UT 84322, USA

Brynja.Kohler@usu.edu



COFFEE TO GO!

MODELING THERMOCLINES

IN MULTIVARIABLE CALCULUS

Abstract: While mathematical modeling is an integral process in applied

mathematics, students rarely encounter genuine modeling opportunities in

their calculus courses. Here we introduce a laboratory experience as a natural

starting point for calculus students to investigate multivariable functions. A

layered system of coffee and milk serves as a physical model for temperature

gradients in lakes or the atmosphere, where temperature depends on both a

temporal and spatial variable. Students create, observe, and collect tempera-

ture data of their own, graph the data, and develop mathematical models to

fit the data. We require students to write a report about their findings. This

article includes details about the class activity conducted in two different col-

lege settings and provides our assessment of student interaction with the lab,

and how the lab informs student understanding of multivariable functions.

Keywords: Multivariable calculus, mathematical modeling, thermo-

clines, data collection, inquiry instruction, project-based learning

1 INTRODUCTION

Among problems leading to diminishing mathematical competency in

America, is a growing inability of students to relate mathematics to

the real world. From kindergarten, mathematics is presented as a se-

ries of self-referential rules and tricks, a theoretical edifice, which first

graders start to climb and on which older students plateau at levels de-

pending on their chosen profession and stamina. “Applications” and

“manipulatives” are tacked on as set-piece word problems or blue boxes
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parenthetically appended to the main text. The real world, however,

does not neatly mirror mathematical structure. Applications that en-

gage students and allow them to build their own understanding do not

have mathematics attached in blue boxes.

For mathematics to be a problem-solving tool to model and under-

stand real-world mechanisms, one must view it as a descriptive language

[13]. Results must be evaluated not only in terms of intrinsic consistency,

but also in terms of their relationship to data. The more students are

responsible for that data and connected to the mechanisms that generate

it, the more they will raise their capacity to create useful mathematical

formulations relevant to real-world situations [15].

The lab we present is one of several class activities we have designed

to bring authentic modeling experiences into the mathematics under-

graduate curriculum – Laboratory Experiences in Mathematical Biology.

We aim to bridge the gap between mathematical theory and scientific

practice, building students’ modeling and problem-solving skills using

labs in mathematics classes. Our goals are to allow students to con-

struct and explore mathematics in the context of observed biological

mechanisms and help instructors create a data-driven culture of inquiry

in the classroom. Our design principles are summarized by the following

framework for creating successful lab experiences [8]. Successful labs

exhibit the following characteristics:

• Promote discovery: Labs are open-ended with opportunity to rea-

son inductively, explore concepts and relationships, and discover

connections.

• Authentic: Driven by real data, ideally collected by students, labs

require models and techniques used by applied mathematicians

and scientists.

• Visible success: The plausibility of models is visualized through

comparisons of model predictions with collected data.

• Engaging: Labs are based on an accessible, original, scientific ques-

tion about a natural phenomenon fitting into a broader story line.
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Our labs do not require specialized training or a technical lab setup

by the instructor. We try to adhere to the motto: You won’t need

anything you can’t find at the local hardware store.

This article describes the Coffee to Go! lab and what we have learned

from two implementations at Colorado College (CC) and Utah State

University (USU). CC is a highly selective, private, 4-year liberal arts

college with 2,000 students on a non-traditional block plan. Students

take one course at a time for 3.5 weeks, and there are 8 blocks in the

academic year. The Coffee to Go! lab was tested in a Calculus 2 course

with 25 students in the fall of 2014. Unlike CC, USU is a large pub-

lic research university, a land grant institution serving 28,000 students.

Courses are offered on a 15-week semester plan. This lab was imple-

mented in a Multivariable Calculus (Calculus 3) class with 34 students

in fall 2013 and and 41 students in the spring of 2014. Hence through

our implementation we have shown the lab is adaptable to different pro-

grams.

2 CLASS ACTIVITY

The Coffee to Go! lab is inspired by layering phenomena in limnology and

atmospheric science (see Figure 1). Lake warming due to climate change

can change the mixing dynamics of deep lakes [17]. In the summer

months, lakes stratify with warm water layers on top and cold layers

on the bottom. The surface water becomes separated from the deep

water through a density gradient. The thermocline is a layer of rapid

transition in temperatures separating warm surface water from deep cold

water. In the fall, the surface water cools down, destroying the gradient.

As a result the layers mix and algae are washed out. Winter mixing

oxygenates the deep water and brings nutrient-rich water to the surface.

Climate warming can prevent winter mixing, affecting water quality and

local ecosystems.

Another natural layering phenomenon is winter inversions, a condi-

tion in which a layer of cold air is trapped under a layer of warmer air,

leading to the accumulation of pollutants close to the ground. USU stu-



4 A. Bruder and B. Kohler

dents are familiar with this problem [9]. When driving into the valley

through clear blue skies at high elevation one can see the transition layer

and hazy polluted air at lower elevations blanketing the region. Storms

clear the air from pollution, until cold surface temperatures allow pollu-

tants to accumulate again. People who live in regions affected by winter

inversions may experience increased rates of asthma and cardiovascular

disease [10].

