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ABSTRACT

Computational Studies of Microscopic Superfluidity in 4He Clusters

by

Angeline Wairegi, Doctor of Philosophy

Utah State University, 2016

Major Professor: David Farrelly
Department: Department of Chemistry and Biochemistry

The physics that result in the decoupling of a molecule from a bosonic solvent

at 0 K are studied. Fixed-node diffusion Monte Carlo (FNDMC) coupled with a

Genetic Algorithm is used to perform simulations of the bosonic droplets doped

with various molecules. The efficacy and accuracy of this approach is tested on a

strongly coupled 2-dimensional quartic oscillator with excellent results. This al-

gorithm is then applied to 4He-CO and 4He-HCN clusters respectively in an effort

to determine the factors that result in the onset of microscopic superfluidity. The

decoupling of the doped molecule from the bosonic solvent is found to be, primar-

ily, a result of the combined effect of the repulsive interaction between the helium

atoms and bose symmetry. The effects of rotor size versus molecular anisotropy

in a NH3 molecule seeded into a 4He droplet is studied as well. Simulations are

done using the accurate rotational constants (B0 = 9.945 cm−1, C0 = 6.229 cm−1)

and using “fudged” versions of the rotational constants (Bfudged = 0.9945 cm−1,

Cfudged = 0.6229 cm−1) for the |0011〉 state. The simulations done with the fudged

rotational constants experience a slightly smaller reduction than those done using

the accurate rotational constants. This is attributed to the importance of molec-

ular anisotropy versus the size of larger rotational constants in molecules whose

rotational constants fall in an intermediate regime.

(134 pages)

davidfarrelly@aggiemail.usu.edu
www.chem.usu.edu
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PUBLIC ABSTRACT

Computational Studies of Microscopic Superfluidity in 4He Clusters

Angeline Wairegi

The onset of microscopic superfluidity has been reported in ultracold droplets

of bosons (4He atoms or para-H2 molecules) containing a variety of molecular

dopants. The physics of these droplets involve both Bose-Einstein condensation

(BEC) and superfluidity. The two phenomena, while closely related, are not ex-

actly the same. Superfluidity is fundamentally a microscopic effect and no ther-

modynamic limit is necessary; it is still remarkable, though, that the signature of

superfluidity has been reported in doped droplets consisting of as few as 4 4He

atoms. The studies presented here adopt a molecular vantage point to investigate

the quantum mechanics behind the rotational dynamics of dopant molecules in

small droplets consisting of 4He atoms. The overarching goal is to develop a de-

tailed quantum mechanical understanding of the onset of microscopic superfluidity.

Physically small though these droplets are, they represent a significant challenge

to many body quantum physics. The most direct method of investigation is to

use Quantum Monte Carlo (QMC) algorithms to perform the calculations. Fixed

node diffusion Monte Carlo (FNDMC), a type of QMC algorithm, is employed

for these studies. Finding nodal surfaces for use in the calculation of the excited

states is an essential part of this algorithm, which assumes the nodal topology of

the target wave function is known in advance. To that end, we developed a novel

approach utilizing a genetic algorithm version of the FNDMC method in which the

nodal hypersurfaces are computed systematically and on-the-fly within the DMC

procedure. This algorithm is then applied to elucidating the nodal topology of

4He-CO, 4He-HCN and 4He-NH3 and is then utilized to study the phenomenon of

microscopic superfluidity and the renormalization of rotational constants in these

clusters.
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CHAPTER 1

INTRODUCTION

The science of ultra-cold droplets of bosonic atoms, for example 4He or para-

H2, seeded with impurity molecules has been and continues to be of great experi-

mental and theoretical interest. The two articles that lay claim to having started

the field come from the groups of Giancinto Scoles [1] and Peter Toennies [2] and

are well on their way to becoming citation classics. A long list of molecules doped

into 4He droplets have been studied, both experimentally and theoretically [3–14].

Novel and challenging experiments have been and continue to be done in which

the 4He droplet is used as an ultra cold (≈ 0.38 K) matrix to study other species,

including many that had previous been studied only in the gas phase [3, 15–19].

These droplets may contain as few as 2 [20–27] 4He atoms or 1000s [4] of atoms

in the case of nanodroplets. A partial list of the systems studied include: water

[28–31], water anion clusters [32], ammonia clusters [28, 33–36], ammonia water

clusters [37], hydrated HCl clusters [38–41], acetic acid clusters [42], and atomic

and ionic dopants in helium clusters and films [43]. Nanodroplets of 4He have

also been used as nanocryosats [1, 20, 44] to from exotic species and aggregates,

as chemical nano reactors [30, 45–48] to isolate otherwise unstable reaction inter-

mediates and as matrices to study the spectroscopy of molecules, including large

organic molecules, ions and nano structures [5, 39, 49–51] and for surface deposi-

tion [52]. New highly sensitive spectroscopic techniques have also been developed

based on the unique characteristics of 4He droplets; for example, an infrared (IR)

spectroscopic method that analyses molecular ions by capturing them in 4He nan-

odroplets [53]. Eventually, it is hoped, this new spectroscopic techniques will allow

for better studies into cold biologically important molecules and clusters important

to aerosol formation in the atmosphere.
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The question of microscopic superfluidity has been tackled in some of these

studies, most often in regards to the 4He clusters, but recently in studies of bosonic

para-H2 as well. The physics of bulk superfluidity has been attributed to both

Bose-Einstein condensation (BEC) and superfluidity. BEC is a result of bose

statistics which occur due to the macroscopic occupation of the same quantum

state, whereas superfluidity is a hydrodynamic phenomenon characterized by zero

viscosity and frictionless flow.

The physics of microscopic superfluidity, on the other hand, is less well known.

While superfluidity is fundamentally a microscopic effect and no thermodynamic

limit is necessary, it is, nevertheless, remarkable that the signature of micro-

scopic superfluidity has been reported for doped droplets containing as few as

4 4He atoms. The first signs of microscopic superfluidity were observed in early

“Andronikashvili-type” experiments. In these early experiments, spectra of SF6

and OCS dopants [2, 54] in 4 He droplets revealed sharp rotational features, char-

acteristic of free (gas phase) molecular rotation, but with renormalized (reduced)

rotational constants. This behavior, to varying degrees, seems to be the norm for

molecules doped to a 4He solvent.

Microscopic superfluidity is often described using the language of the two-fluid

theory of Tisza and Landau [55–59] in which the helium density around the dopant

cluster consists of a normal and a superfluid fraction. In path integral Monte Carlo

(PIMC) calculations, microscopic superfluidity is characterized by the existence

of macroscopic exchange paths winding across unit cells. Studies of small CO

doped para-H2 droplets [55, 60], using a PIMC coupled worm algorithm [55, 60],

done to determine the normal and superfluid fractions of the bosonic solvent,

observed microscopic superfluidity in as few as 6 para-H2 molecules. Although

theoretical and experimental studies have observed the phenomenon of microscopic

superfluidity in small clusters of bosonic molecules, it is still difficult to picture
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how superfluidity can occur with so few molecules, in some cases as few as 4 - 6

4He atoms [21, 61, 62] or 6 para-H2 molecules [60].

The core issue in the studies outlined in subsequent chapters is the mechanism

by which the helium density decouples from the rotational motion of the molecular

dopant. In practice, the onset of microscopic superfluidity is characterized by a

nonclassical increase in the effective rotational constant (Beff ) with increasing

cluster size. In 4HeN -CO clusters, for example, where N denotes the number of

4He atoms in the cluster, high resolution d-millimeter wave studies [21, 25] have

been able to trace the onset of microscopic superfluidity in clusters containing up

to N = 10 4He atoms.

There are a large number of published reviews that describe the many exper-

imental and theoretical advances and challenges in the field [3–14]. It is evident,

from these studies, that one of the great challenges of examining these systems, for

computational studies in particular, is how to perform accurate and fully quantum

mechanical treatments on these fundamentally many-body systems.

One method employed, an alternative to the essentially statistical mechanics,

finite temperature based PIMC approach, is to adopt a molecular view point

to study the mechanics that lead to the decoupling of the doped molecule from

the bosonic solvent. The Schrödinger equation gives the accepted description

of microscopic phenomena at non relativistic energies. In fact, it would not be

overstating it to say that solving the many-body Schrödinger equation, accurately,

is one of the most important fundamental problems in physics and chemistry [63–

65]. The solution of the time-dependent Schrödinger may be given as a linear

superposition of stationary states in which the time dependence is given by a

phase factor e(−iEn t} ), where En is the nth energy level of the quantum system in

question.

Whether dealing with systems composed of bosons or fermions the main prob-

lem in solving the Schrödinger equation accurately is this: how to increase the



4

number of particles without having the computer time spin out of control. One

solution is to use quantum Monte Carlo (QMC) methods [63, 66–71] these include:

variational Monte Carlo [70], diffusion Monte Carlo [18, 65, 70, 72], path integral

Monte Carlo [73, 74], projection operator imaginary time Schrödinger equation

(POITSE) [75, 76], and repeatation QMC (RQMC) to study dopants in 4He clus-

ters, often with excellent agreement with the experimental results [21, 25, 55, 77–

79]. Unlike most other conventional quantum chemical approaches, QMC methods

can be made to scale roughly as the square of the system size [64, 65, 71, 80]. Most

computational studies will therefore usually use variations of quantum Monte Carlo

(QMC) methods [63, 66–71, 80]. QMC methods provide accurate solutions while

scaling more slowly with the system [64, 65, 71, 80], in contrast to other quantum

chemistry approaches which quickly become impractical, unless approximations

are made, with increasing system size.

An example of a QMC method utilized in solving computational problems is

the diffusion Monte Carlo (DMC) method. The DMC algorithm, utilizes imaginary

time τ , replacing the time t with iτ . The solution is given by

∑
e(−iEn t} ) (1.1)

where n = 0,1,. . .,n. The DMC algorithm is based on the observation that as the

quantum system evolves through imaginary time, the ground state energy will be

that of the longest lasting transient, with energy E0 < En, where n = 1,2,. . .,n.

This means, essentially, that regardless of the initial state in which the system is

prepared, one can determine both the ground state energy, E0, and the ground

state wave function, Ψ0, by simply allowing a long enough evolution of the wave

function in imaginary time.

The DMC method can be formulated in two ways. One formulation comes from

the Feynman path integral solution of the time-dependent Schrödinger equation;
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using path integrals to express the wave function as a multidimensional integral

which can be evaluated by employing the Monte Carlo method. The second ap-

proach is based on the similarity between the imaginary time Schrödinger equation

and a generalized diffusion equation. In this method, the diffusion Monte Carlo

(DMC) algorithm exploits the similarity between the diffusion equation, with a po-

sition dependent source / sink term - and - the Schrödinger equation in imaginary

time (ITDSE). The ITDSE in integral form is given by:

Ψ(R′, τ + dτ) =

∫
dRG(R→ R′, dτ)Ψ(r, τ) (1.2)

where G(R → R′, dτ) = < R′|e−dτĤ |R > is the imaginary time Green function

and Ĥ is the Hamiltonian. Boson particles, 4He atoms for example, will obey

Boltzmann statistics and will have no nodes in the ground state. While the Green

function is generally unknown, it can be approximated using a short time approx-

imation [70] as:

G(R → R′, dτ) ∼∏N
i (

mi

2πdτ
)
3
2 × e[−mi (R

′−R)2

2dτ
] × e−[V (R)+V (R′)−2Er]

dτ
2(1.3)

V (R), in this case, is the total interaction potential between the N particles

whose coordinates are R in the 3N-dimensional space and Er is the reference

energy. The first exponential in Eq. (1.3) generates a diffusive random walk. The

second exponential is simulated by a birth/death process with Er as the “reference”

energy.

In practice, DMC simulations will often employ importance sampling [72, 87,

91, 92], where a trial wave function, ΨT , is used to guide the walk. Implement-

ing importance sampling improves the efficiency of the DMC algorithm and also

increases the precision of the computed energies [70]. Additionally, importance

sampling prevents the unphysical dissociation of clusters containing large number
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of 4He atoms. Implementing importance sampling results in a diffusion like equa-

tion for the mixed function f(R, ri) = Ψ(R, ri)ΨT (R, ri) where R and ri are the

molecular and atomic coordinates, for the doped impurity and the bosonic solvent

respectively. Additional drift terms - quantum forces - are introduced into the

diffusive process which guide the walkers to regions of high density [72].

Algorithms to evaluate the path integral representation and those solving the

diffusion-reaction equation obeyed by the wave function yield essentially the same

formulation of the DMC method. The formulation one chooses to use depends

mainly on one’s expertise. The path integral method requires knowledge of the

corresponding formulation of quantum mechanics, whereas the formulation of the

DMC method based on the diffusion-reaction equation requires familiarity with

the theory of stochastic processes.

The theoretical formulation of the DMC algorithm can be outlined as follows

[93]:

1. The solution for the time dependent Schrödinger equation is expressed as a

formal series expansion in terms of the eigenfunctions of the Hamiltonian.

The real time, t, is transformed to imaginary time, τ , by replacing t → iτ .

The solution of the resulting imaginary time Schrödinger equation becomes

a series of transients that, as τ → ∞, experience exponential decay. The

longest lasting transient corresponds to the ground state (the state with the

lowest possible energy) of the system.

2. The ground state energy and wave function are determined. The Monte

Carlo method samples the wave function after each time step. An approx-

imation of the wave function at each time step is given by the spatial co-

ordinate distribution of the replicas involved in the combined diffusion and

birth-death processes. The wave function will converge in imaginary time

towards the time independent ground state wave function only if the origin
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of the energy scale is equal to the ground state energy. A reasonable guess

at the ground state energy is used as the starting point. This guess is then

refined after each time step in which a diffusive replacement and birth-death

process is applied to all particles at once. The initial estimate should even-

tually coverage to the desired ground state energy and the distribution of

the particles converge to the ground state wave function.

The computational implementation of the DMC algorithm is shown in Fig.

1.1. The external data required is collected in the input block via a menu driven,

interactive interface. To begin with one should select the quantum system on

which the calculation is to be performed; this entails programming the right spatial

dimensionality, d, and the potential energy, V . The other input parameter needed

are as follows: (i) initial number of replicas (N0), (ii) the maximum number of

replicas (Nmax), (iii) the seed value for the random number generators, (iv) the

number of time steps to run the simulation τ0, (v) the value of the time step

(∆τ), (vi) the limits of the coordinates for the spatial sampling of the replicas

(xmin, xmax) and, (vii) the number of spatial “boxes” (nb) for sorting the replicas

during their sampling. In the subsequent step, indicated by the “initialize replicas”

block, a two dimensional matrix known as psips is initialized [93]. The first row of

the psips matrix identifies the replicas between one and Nmax; the second column

points to information regarding the replica and the other elements are used to

store the coordinates of the replicas.

After initialization the algorithm then enters a loop consisting of the walk,

branch and count blocks. In the walk portion of the loop, the replicas undergo

a diffusion process. This is done by adding the value ∆τρ, where ρ is a random

number and ∆τ is one time step, to each replica. In the branching process, each

diffusion step of the replica is subjected to a birth-death process. A variable

mn is calculated for each replica. If mn = 0 the replica is killed by setting the

corresponding existence flag to zero. If mn = 1 the replica is left as is and if the
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FIG. 1.1 Flow diagram of the DMC algorithm [93].
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value of mn = 2 the replica is duplicated. For mn = 3 two identical copies of the

replica are generated. The count block returns the ground state wave function of

the system by counting the distribution of the replicas among the boxes nb. The

output block returns the results of the simulation. The results that are obtained

are, (i) the average value of the reference energy 〈ER〉 ≈ E0, (ii) the standard

deviation of the calculated average energy δEr, (iii) the imaginary time evolution

of 〈ER〉 for the first τ0 time steps and (iv) the normalized spatial distribution of

the replicas.

Despite their many advantages, QMC methods come with an intrinsic problem

that complicates their application to many systems: they only converge to the

exact ground state energy of a many-body system if the wave function contains no

nodes. In all other cases, i.e., for excited states or fermions, approximations must

be made to solve the problem.

The total wave function is the product of the orbital and the spin wave func-

tion. In the case of bosons (particles with integer spins) the total wave func-

tion is symmetric with respect to any permutations of the particles while for

fermions (particles with half integer spin) the total wave function is antisymmet-

ric with respect to such permutations. This constraint determines the symmetry

of the orbital portion of the ground state wave function for fermions but not

for bosonic states. This means that the orbital ground state wave function of

fermions will have nodes, i.e., regions with different signs. This is the origin of

the “sign” problem that plagues the application of QMC methods to fermionic

systems [66, 67, 69, 80–86]. One approach that is taken when applying QMC algo-

rithms to fermions or excited states is to use the fixed node diffusion Monte Carlo

(FNDMC) method [67, 70, 87]. In the FNDMC algorithm, a particular nodal

topology is assumed for the trial wave function used to guide the calculation. The

overall accuracy of the solution depends on the accuracy of the guiding wave func-

tion. If the assumed nodal topology is exact then the QMC algorithm will converge
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to the exact numerical solution. It is therefore critical that we develop means of

accurately determining the nodal hypersurfaces of many-body wave functions; this

is in fact an active area of investigation [68, 81–86, 88–90, 90].

In fixed node diffusion Monte Carlo, the nodes of the guiding wave function are

used to partition the space into pockets within which the wave function is either

positive or negative [87]. Any walkers that cross a node are eliminated. The

portion of wave function within each pocket contains the ground state solution

of a fictitious particle contained in the pocket. This means then that the overall

energy can be found by performing separate ground state calculations inside each

pocket, yielding pocket energies for positive portions of the wave function, E+, and

the negative portions of the wave function, E−. Since the energy of the actual state

must be the same inside each pocket, the resultant energies E+ and E− should be

equal if the nodal hypersurface used is exact. Of course this means that one must

either have prior knowledge of the nodal topology of the target wave function or

have an effective means of refining the initial guess to resemble the exact nodal

hypersurface.

There are a number of different methods that have been used to generate the

nodal hypersurface for the trial wave function for use in FN-DMC computations;

taking advantage of the symmetry in a complex to predict its nodal topology,

for example. All the methods employed so far have had significant disadvantages

to them. Symmetry, for example, is not always a viable option especially in the

case of unknown highly complex wave functions. Bressanini and Reynolds [94], in

fact, found unexpected symmetries in the nodes of several atoms and molecules

which led them to speculate that in some cases the nodal hypersurfaces will have

higher symmetry than the wave function. Other techniques such as the use of

random forests of decision trees to classify nodal pocket [95, 96]; the use of self

healing DMC in which the nodal hypersurfaces are successively improved as the
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computation proceeds [81], and a direct optimization procedure [97] have also been

used. The viability, ease and adaptability of these approaches remains to be seen.

In molecular physics, Buch et al. developed a systematic approach of nodal

optimization [88] . This approach relies on the observation that the separate DMC

calculations inside each pocket will yield the same energy if the nodal hypersurface

used is exact. By optimizing the node to achieve equal energies in each node, they

were able to obtain satisfactory results for the CO-H2O complex [88] and also the

water hexamer [89]. In addition to the energy constraint, they utilized one other

optimization criteria: comparison of direction flux histograms. The derivatives of

the wave function must be continuous across the node; therefore, the normalized

local flux of the DMC walkers crossing a nodal surface in opposite directions will

be equal for the exact node. The histograms were obtained by binning walkers

that crossed the nodes in each direction. Then the histogram comparison was

done by hand [88]. While effective in this particular case, there are number of

valid arguments that can be raised against the use of directional histograms as an

optimization criteria. First, it may not always be a viable option in the case of

highly excited states with many different pockets. Second, the walkers crossing the

nodal surface are driven by the Green function or propagator; however, we only

have an approximate expression for the Green function. If one employs importance

sampling with an accept/reject step in it in the DMC code, then as the time step

approaches zero both the number of attempted node crossing per Monte Carlo

step and the number of attempted nodal crossing per unit time goes to zero.

The first problem is easily solved. We simply perform two simulations in which

the phase of the wave function is either positive or negative. If the nodal surface

is correct, averaging over all the pockets in the positive phase and over all the

pockets in the negative phase will produce equal total pocket energies, regardless

of the number of nodal pockets involved. Solving the second problem was the

basis of a large portion of this research project, i.e., the use of non-directional
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histograms in a genetic algorithm diffusion Monte Carlo (GA-DMC) algorithm to

optimize the nodal topography of a target wave-function.