(a) Summer Lake Stratification:
Warmer layers are on top, cooler
layers on the bottom, separated by a
transition layer, the thermocline.

(b) Winter Inversion: In a valley,
cool air is trapped under a layer of
warmer air.

Figure 1. Examples of layering phenomena in nature

The Coffee to Go! lab provides a physical model system using milk

and coffee for students to investigate the common components of these

natural systems, and gain a sense of what scientists do who model nat-

ural phenomena. Studying these scientific questions creates a motiva-

tion for students to discover and construct the mathematical concepts

of (1) multivariable functions, (2) traces and level curves, and (3) par-

tial derivatives. The lab offers an opportunity to discover relationships

between mathematical objects in higher dimensions and their single vari-

able counterpart. Students build on their previous understanding of a

function of one variable to extend the concept to functions of several
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variables. They learn to create and interpret various representations of

a function and reinforce the notion that functions are relations among

variables that exist in the real world. In addition, students learn to use

computer algebra systems such as Mathematica or MATLAB to visual-

ize graphs of multivariable functions. Guided by the student task sheet

(see Appendix A), the flow of class activities proceeds as follows:

1. We launch the lab by introducing the project, discussing the scien-

tific background, and setting goals for the activity. We ask students

to make predictions about how the system will behave.

2. Students gather data.

3. Students plot their data, introduce notation for multivariable func-

tions, and make observations about the data.

4. After an introductory discussion on modeling data with simple

functions, students use the Fit command in Mathematica to fit a

plane and then higher degree polynomials to the data.

5. Reflecting on the data we introduce partial derivatives. Students

tie their observations from the lab to the formal definition and

interpretation as a rate of change. We draw on their experiences

with rates of change of functions of one variable and lead them

to see that here rates of change can be considered with respect to

each of the two independent variables.

6. We provide guidance to the written reports.

2.1 Objectives

In order to develop as mathematical modelers, students must engage in

various learning activities that address a range of cognition types. The

learning objectives and their intended cognition types that guide our

instruction and assessment of student work are stated in Table 1.
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Table 1. Cognition types and learning objectives to guide instruction and

assessment according to the educational research-based methods in [5].

Cognition type Learning objectives in this lab

Construct a concept
Use inductive reasoning,
distinguish between examples and
non-examples.

Explain that functions of 1 or 2 variables are
relations between input and output variables.
Given a function of 2 variables, distinguish
vertical traces from level curves and explain the
defining characteristics.

Discover a relationship
Use inductive reasoning, discover
relationships among concepts.

Explain how objects in single variable calculus
generalize to objects in higher dimensions and
explain why level curves do not intersect.
Observe that making measurements in a physical
system changes the system being measured.

Simple knowledge
Recall a specified response (not
multistep) to a specified stimulus.

State the definition of a partial derivative of a
function of two variables.

Comprehension and
Communication
Extract and interpret meaning, use
the language of mathematics.

Explain that a function changes most rapidly
where the level curves are close together and
recognize that functions are constant along a level
curve.
Incorporate the following phrases into a working
vocabulary: contour plot, trace, level curve,
multivariable function, isocline, surface, partial
derivative.
Integrate quantitative findings and mathematical
formulae in a written report of experimental
results.

Algorithmic skill
Recall and execute a multistep
procedure.

Use the appropriate commands to make surface
plots from tabular data using Mathematica or
MATLAB.

Application
Use deductive reasoning, decide if
at all mathematical content is
relevant.

Given a topographic map, estimate partial
derivatives.
Decide which mathematical tools and information
are relevant in the context of the data and
broader scientific narrative.

Creative thinking
Use divergent reasoning to view
mathematical content in unusual,
novel ways.

Create their own notation for expressing a
multivariable function.
Combine and remix single variable functions into
multivariable functions to approximate surfaces.

Appreciation
Believe mathematical content has
value.

Believe that functions of several variables and
rates of change have value beyond the current
course.
Articulate strengths and weaknesses of
mathematical models and the challenges inherent
in handling real-world data.

Willingness to try
Choose to attempt a mathematical
task.

Choose to attempt to compute a partial
derivative of a given function of 3 variables
(which has not yet been covered in class) based
on an extension of ideas from the functions of two
variables in the lab.
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2.2 Lab Materials and Setup

Students work in groups of 3-4. In addition to hot brewed coffee and

refrigerated whole milk, each team needs the following materials pictured

in Figure 2:

Figure 2. Lab materials.

• 1 tall glass

• 1 plastic funnel

• 1 straw

• 1 plastic cup

• 1 ruler, 2 rubber bands

• 1 lab thermometer

• 1 timer (or smart phone)

• paper towels for cleanup

We instruct the students to attach a ruler to the glass using rubber

bands as shown in Figure 3b), so that the zero mark lines up with the

bottom of the glass. They fill the glass with 6 cm of coffee, and use the

funnel and the straw to pour 6 cm of milk under the layer of coffee. To

do this, students put the funnel into the top of the straw and the straw

in the coffee so that it touches the bottom of the glass. Then they use

the plastic cup to pour the milk into the funnel very slowly to avoid

mixing.