The key idea for the project was to utilize a genetic algorithm to hone in on

the nodal hypersurfaces of the target state within the DMC calculation. The ge-

netic algorithm (GA) is a subset of evolutionary algorithms that model biological

processes to optimize highly complex functions [98]. The algorithm allows a popu-

lation consisting of many individuals to evolve under specified selection rules to a

state that minimizes the cost function, i.e., maximizes the “fitness”. This method

was developed by John Holland in the 1960s [99], and popularized by David Gold-

berg in 1989 who used it to solve a difficult problem involving the control of

gas-pipeline transmissions [98]. Genetic algorithms may be used to find global

extrema in high dimensional spaces. There are numerous advantages to using the

genetic algorithm: (i) it optimizes with continuous or discrete parameters; (ii) it

doesn’t require derivative information; (iii) it is well suited for parallel computers;

(iv) it optimizes parameters with extremely complex cost surfaces and can jump

out of a local minimum; (v) it provides a list of optimum parameters and, (vi) it

can work will all types of data, e.g., numerically generated data, experimental data

or even analytical functions. Another useful advantage of this method is that, as

long as the problem can be encoded and the optimization criteria defined, the GA

is easy to implement; mainly because the GAs are portable and require minimal

interfacing between the GA part of the code and the intended application.

In the genetic algorithm, initially, a population of randomly chosen individ-

uals is created and a fitness level assigned to each individual based on the user

defined fitness function. The individuals each represent a possible solution to the

optimization problem being studied. Each individual is evaluated against a user

defined fitness function. The fitness function is specific to each problem. The next

generation is then created by breeding (via recombination or mutation) only the
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individuals that satisfied the criteria set by the fitness function. The new popu-

lation is used in the next iteration of the algorithm and so on. After a certain

predetermined number of generations the algorithm is terminated. If a satisfac-

tory solution has not been found, the last generation may be used as the starting

point for the evolution of further generations.

The optimization criteria, as stated previously, is user defined; often in the

form of a fitness function that is systematically refined by the GA. Some examples

of optimization criteria used involved the comparison of pocket energies obtained

during separate DMC calculation [64, 88, 100, 101], comparative analysis of both

directional histogram [100] and non-directional histograms [90, 102]. In most cases,

the most computationally demanding step of the process is the evaluation of the

fitness function. Evaluation of the fitness function usually involves performing

several DMC calculations for each GA individual; computing the fitness function

accounts for 99% of the computer time. It is therefore important to implement

a computer methodology that maximizes computational efficiency. Using fine-

grained parallel genetic algorithms does just that. In practice, the most important

steps of the GA are (i) encoding a representation of the possible solution and (ii)

defining a fitness function against which to test the individuals.

When encoding a representation of possible solutions to the problem, the goal

is to map the topology of a candidate nodal surface onto a bit string of 0’s and

1’s. Since algorithms exist to convert numbers into bit string, encoding the rep-

resentation then simply becomes encoding an arbitrary nodal surface by a set of

parameters which are chosen by the GA. In general, a nodal wave function may be

parameterized as Ψ = Σncnθn, where the cn are expansion coefficients and θn are

a set of basis functions. The GA will refine the expansion coefficients, cn, using

the defined optimization parameters. Several different excited states may be rep-

resented by the same basis vectors, but with different coefficients; consequently,

multiple maxima in the fitness function will exist. Picking the cn directly will
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FIG. 1.2 Flowchart of a binary genetic algorithm [98].
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cause the GA to oscillate between the different excited states consistent with the

parameterized nodal surface. In order to tighten the target range, two approaches

can be taken: (i) modify the fitness function so that only states in a given energy

interval are found, or (ii) bias cn to target the state of interest.

The fitness function criteria used is specific to each problem. In some studies

[64, 100] the optimization criteria was based on the requirement that the separate

DMC calculations performed inside each nodal pocket result in identical pocket

energies if the node was exact. Additionally, comparison of the similarity between

directional flux histogram, generated by binning walkers crossing the node on

either side, was done. In fixed node diffusion Monte Carlo (FNDMC), walkers that

cross nodal surfaces are eliminated. Since the wave function must be continuous

across the nodes, the rate of elimination of walkers crossing the node must be

the same [88]. An alternative optimization criteria was proposed by Lüchow et al.

[90, 102]. It argues that if the true wave function is governed by ĤΨ = (T̂+V )Ψ =

EΨ where T̂ is the kinetic energy operator, then the functions ΨT , T̂ΨT and ĤΨT

will all have the same nodal hypersurfaces when the trial wave function, ΨT , has

the same node as the true wave function, Ψ. This lead to an approach based on

minimizing the distances between the nodal hypersurfaces of ΨT , T̂ΨT and ĤΨT .

The procedure outlined by Lüchow et al. [90, 102] derived explicit expressions for

the distances between the nodal hypersurfaces. The feasibility of this approach,

however, depends on the hypersurfaces being (i) close to each other and (ii) locally

parallel. This approach is also complicated by a number of other factors: (i) while

ΨT and ĤΨT all have nodes in common when ΨT is an eigenfunction, it is possible

for T̂ΨT to have additional nodes and, (ii) it is also possible that there will be

functions that exist that, though not eigenfunctions, are such that ĤΨT and ΨT

have nearly identical nodes.

We developed a new algorithm that avoids many of the problems of the Lüchow

et al. method. In this new approach, the GA generates a random population of
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trial wave functions based on a suitable parametrization of the node. For each

ΨT a new function ΞT = ĤΨT is formed. Two separate FNDMC calculations

are performed using the node defined by ΨT . The calculations correspond to the

positive and negative regions of the wave function. This will yield two pocket

energies E+
Ψ and E−Ψ. The previous step is repeated using ΞT instead of ΨT . This

yields two new energies E+
Ξ and E−Ξ . During the calculations, flux histogram of

walkers crossing the nodal surface of ΨT and ΞT , independent of direction, are

computed. If ΨT is an exact eigenfunction then all the pocket energies and the

histograms generated will be identical. The goal is to use the GA to iterate to a ΨT

which most nearly fulfills this criterion. The fitness function is then constructed

by requiring near equality of the pocket energies with small standard deviations;

minimizing the standard deviations between the energies E+
Ψ, E−Ψ, E+

Ξ and E−Ξ and

minimizing the differences between the flux histograms. The multidimensional

histogram comparison is done automatically [100, 101].

To test the viability of this method the GA-DMC algorithm was applied to the

calculation of the excited states of a coupled quartic oscillator and excited states

of the He-C2H2.

The GA-DMC algorithm, once the viability was established, was utilized in

computational studies of the phenomenon of microscopic superfluidity. The weak

van der Waals potential between 4He atoms and the fact that they are bosons have

a dramatic influence on their properties. 4He is one of a very short list of substances

that does not solidify even at the lowest temperatures, i.e., at temperatures of 0

K. Instead of a triple point, usually found in most substances, 4He has a λ-line

connecting the points marked by λ (Pλ = 0.05 bar, Tλ = 2.18K) and λ
′

in Fig.

1.3 which separates the normal liquid (He I) from the superfluid (He II).

While there have been numerous experimental and computational studies of

macroscopic superfluidity, studies into the manifestations of microscopic superflu-

idity have been fairly recent. In 1992, Scoles et al. observed unusually sharp,
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FIG. 1.3 (color online). Pressure-temperature phase diagram of 4He. The inset
shows the phase diagram for argon which a triple point typical to most other

substances [62]. Figure can also be found online at www.tandfonline.com.
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infrared spectral features of the SF6 molecule and SF6 dimer attached to 4He

droplets [1] and later studies by Toennies et al. [54] on the same system revealed

a complete set of rotation lines. These results indicated that the dopant molecules

were rotating almost freely inside the helium solvent. Since then other molecules

seeded into 4He clusters have shown similar spectral features indicating that the

seeded molecule had decoupled from the boson solvent[4, 7]. Experimentally, de-

coupling is signaled by the appearance of sharp, free-molecule-like, rotational lines

in the spectra. This process of decoupling has been attributed to the onset of

microscopic superfluidity and in some 4He-dopant complexes has been observed

for as few as 4-6 helium atoms [21, 25, 103]. In computational studies, microscopic

superfluidity is inferred from the nonclassical turnaround and subsequent increase

in the effective rotational constant (Beff ) of the dopant as the number of 4He

atoms (N) is increased. Similar observation have been made for para-H2 cluster

[55].

PIMC calculations have shown that in clusters with decoupled dopant molecules

superfluid and normal fluid components coexist [55]. This complies with the two-

fluid model of superfluids set out by Tisza and Landau [56]. In a PIMC study of

p−(H2)N -CO clusters the superfluid fraction was observed to decline from about

95% at N = 1, to roughly 82% at N = 6 followed by an increase essentially to 100%

for N > 10. These results are similar to those found experimentally for Beff of N

< 10 4He atoms. While the PIMC method can simulate essentially all the proper-

ties of superfluid 4He it does so by projecting the system onto a classical analogy.

In essence, the quantum mechanics behind decoupling are not studied. The main

goal of this study then is to examine, quantum mechanically, how decoupling of

the molecule occurs from the bosonic solvent at 0 K.

Complexes of helium clusters seeded with impurity molecules have high quan-

tum many body dynamics that make it difficult to achieve a qualitative under-

standing of the observed effects. In most cases, simulations done using simple
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models of the system can provide insight into the properties of the system of in-

terest. The results attained can then be compared against more computationally

demanding simulations once a first principal treatment of the system has been

done. Finding a model that simplifies the computational calculations while still

capturing the physics of the system is essential.

Theoretical studies have shown that a one-dimensional (1D) gas of impene-

trable bosons, known as a Tonks-Girardeau (TG) gas [104–106], constrained to

a ring of finite circumference exhibits microscopic superfluidity. It has a critical

velocity below which the system is hard to stir and a vanishing drag force. Taking

advantage of this property, we introduce reduced dimensionality models to inves-

tigate the mechanism that leads to decoupling of the molecule from the bosonic

solvent. In this reduced dimensionality model, the 4He atoms are confined to a

ring as shown in Fig. 1.4. This model is referred to as bosons-on-a-ring (BOAR).

The BOAR model, originally conceived to simplify the search for nodal surfaces,

is similar in some respects to Lehmann’s “toy” Hamiltonian which consists of two

interacting rigid rings, one of which simulates the molecule and the other the 4He

atoms [107]. In the “toy model” the molecule is treated as a rigid planar rotor

with moment of inertia I1; the orientation of the molecule is given by θ1. The 4He

solvent is treated as a ring of N helium atoms that form another rigid planar rotor

with moment of inertia I2 and with orientation given by θ2 [107].