Once poured, particular care must be taken to remove the straw

slowly. Though we try to avoid mixing, students can observe some in-

teresting turbulent flows of the milk that mixes with the coffee. The

pouring process results in the layered system shown in Figure 3b). It

is surprising to students that this actually works and that the resulting

layers remain quite stable over time.
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2.3 Data Collection and Graphing

(a) Pouring the milk under the coffee. (b) The finished lab setup.

Figure 3. Creating the layered system of coffee and milk for the Coffee to

Go! Lab.

With lab thermometers students measure temperatures of the col-

umn at 1 cm increments every 5 minutes over a period of 20 minutes.

We use thermometers with a sensing bulb of approximately 1 cm in

length, yet we still get fairly clean and consistent data. Students can

see the thermometer through the side of the glass and wait for the tem-

perature reading to stabilize at each height before recording. Moving

the thermometer creates some disturbance, but moving it slowly largely

avoids mixing.

An example of data collected by students is in Table 2. After gath-

ering data, students are prompted to visualize the data in the form of a

graph. This creates a new challenge since they are used to seeing data

tables with only two variables. They aren’t sure what to do with all

the columns of information. At CC there was time for the instructor to

use the computer lab with the students to plot the data with Mathe-

matica. At USU students collected data during class and were provided
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with MATLAB commands for creating graphs outside of class. In both

settings students met with their groups in the computer lab to work

collaboratively. Figure 4 shows a graph of the data created by students

in Mathematica. While textbook exercises often fail to motivate stu-

dents to use computer algebra systems since the graphing of a few data

points would be easier by hand, here the students are interested in ren-

dering their own data. The lab data creates a need for computer algebra

systems to visualize a data set involving three variables.

Table 2. An example data set collected by students.

Temp (◦C) Time (min)

Height (cm) 0 5 10 15 20

0 20 22 23 24 24

1 21 23 24 25 25

2 23 24 25 26 26

3 26 25 29 28 27

4 31 30 31 32 30

5 36 36 37 35 34

6 46 42 40 37 37

7 50 46 43 41 38

8 51 48 45 43 40

9 52 48 45 43 40

10 52 48 45 43 40

2.4 Mathematical Concepts and Modeling Issues

As stated in our objectives, there are two main goals – to introduce im-

portant mathematical concepts and relationships, and to stimulate stu-

dent thinking about challenges and issues in authentic modeling. The

mathematical purpose of this lab is to construct the concept of mul-

tivariable functions and introduce calculus topics. At the same time,

students must learn to carefully distinguishing between the data and

the model. We want students to have a clear sense that the points in
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Figure 4. An example of a graph drawn by students in Mathematica.

the graph represent data, and not the model. Intuitively temperature

changes continuously in time and space, hence we assume an underlying

continuous process. The data points show what was sampled. Students

may be prompted to choose a time between the times at which data

was recorded and guess the temperature at that time. They may justify

their guess with an interpolation argument. We may use Mathematica

to interpolate and create a continuous representation of the data.

The graphs of functions of two variables are surfaces in 3-space. Fig-

ure 4 shows a graph of the temperature data TD(x, t) where x refers to

the height of the fluid in the glass measured in cm, and t denotes time

in minutes. To get a better idea about the shape and interpretation of

the surface, we ask students to plot a vertical cross section. We formally

define a vertical trace as the intersection of the graph with a vertical

plane parallel to one of the coordinate planes.

Next, we prompt students to think about what each horizontal trace

represents physically, namely, the set of all points where the temperature

is the same. A horizontal trace, once projected into the xt-plane, is called
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a level curve. If we choose a contour interval then the set of level curves

is called a contour plot. We prompt students to draw contour plots by

hand first to direct their thinking to the process. Some students notice

that two different level curves of a function cannot intersect. If they did

intersect, an input value would have two distinct output values, which

violates the definition of a function.

Drawing on the students’ experience with rates of change of a func-

tion of one variable we get them to think about rates of change of a

function of two variables. We ask them to identify at which points the

rate of change of the temperature with respect to time (or height) is the

greatest.

At this point, we have an introductory discussion about modeling.

We are looking for a mathematical function that describes the data.

We are not looking for a function that passes through every data point.

A model is a mathematical description that shares and explains the

prevailing shape of the data, explaining some but not all aspects of the

data well. Thus every model has strengths as well as weaknesses, of

which we should be aware.

Drawing on their experience with data depending on one independent

variable, we ask the students fix a time t0 and consider the corresponding

cross section. For example, a line of best fit is a model for the tempera-

ture as a function of height at time t0. The students plot both the data

and the model in the same coordinate system and see that the line of

best fit describes the increasing trend of the temperature with height (a

strength), but not necessarily the S-shape of the data (a weakness, see

Figure 5a)).

We extend these ideas to our data set that depends on two variables

by letting the students figure out that a plane may be a good starting

point for modeling the data. The students plot the plane of best fit and

the data in one coordinate system and see that it captures some trends

in the data, but overall is not a very good fit (see Figure 5b)). Students

experiment with the Mathematica Fit command to explore how curved

surfaces (polynomial functions) produce a better fit to the data (see

Figure 5c),d)).
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(a) A line of best fit captures the in-
creasing temperature, but not the S-
shape of the graph.

(b) A plane of best fit as a 3D analog
of the line of best fit.
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(c) A cubic function captures the S-
shape of the graph.

(d) A polynomial of degree 3 in two
variables.

Figure 5. Students draw on their experience with 2D graphs when thinking

about multivariable functions.

A mechanistic model using partial differential equations is available

on the LEMB website http://www.digitalcommons.usu.edu/lembs.

This includes class materials that allow instructors to take students

through a complete cycle of the modeling process.

2.5 Pedagogical Strategies

We suggest using the pedagogical practices outlined in [16] to implement

the lab activity in a way that maintains high levels of cognitive demand.

Below are some examples of strategies and questions which instructors

may use to guide student learning.

• Scaffold student thinking: Ask questions and minimize direct in-

struction to give students a chance to do the work and think them-

selves. What are the units? Can you sketch your ideas?

• Sustained press for justification: When students make observations

http://www.digitalcommons.usu.edu/lembs
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and discoveries, encourage mathematical and deductive explana-

tions. For example, when creating and interpreting contour plots,

students discover that while level curves appear to be closer or

farther apart from one another, they never intersect. Can you ex-

plain why? How do you make sense of that? Explain the reasoning

there. Some students notice that at a saddle point level curves

appear to intersect. Why does this happen? Does this contradict

what we said earlier?

• Models of high-level performance: Provide example reports from

previous years or different labs. Analyze and critique mathemati-

cal model descriptions, assumptions, or figures and captions from

these reports to clarify expectations for writing. Call students to

the board to share creative thinking, interesting observations, and

alternate model approaches.

• Sufficient time to explore: Allow time for data gathering and small

group discussion. Make time for whole class reflection on the ex-

periment and results.

• Tasks build on prior knowledge: When leading students to describe

and interpret traces and level curves, instructors may ask students

to think of real-world examples where cross sections can be seen or

are important (e.g. a sliced apple, an MRI, 3D-printed objects).

Does this remind you of something?

• Students have means to monitor their own progress: Provide clear

lab instructions and rubrics for evaluation. Instructions can in-

clude a time table to help students manage their time, or include

instructions such as “be sure you can explain the following before

moving on.” Another good classroom practice is for students to

keep an experimental journal, so they can compare their experi-

ences over time.

A summary of the instructional procedures and some recommenda-

tions for implementation are given in Table 3.
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Table 3. Summary of the instructional procedures and our recommendations

for implementation.

Instructional Procedures Recommendations

1. Introduction of the Activity
Introduce the scientific background
related to this lab, and the goal of
the activity.

Engage students in a discussion and ask
students to make predictions about how the
system will behave.

2. Data Gathering
Students work in groups to gather
and organize their data.

Allow students to get comfortable with the
equipment and some flexibility in the way
they chose to collect data keeping the goals
of the procedure in mind.

3. Graphing the Data
Students visualize and imagine
their data extending beyond
discrete points to a continuous
surface. This is often the first time
they have interpreted a surface plot
with one spatial and one temporal
dimension.

Here we have pressed students to first come
up with their own notations and
represenations for multivariable functions,
then we have provided a direct lesson in how
such data is graphed using tools like
MATLAB or Mathematica.

4. Introductory Modeling
Students are challenged to extend
what they know about graphs of
functions of a single variable to
creatively come up with a
two-variable function for
temperature.

Through discussions encourage creative
thinking, and follow through with student
ideas.
Using the fit command in Mathematica or
MATLAB, have students fit a plane and
then higher order polynomials to the data.

5. Extract Mathematics
Students encounter questions on
their task sheet that require
thinking about traces of the
surface, and rates of temperature
change with respect to each
variable.

Reflect on data to introduce partial
derivatives. Introduce and explain
conventional notation with reference to the
lab experience.

6. Written Reports
Students show evidence of their
process and thinking throughout
the project.

Give clear instructions on structure and
content of the lab report. Provide students
with clear guidelines for how their work will
be assessed.

3 ASSESSMENT

3.1 Assessment Design Principles

In order to maintain high levels of cognitive demand, it is important that

the level of cognition in assessment items align with the level of cognitive

demand that was aimed for in class. If cognitive demand in class was



COFFEE TO GO! 15

high (e.g. application or creative thinking), yet the level of cognition

in assessment items remains low (e.g. simple knowledge or algorithmic

skill), students tend to perceive the conceptual material from class as

less relevant and will focus on tasks with low cognitive demand instead

[CITATION HERE (Cangelosi?)]. Below are some examples of assess-

ment items illustrating along with their levels of cognition (compare to

Table 1).