As noted earlier, the phenomenon of free rotations is often designated as a

manifestation of microscopic superfluidity. Fig. 1.5 shows the change in the mea-

sured rotational energy constant B (B =
}2

(2πI)
), where I is the moment of inertia

for end-over-end rotation versus the number of helium atoms. The effective ro-

tational constants of molecules embedded in 4He droplets, BHe, once microscopic

superfluidity is attained, is smaller than that of the free molecule, Bgas. For ex-

ample, for the SF6 molecule the renormalized rotational constant B (which is

analogous to BHe) is approximately one third of its gas phase value Bgas (or B0).
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FIG. 1.4 (color online). Reduced dimensionality model, bosons-on a- ring
(BOAR). The 4He atoms (blue) are confined to revolve on a ring of radius R0

measured from the center of mass of the CO molecule (black/red). The molecule
is pinned at the origin and rotates in the plane of the ring. The azimuthal angles

of the molecule and the ith 4He atom are θ and ψi, respectively.

This behavior seems, to varying degrees, to be the norm for molecules seeded into

4He nanodroplets [4].

The extent of renormalization can be expressed as ∆ =
B

B0

. The extent of

renormalization of the gas phase constants fall into two categories [4, 7, 108].

Effective rotational constant of heavy molecules (B0 < 0.5 cm−1) in 4He are about

a factor of three smaller than those in the gas phase; while those of the light

rotors (B0 > 1 cm−1) are only a few percent smaller than the gas phase rotational

constants. Light rotors tend to have a small renormalization because of their

large rotational constants. These large rotational constants, in effect, average

the interaction potential so that the rotor appears to the 4He atoms to have a

potential that is almost spatially isotropic. Therefore, the angular momentum

transfer between the helium atoms and the rotor is relatively ineffective. In the

case of a completely isotropic potential the angular momentum quantum numbers
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of the molecule and the atom are conserved separately. For heavy rotors, a fraction

of the helium density is able to follow the rotor adiabatically, i.e., there is a rigid

coupling of the molecular rotation to the local non-superfluid helium density that

is induced by molecular interaction [9, 109]. Theoretical calculations have shown

that the local helium density cannot adiabatically follow the motion of the rapidly

rotating light molecule [9, 110]. It is the dragging of the helium density which

leads to the relatively large renormalization observed for heavy rotors.

While most of the light and heavy rotors follow the renormalization trends

stated in the previous paragraph there have been molecules that have not behaved

as expected. The renormalization constant observed for the HF molecule, for

example, was larger than calculated for HCl and HBr, despite the fact that HF

has a much larger gas phase rotational constant than the other two molecules

[111]. This has been attributed to the slightly stronger anisotropy of the He-

HF intermolecular potential. The extent of renormalization is 0.98 for HF, ∼ 1

for HBr and ∼ 1 for HCl. The relative effects of the molecular anisotropy in

this series of molecules, though apparent, is relatively weak in comparison to the

renormalization induced by the size of the rotation constants.

Another important consideration in the extent of renormalization of the rota-

tional constant is the rate at which the renormalization achieves its saturated value

(the nanodroplet limit) as a function of the number of 4He atoms. Saturation has

been observed to occur with as few a N = 8 4He atoms [9, 112]. This observation

is in fact what engendered the adiabatic following model. In adiabatic following

the 4He atoms are able to respond immediately to the motion of the molecule

which, in effect, carries a “coating” of 4He density along with it. The molecule

coated with the 4He density experiences a much more isotropic interaction with

rest of the solvent as N is increased. Once the coating is completed, saturation

is expected to occur relatively fast as a function of N. In large rotors, as there is

little to no adiabatic following, we consider the (hypothetical) limit in which the
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FIG. 1.5 (color online). Rotational spectrum of OCS in a beam seeded with
4He. Rotational energy constant of OCS seeded in 4He beam is plotted as a
function of the number of attached 4He atoms. The moment of inertia relative
to the free molecule is plotted on the left ordinate [62]. Figure can also be found

online at www.tandfonline.com.

potential is isotropic, known as the isotropic binary complex (IBC). At this limit

there is no possibility of angular momentum exchange between the molecule and

the solvent atoms and so saturation is reached immediately. This suggests that

light rotors will have a relatively fast approach to the nanodroplet limit due to

fast averaging of the potential. This was observed in the studies of HF, HCl and

HBr [113] and CH4 [114] seeded into 4He droplets where saturation was attained

in the first solvation shell.

The NH3 molecule, a light rotor (B0 = 9.945 cm−1) seems to behave rather

unusually. Behrens et al. [33] measured a renormallziation constant B = 7.5 cm−1

which represents a 25% reduction in B0. Whereas, more recently, Slipchenko and
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Vilesov [35] and Suárez et al. [115] found only a 3% - 5% reduction in B0, which is

much closer to the theoretical prediction. The disparity in the Behren et al. study

has been attributed to poor spectral resolution in the experiment. This seems to

be supported by a recent theoretical study by Viel et al. [116] which finds a much

smaller blueshift of the v2 mode than Behrens et al. which is consistent with the

results of Slipchenko and Vilesov and Suárez et al. . It is still interesting to study

the quantum solvation dynamics of NH3 in a 4He cluster to confirm or disprove

these conflicting results and also, perhaps more importantly, to gain further insight

into the renormalization of rotational constants.

This dissertation deals with the investigations into (i) the viability of the GA-

DMC algorithm, (ii) the phenomenon of microscopic superfluidity as observed

in 4HeN -CO and 4HeN -HCN clusters, and (iii) renormalization of the rotational

constants of NH3 molecule seeded into a 4He droplet. It is organized as follows:

Chapter 2 deals with finding nodal surfaces on the fly within a DMC calcula-

tions using the genetic algorithm. A novel method of defining the fitness function

is studied; one that relies on minimizing the difference between the nodal functions

of the guiding wave functions, ΨT , and ĤΨT , where Ĥ is the Hamiltonian. The

GA optimizes the parameters that define the trial wave function. The viability of

this approach is tested by applying the GA to elucidating the nodal hypersurfaces

of several excited states of a non-integrable two-dimensional quartic oscillator and

the excited states of the He-C2H2 complex. The results obtained show that com-

bining the GA to FNDMC calculations can be an effective method of locating or

refining the nodal surfaces of a wave function on the fly.

Chapter 3 outlines the method and the results of a study of the microscopic

superfluidity in 4He clusters stirred by a rotating impurity molecule. The effective

moment of inertia of a CO impurity molecule doped into 4HeN clusters and p-(H2)

solvent clusters initially increases with increase in cluster size (N) and then has a

non classical decrease at N = 4 for the 4HeN clusters and N = 6 for the p-(H2)
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solvent clusters which suggests molecule-solvent decoupling and a transition to

microscopic superfluidity. However, the mechanism that leads to this decoupling is

not understood. To investigate this we employ a one dimensional model in which

the 4He atoms are confined to a ring. This model captures the physics of the

system. Results obtained suggest that decoupling happens primarily due to boson

solvent-solvent repulsion. Furthermore, the results obtained from the DMC and

basis set calculations suggest that the system can modeled as a Tonks-Girardeau

gas which then allows for the N-particle time-dependent Schrödinger equation

to be solved directly. Computations of the integrated particle current reveal a

threshold for stirring and current generation that is indicative of superfluidity.

Chapter 4 also deals with microscopic superfluidity but in this case with HCN

as the dopant molecule in 4He clusters. Once again, reduced dimensionality models

are used to study the mechanism of microscopic superfluidity: the one dimensional

model in which 4He atoms are confined to a ring, bosons-on-a-ring (BOAR) and its

three dimensional counterpart, bosons on a sphere (BOAS) where the 4He atoms

are allowed to move around a sphere. The results show an initial decline in the

effective rotational constant Beff and subsequent rise at N = 4, indicating an onset

of microscopic superfluidity. The data obtained also suggests that the decoupling

of the HCN molecule from the 4He solvent clusters was due to solvent-solvent

repulsive effects.

Chapter 5 discusses the solvation dynamics of NH3 molecule seeded into a

droplet of 4He containing N =1-25 4He atoms studied using the diffusion Monte

Carlo method for the ground state calculations and the fixed node diffusion Monte

Carlo method for excited state calculations. The investigation center around the

|0011 > states using anisotropic nodes. The accurate rotational constants (B0 =

9.945 cm−1, C0 = 6.229 cm−1 ) and “fudged” versions of the rotational constants

(Bfudged = 0.9945 cm−1, Cfudged = 0.6229 cm−1) of the molecule are used in the

simulations. The reduction in B0 calculated using the accurate rotational constants
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for the ammonia molecule for the |0011〉 state, about 34% , is much higher than

expected and requires further investigation. The fudged rotational constants were

in an indeterminate range between the light and heavy rotors. While both show a

reduction in the renormalization constants the simulations done with the fudged

rotational constants experience a slightly smaller reduction than those done using

the accurate rotational constants. This may be attributed to the importance of

molecular anisotropy versus the size of larger rotational constants in molecules

whose rotational constants fall in an intermediate regime.

Chapter 6 provides a summary of each of the studies presented and any future

work that needs to be performed.
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CHAPTER 2

ON THE FLY NODAL SEARCHES IN IMPORTANCE SAMPLED,

FIXED-NODE DIFFUSION MONTE CARLO USING A PARALLEL,

FINE-GRAINED, GENETIC ALGORITHM

Coauthored by Angeline R. Wairegi and David Farrelly. Reproduced with permission of
Chem. Phys. Lett., 619, 71-76 (2015). Copyright 2014 Elsevier B.V.
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2.1 Graphical abstract
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2.2 Abstract

A method of finding nodal surfaces on the fly in importance-sampled, fixed-

node diffusion Monte Carlo calculations is described. The procedure relies on

minimizing the difference between the nodal functions of the guiding wave function,

ΨT , and ĤΨT , where Ĥ is the Hamiltonian. This is done by allowing the trial

wave function to depend on a set of parameters whose values are then optimized

using a parallel genetic algorithm (e.g., the Pikaia code developed in astrophysics).

Application is made to the calculation of several excited states of a non-integrable

two-dimensional quartic oscillator and to excited states of the He-C2H2 complex.