Simple knowledge: Given the function f(x, y), state the definition of

the partial derivative of f with respect to x.

Comprehension and communication: Explain in your own words

what a level curve of a function is.

Application: You are a skier on the top of a mountain. Given the to-

pographic map below (with two possible paths down), which path would

you choose? Explain why.

Creative thinking: In class we learned that the level curves of a func-

tion of two variables f(x, y) are curves in a plane. Given a function of

three variables f(x, y, z), give a geometric description of f(x, y, z) = k.

What do the level curves of a function of one variable look like?

Willingness to try: Recall what you learned in class about tak-

ing partial derivatives of functions of two variables, and extend these

ideas to find the partial derivative with respect to x of the function

f(x, y, z) = 3x2yz.

3.2 Writing Assignment

In addition to the assessment items in the previous section, we take a

project-based assessment approach by creating a writing assignment re-

quiring the students to communicate their results in a lab report. The

lab reports are useful in two ways: To help assess student understanding

of the concepts and provide an opportunity for students to practice com-

municating mathematics. The assessment becomes a learning experience

itself as students are required to reflect on their findings, interpret, and

organize them [1]. Instructions for this assignment are included in the
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student task sheet in Appendix A. By reviewing the written reports, we

gathered qualitative data to inform us what the students had learned

and identified concepts that students tend to struggle with. For exam-

ple, some hand-drawn contour plots show intersecting level curves. Some

students write that they “fit the data to the model,” which provides us

with an opportunity to point out that it was the model that was tweaked

to fit the data. We did not make changes to the data to fit the model. A

careful assessment of the lab reports allows instructors to give students

detailed feedback on their work and point out common misconceptions.

3.3 Assessment of Lab Effectiveness

We assessed the effectiveness of the Coffee to Go! instructor support

materials lab through pre- and post-tests.

At CC, 27 Calculus 2 students took the pre- and posttest, 24 of

whom were in their first year of college, and 1 was in their second, third,

and fourth year, respectively. The class comprised 19 male and 8 female

students. The pretest was not returned to the students. Every question

on the pre- and posttests were graded for correctness out of 4 points.

The following pre- and posttest was given at CC directly before work-

ing on the lab in class and after the lab reports were turned in one week

later. The pretest was not returned to the students.

1. Give two examples of functions of more than one variable arising

in real-world contexts. What are the independent and dependent

variables of each function?

2. Consider the following graph. Sketch the trace in the y, z− plane.
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3. Explain how the level curves indicate the steepness of a graph of

a function of two variables.

4. How useful (if at all) do you think will mathematical models be in

your future career? Circle one:

not at all useful = 0 1 2 3 4 = extremely useful

Explain your response.

At USU, 34 students (29 male, 5 female) completed the semester of

Calculus 3: 14 sophomores, 16 juniors and 4 seniors. 43 students took

the pretest and 40 took the posttest. Each question on the pre- and

posttests were scored out of 4 points. Responses to question 1 received

up to 2 points for indicating two examples of multivariable functions,

and up to 2 points for correctly identifying dependent and independent

variables. For question 2, 2 points were possible for reasonable estimates

of the partial derivatives based on the graph, and 2 points were awarded

for a correct physical interpretation.

The following pre- and posttest was given at USU directly before

working on the lab in class, and after the lab reports were turned in one

week later. The pretest was not returned to the students.

1. Provide two examples of multivariable functions arising in real-life

contexts. What are the dependent and independent variables in

each case?
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2. The figure below is a map showing curves of the same elevation of

a region in Orangerock National Park ([14], p.738). We define the

altitude function A(x, y) as the altitude at a point x meters east

and y meters north of the origin (“Start”).

(a) Estimate Ax(300, 300) and Ay(300, 300).

(b) What do Ax and Ay represent in physical terms?

3. How useful (if at all) do you think reasoning with limits and partial

derivatives will be in your future career? Circle one:

not at all useful = 0 1 2 3 4 = extremely useful

Explain your response.

4 RESULTS

4.1 Pre- and Posttest Results

The pre- and posttest results from Colorado College are summarized in

Table 4.
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Table 4. Class mean scores out of 4 points for questions 1-3 in % on the pre-

and posttests at Colorado College, rounded to the nearest percentage point.

The response to the appreciation question 4 is the average on a scale from 0

to 4.

Pretest Posttest Gain

Post − Pretest

Question 1 46% 83% 37%

Question 2 34% 80% 46%

Question 3 0% 85% 85%

Question 4 3.15 3.04 -0.11

Not surprisingly, some students were able to answer Question 1 on

examples of models correctly on the pretest. Since some students may

have had experience with multivariable calculus in high school, some

students answered the procedural Question 2 about the trace of a func-

tion correctly on the pretest. No one answered the conceptual Question

3 correctly on the pretest. We see significant gains in the responses

to all three questions. Question 3 shows the greatest gain (85% post

vs. 0% pre lab) after discussing level curves in class in addition to the

lab questions about level curves. Most students made the connection

between the steepness of the graph and the spacing between the level

curves. Overall, the average score increased from 27% on the pretest to

83% on the posttest. The only score to decrease slightly is the appre-

ciation score in Question 4 (3.15 pre, 3.04 post lab), likely because the

students already had a high appreciation of mathematical models before

engaging in the lab.