2.3 Introduction

Solving the many-body Schrödinger equation accurately is a fundamental prob-

lem in physics and chemistry [63–65]. Although progress is being made in treating

ever larger systems, most quantum chemistry methods [117] quickly become im-

practical unless approximations are made. Quantum Monte Carlo (QMC) meth-

ods are an alternative which can provide accurate solutions while scaling more

slowly with system size [64, 65, 71, 80]. These advantages, coupled with recent

advances in computational power, have resulted in QMC approaches becoming

more widely used, for example, in materials science [63, 81] and molecular physics

[15–19, 29, 65, 118–120].

Despite their advantages, QMC methods converge to the exact ground state

of a many-body wave system only if the ground state wave function is node-free.

This is the origin of the “sign” problem which complicate applications of QMC

methods to fermionic systems [66, 67, 69, 80–86]. A similar difficulty arises in

the computation of excited states which always contain nodes. The most common

way to apply QMC approaches to states containing nodes is to use the fixed-node

method [67, 70, 87].
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In practical applications of the fixed-node version of the diffusion Monte Carlo

(FNDMC) method [64, 65, 69, 70, 80], any DMC walkers (replicas) that cross a

predetermined nodal hyper surface are eliminated. That is, the nodes of the trial

N-body wave function partition the configuration space into pockets within which

the wave function has either a positive sign or a negative sign. The portion of the

wave function lying inside each pocket can be considered to be the ground state

solution of a fictitious particle contained in that pocket. This allows the energy

to be found by performing a separate ground state DMC calculation inside each

pocket,i, here denoted Ei
+ or Ei

−, where the + and − subscripts indicate the sign

of the wave function inside a given pocket. Because the energy of the actual sate

must be the same inside each nodal pocket the separate DMC calculations inside

all of the nodal pockets will yield the same energy if the nodal hyper surface used

is exact. Obviously, this is a difficult problem because one must know in advance

the nodal topology of the unknown state being sought. For this reason, finding

nodal hyper surfaces of many-body wave functions is an active area of investigation

[68, 81–86, 88–90, 102].

Various procedures, including guessing, have been used to generate nodes for

the fixed-node procedure [68]. Symmetry can sometimes be used to determine

the nodal topology but this is obviously not possible in general [94]. Lester and

co-workers have attempted to describe and classify nodal pockets using machine

learning techniques such as random forest of decision trees [95, 96]. More recently,

several attempts to determine or improve the nodal hyper surface on the fly have

been described including self-healing DMC [81, 90, 97, 102].

In molecular physics, Buch and co-workers developed a systematic approach

that relies on the observation that separate DMC calculations inside each of the

nodal pockets will yield the same energy if the nodal hyper surface used is exact

[88, 89]. We have recently developed an automated version of this procedure in

which the search for nodes is treated as an optimization problem that is solved
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using a genetic algorithm (GA), on the fly, i.e., within the DMC computation

itself [100, 101, 121]. Essentially, the nodal surface is optimized such that the

normalized local flux of DMC walkers crossing the surface in opposite directions

are equal, as are the pocket energies. To impose these conditions, directional flux

histograms are computed by performing separate DMC computations on each side

of the node. By adjusting parameters in the assumed nodal hyper surface until

(i) E+ = E− and until (ii) the flux histograms in both directions are sufficiently

similar, convergence was achieved.

In this letter we describe an alternative approach; rather than requiring equal

fluxes of walkers crossing the assumed nodal surface in opposite directions, a ge-

netic algorithm (GA) is used to minimize the difference between the nodal func-

tions of the guiding wave trial, ΨT and the function ĤΨT where Ĥ is the Hamil-

tonian. This is done by allowing the trial wave function to depend on a set of

parameters whose values are then refined using a GA.

This Letter is organized as follows: Section 2 describes the nondirectional

histogram procedure and explains how this can be used to generate optimization

criteria for use in a GA. Application is made in Section 3 to a model coupled

oscillator problem and to excited state of the He-C2H2 complex. Comparison is

made with accurate basis set calculations. Conclusions are in Section 4.

2.4 Genetic-algorithm diffusion Monte Carlo

Comprehensive reviews of the DMC algorithm, and its various implementa-

tions, are available [64, 65, 69, 70, 80] so only a brief overview of the method will

be provided.

The DMC approach exploits the similarity between the diffusion equation

- augmented by a position dependent source/sink term - and the Schrödinger

equation in imaginary time (ITDSE) τ = it. In practice, DMC simulations often

implement importance sampling [72, 87, 91, 92] in which a trial wave function
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- here denoted as ΨT - is used to guide the walk. Using a “good” trial wave

function speeds up convergence, reduces statistical errors and may, in practice, be

essential to prevent the unphysical dissociation of weakly bound clusters [72, 112].

Frequently, variational Monte Carlo (VMC) calculations are first done to generate

trial wave functions.

Extending the DMC method to excited states, or ground states of many-

fermion problems, is a difficult problem. This is because, in DMC, the wave

function, Ψ, rather than |Ψ2|, is the probability distribution of the diffusive walk; if

the wave function has nodes then the underlying probability distribution is clearly

not positive everywhere. To deal with this problem, the fixed-node method is often

used in which any DMC walkers that cross a predetermined nodal hypersurface

are eliminated. If the nodal hypersurface for a particular state cannot be obtained

in advance, for example, by symmetry argument or variationally, then the DMC

calculation for that state cannot proceed. A desirable strategy is, therefore, to

optimize the nodal surface on-the-fly, i.e., within the DMC calculation. The GA-

DMC method described previously [100, 101] is one way to achieve this goal. Here

we describe a refined optimization procedure within the GA-DMC method which

more easily allows for importance sampling.

2.4.1 Genetic Algorithms

Genetic algorithms provide a way of finding global extrema in high-dimensional

search spaces. An advantage of the method is that, provided a suitable fitness

function and encoding of the problem is defined, the GA algorithm is easy to

implement. This is because GA codes are portable and require tentatively little

interfacing between the GA part of code and the intended application [122]. GAs

can also be coupled with other artificial intelligence approaches, including pattern

recognition methods and decision tree [96, 122–124].
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In simulations using GAs, a population of “individuals” is allowed to inter-

breed and evolve to an optimal solution as governed by a particular fitness func-

tion. The fitness function is specific to the problem at hand. Each individual in

the population is a representation (or chromosome) of a possible solution to the

optimization problem - in this case a guess at the node. The individual is encoded

as a string of binary bit (i.e., 0s and 1s). To start off, a population of randomly

chosen individuals is created and a fitness level is assigned to each individual based

on a user-defined fitness function. This constitutes the first generation. The next

generation is formed by selecting individuals from the previous generation, based

on their fitness, and then forming new individuals (“breeding”) by recombination

and mutation. The new population is used in the next iteration of the algorithm

and so on. The algorithm terminates after a certain predetermined number of gen-

eration. In the event that a satisfactory solution has still not been found, the last

generation may be used as the starting point for the evolution of further genera-

tions. In practice, the two most important steps are (i) encoding a representation

of a potential solution and (ii) defining a fitness function against which to test the

individuals.

Typically, the most computationally demanding step of the process is the

evaluation of the fitness function. In the present application this is also the case

because it involves performing several DMC computations for each GA individual.

In fact, essentially all the computer time is consumed in computing the fitness

function. This suggests a parallel approach in which each GA individual is farmed

out to a separate “slave” cpu (or cpu core) while a master cpu takes care of the

GA-related operations. It is most natural to send one individual to each available

core (or thread). This method is know as “fine-graining”. The parallel Pikaia

genetic algorithm was used [125].
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2.4.2 Nodal optimization

Recently, Lüchow and co-workers [90, 102] have proposed a new optimization

criteria based on the observation that if the true wave function is governed by

ĤΨ = (T̂ +V )Ψ = EΨ where T̂ is the kinetic energy operator and V the potential

energy surface (PES), then the function Ψ, T̂Ψ and ĤΨ will all change sign at

the same places. This suggest an optimization scheme based on minimizing the

distances between the nodal hyper surface of the trial wave function, Ψ, T̂Ψ and

ĤΨ. The actual method suggested by Lüchow and co-workers [90, 102] is to

derive explicit expressions for distances between the nodal hyper surfaces of the

three functions using a multivariate Taylor series expansion. However, this relies

on the hyper surfaces being (i) close to each other and (ii) locally parallel. This

approach gave good results for several models as well as for realistic systems but it

is quite complicated to apply in general. In particular, it will not necessarily be the

case that the nodal hypersurface of of the functions Ψ, T̂Ψ and ĤΨ will be close or

parallel for any arbitrary trial wave function. A further problem is that, even for

the exact wave function, the function T̂Ψ may have additional nodes beyond those

it shares with Ψ and ĤΨ (this is easily demonstrated using the one-dimensional

(1D) harmonic oscillator as an example). It is also possible that Ψ, T̂Ψ and ĤΨ

have nearly identical nodes even for a poor choice of ΨT .

Here we propose an algorithm to converge to the actual nodal hypersurface of

a given state within the DMC calculation:

1. A GA is used to generate a random population of trial wave functions having

particular nodal structures (“individuals”). This requires a suitable param-

eterization of the node. In general, this will be a system ansatz, possibly

similar to the procedure adopted in a variational Monte Carlo (VMC) cal-

culation.

2. For each ΨT a new function ΞT = ĤΨT is then formed.
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3. Importance sampled DMC is done using ΨT as the guiding wave function

[72, 87, 91, 126]. In practice, this corresponds to performing two separate

calculations in regions where Ψt > 0 and where Ψt < 0. This yields two

pocket energies E+ and E−. This procedure works even if there are more

than two pockets, i.e., for highly excited states. In this case E+ and E− are

weighted average energies over all of the pockets for which the wave function

is positive or negative, respectively.

4. Throughout all of these calculations flux histograms are accumulated as

walkers cross the nodal surface of ΨT and ΞT independent of direction. Only

ΨT is used to define the nodal surface for the actual elimination of walkers

to avoid numerical instabilities.

5. If ΨT were an exact eigenfunction then all the pocket energies and histogram

would be identical. The objective of the GA is to iterate to a ΨT which most

nearly fulfills this criterion.

The fitness function is the same as used previously [100, 101] and is constructed

by

1. Requiring equality of pocket energies.

2. Minimizing the distance and the standard deviation between the energies

E+ and E−. In practice each fitness function (FNDMC) calculation may be

repeated several times, using a different random number seed, to improve the

statistics. However, this significantly increases the computational expense.

3. Minimizing the differences between the flux histograms. The histogram com-

parison is done automatically [100, 101]. In these calculations 1D histograms

are sufficient and were constructed by projecting the binned walkers onto the

x - or y - axes. In other cases multidimensional histogram comparison may

be required.
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2.5 Application and results

The GA-DMC algorithm was applied to the calculation of the excited state

of a coupled quartic oscillator and excited states of the He-C2H2 van der Waals

complex.

2.5.1 Quartic Oscillator

The Hamiltonian for this problem is given by

H =
1

2
(p2
x + αp2

y) + λ(x4 + αy4) + γx2y2 (2.1)

This Hamiltonian - and variants of it - has been extensively studied in the

context of classical and quantum chaos [127] and the nodal structure of its wave

function has also been recently investigated [128]. For comparison, accurate results

were obtained by expansion in a direct product basis of 1D irreducible representa-

tion (A1, A2, B1, B2) and one 2D (E) representation. While taking advantage of

symmetry would allow the number of coefficients in the GA search to be reduced

it would also favorably bias the nodal search. We partially break the symmetry of

the Hamiltonian by setting α = 2. We set λ =
1

2
and γ =

−6

5
and atomic units

are used throughout. Nodal surfaces can be encoded by assuming that the trial

wave function may be represented by the following expansion:

ΨT (x, y; cn,m) =
N∑
n=0

M∑
m=0

cn,mφn(x)φm(y) (2.2)

In the expansion N = M = 5 for a total of 36 unknown real coefficients.

Initially, the coefficients were generated randomly in the range (-1,1) such that

N∑
n=0

M∑
m=0

c2
n,m = 1 (2.3)
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FIG. 2.1 (color online). Scatterplot (small filled circles, red online) showing the
location of several relatively high fitness energy clusters detected by the GA–
DMC algorithm after the first 25 generations. Also shown along the diagonal
are the accurate eigenvalues (large filled circles, green online) obtained using a
finite basis set as described in the text. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this

article.)
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Subsequently, the coefficients are modified by the GA with normalization being

imposed before each new DMC run. In the DMC calculation importance sampling

was done using ΨT to guide the walkers. In the converged variational calculations

we set N = M = 8. Our procedure for locating the excited states is as follows:

1. A target range of energies is first selected. The fitness function is arbitrary

set to zero if the average of the pocket energies of an individual falls outside

of the target range.

2. Within the energy region of interest a scatter plot is made showing the final

pocket energies of high-fitness individuals after 25 generations. An example

is shown in Figure 2.1 in which several clusters are apparent. Also shown

are the accurate eigenvalues obtained from numerical diagonilization of the

Hamiltonian matrix. In displaying the GA-DMC clusters a fitness cut-off

was used to eliminate the poorest quality individuals from the population.

Several clusters are apparent which lie close to the actual eigenvalues. In

principle, by systematically increasing the energy using relatively narrow

energy windows, most or all of the eigenvalues can be located. In practice,

it is often the case that only certain states are sought (e.g., Ref. [121]) and,

in this case, system-specific information can be used to guide the GA.

3. One of the clusters is selected for further investigations and a new GA-DMC

calculation is done. The calculation then proceeds as before except that:

(a) The energy range of interest is tightened around the cluster of interest.

(b) A new initial set of coefficients is generated from individuals whose

pocket energies lie within the targeted cluster.

(c) As before, the GA varies the coefficient in the cluster of interest.
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(d) An “epochal” procedure [101] is used in which the number of DMC

walkers and the total diffusion time are increased after every 25 gener-

ations.

4. The process is repeated until satisfactory convergence is achieved - i.e., until

no further significant increase in the fitness function is observed.

5. Finally a set of fixed-node DMC calculations using the best node are done

to generate good statistics. Thus the error bars provided do not reflect

uncertainties due to statistical fluctuations in the GA itself. In principle a

small population of high-fitness nodal surfaces could be used then averaged.

In the calculations reported here, typically 3000 walkers were used to start

and this number was increased to 9000 for the final set of calculations (step 5

above). Each generation contained 80 individuals and the propagation of ∼ 30 -

120 generations was required to achieve satisfactory convergence.

Several states were selected for investigations using this procedure and the

results for two of them are shown in Figures 2.2 and 2.3. Each panel shows the

accurate eigenstate, an intermediate GA-DMC estimate of the nodal surface and

the best GA-DMC estimate of the nodal surface. For comparison we also used the

best variational function as a trial wave function in a FNDMC calculation. The

energies resulting from these calculation (i.e., using essentially the exact node) are

given in the figure captions. In all cases the GA-DMC method leads to energies

which are essentially indistinguishable from those found using the exact node. In

the calculations corresponding to Figures 2.2 - 2.4 no knowledge of any symmetries

in the problems were assumed. In all cases the wave function found by GA-DMC

and the exact wave function are very similar as are the nodal surfaces. It is

important to note that it is not necessary for the wave functional to be globally

similar for the FNDMC calculations to succeed, only that the nodes approximate

the accurate nodes sufficiently well. A further set of calculations was also done for
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a higher energy state using basis vectors of the appropriate symmetry in Eq. (2.4)

- in this case products of odd function in x and even functions in y. This was done

to compare with an unrestricted nodal search (i.e., one in which the symmetry of

the Hamiltonian is not exploited). Not only is the converged nodal function closer

to the exact one but, as expected, taking advantage of symmetry considerably

speeds up the calculation. However, even though the nodal surface (and wave

function) found in the symmetry-restricted calculation was slightly superior to

that in the unrestricted calculation, the difference in the energies between the two

calculations was negligible.

FIG. 2.2 Contour plots of the wave functions for the state with energy, E=6.55;
(a) accurate wave function, (b) a high fitness function individual from half-way
through the calculation and (c) the converged GA-DMC estimate of the nodal
surface for this state. Blue (solid) and red (dashed) contours correspond to
regions where the wave function is positive and negative, respectively. The
pocket energies obtained for the converged GA-DMC calculation are E+ =
6.55 ± 0.02 and E− = 6.56 ± 0.03. For comparison, using the accurate wave
function in a DMC calculation yields E+ = 6.55 ± 0.03 and E− = 6.55 ± 0.02.
(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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2.5.2 Excited states of He-C2H2

We also made application to the calculation of several excited states of the He-

C2H2 complex using a recent intermolecular potential energy surface [129, 130]. As

in a previous study of the He-CO complex [121] the He atom is confined to a sphere

(in this case of a radius R0 = 9.55 bohr). The BOAS model has consistently been

shown to provide a reasonably accurate description of the nodal surfaces of weakly

bound van der Waals complexes containing several He atoms. The advantage is

that considerably less computational effort is required to solve the BOAS problem

than the full dimensionality problem because of difficulties including the radial

degrees of freedom [100, 101, 121]. Here we demonstrate how GA-DMC can be

used to compute nodal surfaces on the fly of these systems.

The Hamiltonian, in the BOAS approximation, is [121]

Ĥ =
ĵ2

2I
+

l̂2

2mR2
0

+ V (R, θ) (2.4)

where I is the moment of inertia of the C2H2 molecule; ĵ is the molecular rotational

angular momentum (AM) operator and l̂ is the orbital AM operator for the He

atom (mass m). The atom-molecule potential energy surface (PES) is V(R,θ)

where R and θ are the usual Jacobi coordinates [129, 130]. Based on diffusion

Monte Carlo calculations for the full problem we set R0 = 9.55 bohr throughout.

The gas phase rotational constant for C2H2 is B0 = 1.176642 cm−1.

The procedure is as follows.

1. Because the He atom is confined to the surface of the sphere the primitive

basis functions that are used depend on three angles; the space-fixed polar

angles of the molecule (θ1) and the atom (θ2) and the difference between

the azimuthal angles of the molecule and the atom, that is , φ = φ1 − φ2.

They also depend on two quantum numbers (j,mj) for the molecule and two
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(l,ml) for the atom. The total angular momentum quantum number, J , is

a good constant of the motion.

2. Explicitly the primitive basis functions are given by:

Ψl,ml
j,mj

(θ1, φ1, θ2, φ2) = Y
mj
j (θ1, φ1)× Y ml

l (θ2, φ2) (2.5)

3. However, the basis functions used in the optimization are linear combinations

and are defined:

Ψl
j =

mj=j∑
mj=−j

ml=l∑
ml=−l

〈j,mj, l,ml|J,O〉 × Y mj
j (θ1, φ1)xY ml

l (θ2, φ2) (2.6)

where 〈j,mj, l,ml|J,O〉 are Clebsch-Gordon coefficients.

4. The total expansion of the wave function with unknown coefficients is

Φ =

j=N∑
j=0

l=N∑
l=0

clj ×Ψl
j (2.7)

where the (N + 1)2 coefficients are optimized using the GA-DMC.

Figure 2.4 compares the converged GA-DMC energies and wave functions with

the accurate BAOS wave function obtained by an accurate diagonalization of the

Hamiltonian given by Eq. (2.6). The basis functions in Eq. (2.6) were used in the

diagonilization. Also, shown are accurate results of the full dimensional complex

obtained using a discrete variable representation for the radial degree of freedom of

the complex. Similar results were obtained for other excited states. This approach

is easily generalized to more than a single He atom.
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2.5.3 Computational details

For the quartic oscillator, the calculations were performed using a small com-

puter cluster consisting of 5 nodes, each of which contained a Core intel i7 proces-

sor. Each i7 processor had 4 cores and hyper threading was used for a total of 80

processes per run. Each generation thus contained a total of 80 individuals and

each generation took about 10 min to complete. The total number of generations

required to achieve convergence varied with the complexity of the nodal surface.

The simplest nodal topology studied here, shown in Figure 2.2, was found to be

converged after 63 generations. The more complicated nodal surface shown in

Figure 2.3 was converged after 96 generations, respectively. Without taking ad-

vantage of symmetry, convergence to the nodal structure shown was achieved after

112 generations; using symmetry led to convergence after 33 generations. For the

He-C2H2 complex the calculations were done at the Utah State High Performance

Computing Center (HPCC) using the Pikaia code [125]. A population of 80 indi-

viduals was used and the calculations for the state shown in Figure 2.4 converged

after 60 generations.

2.6 Conclusions

These results show that combining a GA with FNDMC calculations can be an

effective way of locating (or improving) nodal surface on the fly. In order to apply

the method it is necessary that a parameterization of the nodal surface be available.