The pre- and posttest results from USU are summarized in Table 5.

At USU the most dramatic gains were observed in question 1, where

students were able to show their concept of functions of many variables.

Modest gains were shown on question 2, however many students still

had difficulty making estimates of partial derivatives from graphical in-

formation. The notation may have been a point of confusion for students.
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Error analysis showed that many incorrect responses resulted from stu-

dents reporting elevation rather than elevation changes in response to

question 2a).

Table 5. Class mean scores out of 4 for questions 1-2 on the pre- and posttests

at USU in %, rounded to the nearest percentage point. The response to the

appreciation question 3 is the average on a scale from 0 to 4.

Pretest Posttest Gain

Post − Pretest

Question 1 34% 73 % 39%

Question 2 19% 44% 25%

Question 3 3.68 3.38 -0.30

4.2 Review of Student Reports

The Coffee to Go! lab clearly sparked student interest. One group wrote

“The milk/coffee lab experience was a very good one! The coolest part

for me was at the very beginning because you could see the thick white

and black layers, and a gray layer where both had combined.” In our

experience, the lab helps students understand that natural processes

can be modeled using mathematics: “This experiment has helped me

understand how real life situations may be expressed in mathematical

equations. Maybe someday I’ll find a better way to model this exper-

iment.” The lab reports often show how students make connections

between the experiment and the reading about winter mixing in deep

lakes. One group wrote: “If the experiment were carried out for longer,

the temperature of the entire system would reach an equilibrium. [...]

Comparing these observations to the reality of lake warming and mix-

ing, this experiment represents the time of year when the temperature

begins to cool.”

The writing assignment presents an opportunity for instructors to return

to some common misconceptions in class. Some reports show intersecting

level curves of functions, to which we responded by posing the question

about whether level curves can intersect in class. One group wrote “As
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t→∞ we expect the overall temperature of the mixture to reach 32 de-

grees Celsius, which was the temperature at the middle of the mixture,”

showing that they had not thought about the fact that the experiment

was carried out at room temperature.

The reports reveal that some groups experimented not only with polyno-

mial models, but also with exponential and logarithmic functions. One

group used a shifted arctangent function to model the temperature at a

fixed height because it had the right end behavior as time tends to infin-

ity. One report showed a dimensional analysis approach to modeling, by

including units in the variables and seeking to match units in equations.

Initially, many students are uncomfortable with the idea that the model

may not pass through every data point. In the lab reports, we see that

students gain a sense that models are approximations and shift their fo-

cus to discussing strengths and weaknesses of their models. “The biggest

strength of this model is how closely it fits the data. All [data] points ...

fall within one degree of our model. Our model has one issue though,

which is that it does not accurately describe the end behavior of our

graph.” Almost all groups tried to improve their first models, and some

students ask whether there are other types of models that can be used

to produce a better overall fit, which gave us an opportunity to discuss

mechanistic models in class.

5 DISCUSSION

Most textbooks present the theory and models first and then tack on

applications, giving the impression that the model comes first and then

must be applied to given data. However, practitioners begin with the

data and then develop a model to fit the data. Illustrating this process,

the Coffee to Go! lab provides an open-ended, authentic lab experience

for students of multivariate calculus. By collecting data themselves,

students are more invested in the activity and more motivated to think

deeply about the mathematical and scientific concepts involved. In the

framework of the pedagogical strategies that we have outlined, instruc-

tors maintain high levels of cognitive demand and develop a culture of
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inquiry with their students where the focus is on reasoning instead of

memorization.

While the project-based approach may take more time than traditional

lecture the data collection or graphing can be done outside of class, en-

couraging students to engage with the material beyond the classroom.

The lab may require instructors to re-think their pedagogical strategies,

and we hope that our class and instructor materials will help save time

in class preparation.

Here we used the lab as an introductory data and mathematical modeling

experience and did not take the students through a complete modeling

cycle. Instructors may opt to do so by creating models using ordinary

differential equations or partial differential equations as outlined on our

website http://digitalcommons.usu.edu/mathsci_edures/1/. The

lab is designed to be adaptable for different classes ranging from cal-

culus to a modeling class or differential equations courses. It is also a

good fit for a numerical analysis course, as some interesting numerical

issues arise when a PDE model is solved numerically with the appropri-

ate boundary conditions.