In the present computations a basis set expansion with unknown coefficients was

assumed. This will likely not be the best choice for higher dimensional problems.

However, this is not a drawback particular to GA-DMC because, in any FNDMC

calculation, some choice of nodal function is necessary; the GA-DMC procedure

provides a systematic way of improving on that choice. If a decent guess at the

nodal surface is available in advance then a VMC calculation might be preferable.

However, in many applications a good approximation to the nodal surface will
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not be available. Furthermore, even if the trial wave function is obtained using

VMC the GA method could still be used to refine the nodal surface. This may

be necessary because it is not clear if a VMC calculation, which minimizes the

energy, necessarily also produces a good estimate of the nodal hyper surface.

The main challenge for the GA-DMC is the construction of an ansatz for

the trial wave function and nodal surface. Of course, additional complications

may also arise related to possible pathologies of the nodal hyper surface involved

(e.g., bottlenecks, jumps from one positive region to another after “flying” over

negative regions, etc.). Discovering how to handle these complications will require

further study as will the possible application of this approach to fermionic systems.

Because the nodal surface of many-fermion systems may be very complicated,

even for the ground state, it may be difficult to capture the nuance of small nodal

pockets. In these cases it may be necessary to employ more sophisticated methods

for multi-dimensional histogram comparison.
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FIG. 2.3 Contour plots of the wave functions for the state with energy, E=9.551;
(a) accurate wave function, (b) a high fitness function individual from half-way
through the calculation and (c) the converged GA-DMC estimate of the nodal
surface for this state. Blue (solid) and red (dashed) contours correspond to
regions where the wave function is positive and negative, respectively. The
pocket energies obtained for the converged GA-DMC calculation are E+ =
9.56 ± 0.09 and E− = 9.55 ± 0.04. For comparison, using the accurate wave
function in a DMC calculation yields E+ = 9.55 ± 0.04 and E− = 9.55 ± 0.06.
(For interpretation of the references to color in this figure legend, the reader is

referred to the web version of this article.)
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FIG. 2.4 Density plots of the wave functions for the BOAS (a-c) and accurate
(d) He-C2H2 state nominally labeled |j, l >= |1, 4 > with total angular momen-
tum J = 3. The accurate energy of the BOAS state is E = 5.965 cm−1 with
respect to the ground state. The figure shows projections of the wave function
onto the θ1− θ2 plane: the azimuthal angles of the molecule (φ1) and the atom
(φ2) are both set to zero. Panel (a) shows the accurate BOAS wave function;
(b) shows a typical individual from part-way through the calculation. The en-
ergies for this state are E+ = 4.813 ± 0.014 and E− = 3.772 ± 0.007. Panel
(c) shows the converged GA-DMC estimate of the nodal surface for this state.
The pocket energies obtained for the converged GA-DMC calculation are E+ =
5.943 ± 0.009 and E− = 5.947 ± 0.007. For comparison panel (d) show the
equivalent projection of the full dimensional wave function (i.e., with the He
atom not being confined to a sphere). The exact energy for the state in panel

(d) is 5.740 cm−1 [130].
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CHAPTER 3

MICROSCOPIC SUPERFLUIDITY IN 4HE CLUSTERS STIRRED BY A

ROTATING IMPURITY MOLECULE

3.1 Abstract

The effective moment of inertia of a CO impurity molecule in 4HeN and p-

(H2)N solvent clusters initially increases with N but then commences a nonclassical

decrease at N = 4 (4He) or N = 6 (p-H2). This suggests molecule-solvent decoupling

and a transition to microscopic superfluidity. However, the quantum decoupling

mechanism has not been elucidated. To understand the decoupling mechanism,

a one dimensional model is introduced in which the 4He atoms are confined to a

ring. This model capture the physics and shows that decoupling happens primarily

because of bosonic solvent-solvent repulsion. Quantum Monte Carlo and basis set

calculations suggest that the system can be modeled as a stirred Tonks-Girardeau

gas. This allows the N -particle time-dependent Schrödinger equation to be solved

directly. Computations of the integrated particle current reveal a threshold for

stirring and current generations, indicative of a superfluid.

3.2 Publication

Impurity molecules doped into small bosonic clusters consisting of 4He or p-H2

solvent particles appear to decouple from their environment as the cluster grows

in size [2, 4, 21, 61, 62, 112]. Decoupling is suggested experimentally by sharp,

free-molecule-like, rotational lines in the spectra and has been attributed to the

onset of a new phenomenon, microscopic superfluidity [5, 25, 27, 55, 61, 62]. How-

ever, the relationship between microscopic superfluidity and conventional (bulk)

superfluidity remains largely unexplored. The onset of microscopic superfluidity

Coauthored by Angeline R. Wairegi, Antonio Gamboa, Andrew D. Burbanks, Ernestine A.
Lee and David Farrelly. Reproduced with permission of Phys. Rev. Lett., 112, 143401 (2014).
Copyright 2014 American Physical Society.
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is inferred from the nonclassical turnaround and subsequent increase in the effec-

tive rotational constant (Beff ) of the molecule (a decrease in the effective moment

of inertia) as the number (N) of solvent particles is increased [21, 25, 55, 103].

Microscopic (or mesoscopic) superfluidity also occurs in cold-atom physics and, in

particular, low-dimensional ultra cold gases [105, 131, 132]. For example, theoreti-

cal studies demonstrate that a one dimensional (1D) gas of impenetrable bosons-a

Tonks-Girardeau (TG) gas [104–106]-constrained to a ring of finite circumference

displays a critical velocity below which the system is hard to stir. If the stirring

perturbation is a δ-function barrier then it experiences a zero drag force except

at certain stirring velocities [133]. Here we demonstrate that the physics of mi-

croscopic superfluidity in bosonic solvents shares much in common with a stirred

TG gas with the barrier replaced by a rotating impurity molecule. This finding

allows the N-body time-dependent Schrödinger equation (TDSE) to be solved nu-

merically. In particular, computation of the integrated particle current uncovers

key signatures of superfluidity [131].

The decoupling of impurity molecules from the bosonic solvent has previously

been attributed to superfluidity in path integral Monte Carlo (PIMC) simulation

[55]. Using the two-fluid model, in p-H2N -CO clusters, both a normal and a super-

fluid component were found to coexist. The main finding of the PIMC calculations

was a superfluid fraction that declined from about 95% at N = 1 to about 82%

at N = 6, followed by an increase to essential 100% for N>10. These calculations

provide excellent agreement with the experimentally observed behavior of Beff

for N < 10, as do previous 0 K quantum Monte Carlo simulations [78, 111, 113].

Nevertheless, as emphasized in a recent review [62], while PIMC can simulate es-

sentially all the properties of superfluid 4He, it does so by projecting the system on

a classical analogy. This may make it difficult to draw direct conclusions about the

actual quantum behavior. For example, the reporting of a normal and superfluid

fraction for N = 1 [55] is difficult to interpret physically. Furthermore, there is no
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unique definition of microscopic superfluidity [131], and the quantum decoupling

mechanism itself has not previously been elucidated.

Our objective is to understand how the decoupling mechanism occurs and also

whether calculations of the particle current density indicate superfluid behavior.

The latter calculation requires the solution of the (N + 1)-body TDSE, which is

clearly not possible for the full dimensionality problem. Therefore, we construct

a reduced-dimensionality model of the 4HeN -CO system with the 4He atoms con-

fined to a ring as shown in Fig. 3.1 (not to be confused with the Lehmann’s very

useful but nevertheless “toy” model [107]). This model has the felicitous prop-

erty that it permits accurate quantum basis set computations for N≤5. Using

quantum Monte Carlo calculations, we first demonstrate that the model contains

the essential physics, that is, the turnaround in Beff . The calculations suggest a

further simplification: modeling the problem as a stirred TG gas. It is this step

that allows us to solve the TDSE directly for N 4He atoms stirred by the molecule.

The Hamiltonian, in the limit of the BOAR approximation (see Fig. 3.1), is

ĤBOAR =
ĵ2
z

2ICO
+

N∑
i=1

[
l̂2iz

2mR2
0

+ V (φi - θ)] +
∑N

i<k U(φi − φk)

(3.1)

where ICO is the moment of the inertia of the CO molecule and ĵz is the molecular

rotational angular momentum (AM) operator; the quantity
}2

2mR2
0

≈ 0.19 cm−1 is

used to define a moment of inertia I0 = Mr2
0; l̂iz is the orbital AM operator for

the ith 4He atom (mass m), and φi and θ are angles show in Figure 3.1. The atom-

molecule potential energy surface (PES) is V(φi − θ) and the PES of Ref. [134]

is used. The He-He PES is U(φi − φk). Based on previous diffusion Monte Carlo

calculations [100] R0, we set at R0 = 9 bohr throughout. The gas phase rotational

constant for CO is B0 = 1.9225125 cm−1. Two reference angular frequencies are
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FIG. 3.1 (color online). Boson-on-a-ring model. The 4He atoms (blue) are
confined to revolve on a ring of radius R0 measured from the center of mass of
the CO molecule (black/red). The molecule is pinned at the origin and rotates
in the plane of the ring. The azimuthal angles of the molecule and the ith 4He
atom are θ and ψi, respectively. The ribbon above the ring illustrates the soft
Gaussian potential, Ug

He−He, as a function of the angles between the He atoms.
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introduced for future use: ω0 =
}
I0

and ωeff =
}
IeffCO

where IeffCO is an effective

moment of inertia that will be varied.

To further simplify the Hamiltonian, the 4He-CO PES is expanded in Legendre

polynomials with only the first three (dominant) terms being retained, i.e., V(R, Θ)

=
∑n=2

n=0 Vn(R0)Pn(Θ) were Θ = φi−θ. Actually, in the BOAR model, the isotropic

V0 contribution is simply an additive constant. Three forms for the He-He PES

are used: (i) the empirical PES of Aziz, McCourt, and Wong (AMcW) [135], (ii) a

purely repulsive Gaussian barrier, and (iii) a δ-function potential as in the TG gas.

The Gaussian barrier is given by U
(g)
He−He(φij) = g0e

−αφ2ij where φij is the angle

between the ith and jth 4He atom (see Figure 3.1). The Gaussian approximation

interpolates between the actual AMcW PES and the TG limit. In addition, its

function form simplifies the calculation of matrix elements as compared to the

AMcW PES. Two set of parameters for the Gaussian barrier are used (see the

caption to Fig. 3.2) corresponding to a hard and soft barrier. The soft Gaussian,

shown as a ribbon in Fig. 3.1, roughly models the actual van der Waals radius of

the 4He atoms, whereas the much harder barrier lies closer to the TG limit of a

δ-function potential with strength going to infinity [131].