The pre- and posttest results show the effectiveness of the Coffee to

Go! lab. Beyond the mathematical concepts of traces and level curves,

students gain an understanding of where functions of more than one

variable are used in real-world contexts. Furthermore, the lab report

as a writing assignment offers an opportunity for students to revisit the

data collection and models and practice communicating mathematical

results. In our experience, the Coffee to Go! data (and data collected by

students in general) generates a need to learn mathematical concepts to

describe and model the data, and thus students are more motivated to

“learn what it takes” to analyze and model the data. To many students,

who may have previously viewed mathematics as an abstract logical

game and computer labs as useless busywork, mathematical ideas and

computer algebra systems become powerful tools to make sense of their

data.

http://digitalcommons.usu.edu/mathsci_edures/1/
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APPENDIX A: Student Task Sheet

Instructions: Discuss in your lab group the mechanism by which winter

mixing occurs in deep lakes under healthy conditions as described in
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the article ”Lake warming mimics fertilization” from the journal Nature

Climate Change which is posted on the course Canvas page.

Discuss how climate change affects winter mixing and how this con-

tributes to an increased growth of cyanobacteria. Why is this a problem?

Scientists use mathematical models to describe, explain, and predict

natural phenomena. To gain a sense of what scientists do who model

aspects of the real world, we will create a layered system of cold milk

and hot coffee, collect data on its temperature, and describe the data set

mathematically (i.e. model the system) by finding a function of space

and time that resembles the data. Your group should work collabora-

tively and must submit a two page report on this lab and your results.

1. Experimental setup: Your group will need the following materials:

1 glass, 1 funnel, 1 plastic cup, refrigerated condensed milk, hot

coffee, 1 lab thermometer, timer (use your phone). Fill the glass

with 6cm of coffee. Use the funnel and the plastic cup to pour 6cm

of milk under the layer of coffee. This has to be done slowly to

avoid mixing. Very slowly remove the funnel.

2. Collect data: Once both layers are poured, start the timer. Every

5 minutes, measure the temperature at different heights (1cm in-

tervals work well) from the bottom of the glass to the top. Move

the thermometer slowly to avoid mixing. Continue making mea-

surements until you have collected at least 20 minutes of data. Be

sure to record the data. Before you clean up, measure and list any

parameters that may be important.

3. Discuss your observations in your group. Describe the overall phe-

nomenon you observed. How do your observations relate to winter

mixing in lakes?

4. In the computer lab, download the file ”coffee and milk lab Math-

ematica” from the course Canvas page. Follow the instructions in

the file to plot your data and join the data points. All axes must

be clearly labeled and include units of measurement.
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(a) Describe the shape of the graph. What are the independent

and dependent variables? Introduce some notation to refer

to this function.

(b) What does each vertical cross section of the graph parallel to

the time axis represent?

(c) What does each vertical cross section of the graph parallel to

the height axis represent?

(d) What does each horizontal cross section represent? By hand,

draw a sketch of at least 5 level curves. Be sure to label the

axes. What are the units on the ”height” of the level curves?

(e) At what point is the rate of change of the temperature with

respect to time the greatest?

(f) At what point is the rate of change of the temperature with

respect to height the greatest?

(g) Choose and fix a certain time. Find a function that (roughly)

describes the temperature at every height at this time. In-

troduce some notation to refer to this function. How many

variables does it depend on? Use Mathematica’s Plot and

ListPlot commands to graph your function and the data on

one graph. Be sure to label the axes. We call such a function

a model: it describes approximately how the temperature be-

haves at any height. The model is not required to match the

data perfectly. Every model has strengths and weaknesses

that we should be aware of. Explain what the strengths and

weaknesses of your model are.

(h) What do you expect to happen after a long time, or mathe-

matically speaking, when time goes to infinity?

(i) Choose and fix a certain height. Find a model for the temper-

ature at every time at this height. Introduce some notation

to refer to your function. How many variables does it depend

on? Use Mathematica’s Plot command to graph your model

and the data. Be sure to label the axes. Explain what the

strengths and weaknesses of your model are.
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(j) How many variables does a function have that models the

temperature at any height and time? What is the shape of

a simple function that does this? Describe what you have to

do to improve the model.

(k) Based on your model and the Nature Climate Change article,

what consequences will there be for the growth of cyanobac-

teria in deep lakes when temperatures rise and our winters

are no longer as cold as they used to be?

5. Lab report: Your lab report should contain the following sections.

(a) Cover sheet with the title of the experiment, the date the

experiment was performed, your names, and a written state-

ment of the Honor Code, signed by all group members.

(b) 1-2 paragraphs with some background information about win-

ter mixing in deep lakes.

(c) Experimental setup: List the materials needed, and describe

the procedure in your own words.

(d) Data: Include a table with your raw data. Be sure to use

headers for your rows and columns. Include your graphs.

You may attach your Mathematica printouts to your paper.

(e) Results: Include your answers and detailed explanations to

the questions in #3 and #4. Refer to the graphs in the pre-

vious section.

(f) Discussion: Discuss the strengths and weaknesses of your

model, and what changes you might make to improve its fit to

the data. Generally speaking, in what ways would a model for

winter mixing be useful to scientists studying winter mixing

in lakes under changing climate conditions?

APPENDIX B: Plotting Data With Mathematica and

MATLAB
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Listing 1. Example Mathematica code

1 You may make changes to this Mathematica notebook to visualize your data

from the coffee and milk lab . Note that Mathematica is a

sophisticated calculator that requires a specific syntax. For example

, lists of points are always entered in curly brackets { }, and the

coordinates of each point are entered in its own set of curly

brackets , see the lists of example data points below. Mathematica

commands are always capitalized − if we forget to capitalize a

command, Mathematica will not recognize it and return an error

message.

2

3 Enter your data points in the form of a list of points , such as:

4

5 list1 = {{0, 0, 24}, {1, 0, 24}, {2, 0, 34}, {3, 0, 45}};
6 list2 = {{0, 1, 24}, {1, 1, 25}, {2, 1, 34}, {3, 1, 42}};
7 list3 = {{0, 2, 25}, {1, 2, 26}, {2, 2, 33}, {3, 2, 40}};
8 list4 = {{0, 4, 28}, {1, 4, 29.5}, {2, 4, 33}, {3, 4, 36}};
9

10 The ListPointPlot3D command creates a 3D graph of your data points in the

lists . You may add lists and change the axes labels to reflect the

quantities and units in your data:

11

12 plot1 = ListPointPlot3D[{ list1 , list2 , list3 , list4 }, PlotStyle −>
13 PointSize[Large ], AxesLabel −> {”Distance”, ”Time”, ”Concentration”}]
14

15 In order to approximate what happens in between the data points , you may

use the ListPlot3D command and copy and paste all of your data points :

16

17 plot2 = ListPlot3D[{{0, 0, 24}, {1, 0, 24}, {2, 0, 34}, {3, 0, 45}, {0, 1,

24}, {1, 1, 25}, {2, 1, 34}, {3, 1, 42}, {0, 2, 25}, {1, 2, 26}, {2,

2, 33}, {3, 2, 40}, {0, 4, 28}, {1, 4, 29.5}, {2, 4, 33}, {3, 4,

36}}, Mesh −> None]

18

19 The Show command overlays both graphs. Click on the graph to rotate and

look at it from different angles :

20

21 Show[plot1, plot2 ]

22

23 Below is some code that will help with graphing 2D data. Use the ListPlot

command to plot data points in 2D:

24

25 plot3 = ListPlot [{{1, 2}, {2, 4}, {3, 1}, {4, 7}}, AxesLabel−>{”x”, ”y”}]
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26

27 To graph a 2D function, for example f(x)=2x+1, use the Plot command. Here

, we graph the function on the interval [−5,7] and label the axes:

28

29 plot4 = Plot[2∗x + 1, {x, −5, 5}, AxesLabel −> {”x”, ”y”}]
30

31 Show[plot3, plot4 ]

Time elapsed

Listing 2. Example MATLAB code

1 % Commands for Staying Cool (Problem from Shaw et al, 2005) MATLAB

demo

2

3 % Set up the domain. This creates matrices for x and y, so that x ranges

from 0 in steps of 0.5 up to 10, and y ranges from 0 in steps of 1 up

to 10.

4 [x,y]=meshgrid(0:0.5:10, 0:1:10) ;

5

6 % The next command creates a matrix (T1) fo the T values for exercise 1.

The dots before the carrots are important, and they tell MATLAB to

square the entries of the values in the x matrix. That’s different from

squaring the x matrix with matrix multiplication which is what

MATLAB would try to do if the dot is left out.

7 T1=78 − 1/10∗(x.ˆ2 + (y−5).ˆ2);

8

9 % We do a similar computation for exercise 2.

10 T2=1/2∗x−y+75;

11

12 % And now the plotting commands:

13 figure (1) , surf (x,y,T1)

14 figure (2) , contour(x,y,T1)

15 figure (3) , surf (x,y,T2)

16 figure (4) , contour(x,y,T2)

17

18 % The figure command tells MATLAB which figure window to use, the surface

plot is made with surf , and the contour plot is made with contour.

19

20 % For our coffee/milk set up, we have to set up the meshgrid to reflect the

time and height variables .

21

22 [ t ,x]=meshgrid(0:5:20, 1:1:8)
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23

24 Data=[19 23.5 23.0 24 25;

25 21.5 25 25.5 27 27.5;

26 30.5 32 32.5 32.5 32;

27 44 41 41 39.0 37;

28 55.5 52 47.5 44.5 41;

29 60 54 49 46 43;

30 60 54 49 45.5 43;

31 54 52.5 47.5 44.5 42];

32

33 % model=exp(−t).∗x.ˆ3 +22;

34

35 subplot (2,2,1)

36 plot3(t ,x,Data, ’ . ’ , ’ Markersize ’ ,3)

37 xlabel ( ’Time elapsed (min)’)

38 ylabel ( ’Height from bottom of glass (cm)’)

39 zlabel ( ’Temperature’)

40

41

42 %

43 % figure

44 % surf(t ,x,model)

45 % xlabel (’Time elapsed (min)’)

46 % ylabel (’Height from bottom of glass (cm)’)

47 % zlabel (’Temperature’)

48

49

50 figure

51 contour(t,x,Data)

52 xlabel ( ’Time elapsed (min)’)

53 ylabel ( ’Height from bottom of glass (cm)’)
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