Table 3.1 Energy splittings (∆E = 2Beff) between the ground state and the
lowest excited state in the a-type series of the CO-4HeN cluster. Units are cm−1.

N Expt. BOASa BOARb BOARc BOARd BOARe

1 0.576 0.516 ± 0.029 0.183 0.191 ± 0.027 0.213 ± 0.022 0.191 ± 0.025

2 0.516 0.443 ± 0.031 0.174 0.176 ± 0.028 0.187 ± 0.028 0.134 ± 0.029

3 0.482 0.357 ± 0.052 0.101 0.110 ± 0.051 0.154 ± 0.061 0.114 ± 0.066

4 0.488 0.457 ± 0.072 0.425 0.417 ± 0.067 0.492 ± 0.069 0.323 ± 0.072

5 0.526 0.583 ± 0.083 0.754 0.712 ± 0.092 0.772 ± 0.077 0.534 ± 0.079

6 0.616 0.654 ± 0.152 – 0.931 ± 0.142 1.042 ± 0.098 0.755 ± 0.107

7 0.787 0.951 ± 0.176 – 1.356 ± 0.192 1.412 ± 0.134 1.051 ± 0.113

8 1.442 1.275 ± 0.201 – 1.723 ± 0.277 1.953 ± 0.199 1.312 ± 0.211

9 1.893 1.612 ± 0.245 – – –

10 2.342 1.883 ± 0.312 – – –
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FIG. 3.2 (color online). Effective rotational constant (Beff ) for a CO
dopant in 4He atoms (N). Shown are the experimental results (blue diamonds-
mm/microwave results [21] for N≥10 and IR results otherwise [79]); FNDMC
results using the Aziz PES (green circles) and two different forms of the Gaus-
sian barrier with g0 = 100cm−1, α = 40 rad−2 (soft barrier, red circles) and g0 =
500cm−1, α = 750 rad −1 (hard barrier, purple inverted triangles). For clarity,
error bars have been omitted from the hard Gaussian barrier. The large trian-
gles are results from the accurate basis calculations. The lower inset compares
experimental to FN-DMC results in the BOAS model using the soft Gaussian.
The Aziz PES leads to almost indistinguishable results. The upper inset shows

< j2 > as a function of N obtained from the basis set calculations.
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Fig. 3.2 compares computed values of the effective rotational constant Beff

with the experimental results [21, 79]. As in the experiments, Beff is defined to

be half of the energy difference between the ground state and the lowest excited

a-type state [21, 100]. The fixed-node diffusion Monte Carlo (FN-DMC) results

were obtained using the genetic algorithm DMC method [100]. Results are shown

using the AMcW PES and both the hard and soft Gaussian barriers in the BOAR

model. Not shown are the accurate results (for ≤ 5) obtained using a finite basis

set consisting of Bose symmetrized products of eigenfunctions of the operator ĵz

(i.e., eimjθ) and l̂iz (i.e., eimiφi). See Table. 3.1 for tabulated results up to N = 10.

To illustrate how well the Gaussian barrier captures the physics, the lower

inset in Fig. 3.2 also compares experimental to FN-DMC results in a “bosons-

on-a-sphere” (BOAS) model. In the approximation, the 4He atoms move on the

surface of a sphere, and the CO molecule is allowed to rotate in three dimensions.

The BOAS Hamiltonian is closer to the full problem than is the BOAR model,

and the agreement with experiment is correspondingly better, especially for N

< 10. The BOAS model is better because it less simplified and more faithfully

reproduces how the 4He density is distributed in three dimensions. However, both

the BOAR and BOAS models capture the initial decrease in Beff with an early

turnaround at N ∼ 3 - 4. The value of N at which the turnaround occurs can be

varied by altering the strength or symmetry of the atom-molecule interaction or

by varying B0 artificially. All of the calculations in Fig. 3.2 are quite congruent

with the experimental results. A practical advantage of the BOAR (as compared

to BOAS) model is that accurate basis set calculations are possible for N values

that bracket the turnaround in Beff . The results of the basis set results up to N

= 5, reported in the Supplemental Material [136], agree we with the DMC results.

aobtained using fixed-node diffusion Monte Carlo and the soft Gaussian barrier
bobtained using a finite basis set and the soft Gaussian barrier
cobtained using fixed-node diffusion Monte Carlo and the AMcW potential
dobtained using fixed-node diffusion Monte Carlo and the soft Gaussian barrier
eobtained using fixed-node diffusion Monte Carlo and the hard Gaussian barrier
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Also shown in Fig. 3.2 is 〈ĵ2
z 〉 for the ground state of the BOAR Hamiltonian as

a function of N using the soft Gaussian barrier in the basis set calculations. After

an early rise to a maximum at N = 2, 〈ĵ2
z 〉 falls quite rapidly with increasing N.

Absent any atom-molecule coupling (e.g., N = 0), or for an isotropic interaction,

〈ĵ2
z 〉 = 0. Deviations of 〈ĵ2

z 〉 from zero (in the ground state) are, therefore, an

indicator of the extent of molecule-solvent coupling, i.e., ĵz is no longer a constant

of the motion when anisotropic coupling exists. The decrease in 〈ĵ2
z 〉 with N

therefore demonstrates dynamical decoupling of the molecule. The decoupling is

primarily due to the repulsive solvent-solvent interactions because it occurs even

when the AMcW He-He potential, which contains both repulsive and attractive

branches, is replaced by a purely repulsive Gaussian barrier.

The dynamical decoupling of the solvent suggest the system might reasonably

be modeled as a one-dimensional TG gas confined to a ring and stirred by the

molecule; that is, we take the δ-function limit of the Gaussian barrier and drop

the term in ĵ2
z in Eq. (3.1) altogether. It is important to note that the latter step

is not an adiabatic approximation based on the different time scales of the solvent

and the bare CO molecule. Rather, it is motivated by the basis set calculations,

which demonstrate that the molecule decouples substantially even for the relatively

small values of N. The main reason for making this approximation is that it allows

the TDSE to be solved numerically for N particles, thereby allowing the particle

current to be computed. The resulting Hamiltonian is

ĤTG = − }2

2mR2
0

N∑
i=1

d2

dφ2
i

+
N∑
i<k

gδ(φi − φk) +
N∑
i=1

V (φi − ωeff t). (3.2)

Because the rotational kinetic energy operator for the molecule has been ne-

glected, θ may be replaced semi-classically by ωeff t where ωeff is the (variable)

angular frequency introduced earlier and t is time. This approximation has the
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justification that if the rotationally excited molecule is undergoing effective free

rotation then the 4He atoms will be subject to a time periodic perturbation. The

presence of the δ-function potential allows, in the TG gas limit when g → ∞,

the Bose-Fermi (BF) mapping [104, 105] to be applied. The relative insensitivity

of the results to the hardness of the Gaussian barrier is the reason that the sys-

tem can be modeled as a TG gas with no need to consider the more complicated

(to implement) Lieb-Liniger case [131]. For the ground state, the bosonic wave

function is given by

ΨB(φ1, φ2φ1, t) =
1√
N !
|det[ψl(φi, t)]|, (3.3)

where l, i = 1. . . N. The determinant is a Slater determinant constructed using N

orbitals, l = 0 . . . N - 1 [105], defined as solutions of the TDSE

i}
dψl(φ, t)

dt
= (− }2

2mR2
0

d2

dφ2
+ V (φ− ωt))ψl(φ, t). (3.4)

To compute the current density, the TDSE is integrated numerically with

the initial (t = 0) states being the N orbitals obtained by solving a form of the

Whittaker-Hill equation [137]

(− }2

2mR2
0

d2

dφ2
+ acosφ+ bcos2φ)ψl(φ) = Elψl(φ), (3.5)

where a = V1 (R0), b = 3V2 (R0/ 4) and an inessential additive constant has been

omitted. The orbitals may be solved for numerically using recurrence relations

[137, 138]. To demonstrate that the TG limit of the BOAR model is, in fact,

a reasonable approximation, we compare directly the BF-mapped Whittaker-Hill
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FIG. 3.3 (color online). Comparison of the actual 4He-atoms-on-a-ring wave
functions using the soft Gaussian barrier (left column) with the BF wave func-
tions (right column) corresponding to the TG gas in the presence of an impurity
molecule; N = 2 (top row) and N = 5 (bottom row). To allow a comparison θ

is set to 0. For N = 5, three of the five helium angles were fixed.

wave functions (at t = 0) and the accurate BOAR wave functions obtained from the

basis set calculations, with θ = ωeff , t = 0. Figure 3.3 presents sections through

BOAR (using the soft Gaussian barrier) and BF wave functions for N = 2 and N

= 5. For N = 2, the BOAR wave function is significantly more delocalized then

the BF wave function. At N = 5 the agreement is much better, although clearly

not perfect. These plots are evidence of the rapid decoupling of the molecule from

its environment with increasing N. They also justify taking the TG limit.

The TDSE in Eq. (3.4) corresponds to a TG gas confined to a ring and stirred

by a freely rotating molecule. Similar to Schenke et al. [133], who used a δ barrier

to stir a TG gas confined to a ring, we calculate the time- and space- averaged

current density, F, for a non adiabatic initial excitation of the molecule at t = 0.

The TDSE was integrated numerically (after scaling) using as initial states the
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orbitals obtained by solving Eq. (3.5) for the l = 0 . . . 6 orbitals corresponding to

N = 7. The TDSE was integrated using a method similar to that described in Ref

[139]. Results were checked using a fast Fourier transform, split-operator procedure

[140, 141]. We also computed the Floquet quasienergies using generalized Floquet

theory [142], and they, together with F, are shown in Fig. 3.4 as function of the

angular frequency ratio ωeff/ω0.

At integer values of the ratio ωeff/ω0 the Floquet states, starting at N = 4,

show avoided crossings similar to those discovered in Ref. [133]. These states

become coupled by the molecule that opens up gaps at integer values of ωeff/ω0.

This allows for the population of higher AM states and thereby current excitation.

The structure of the Floquet spectrum thus accounts for the peaks in the integrated

current density also shown in Fig. 3.4. It is significant that the avoided crossings

first appear when the molecule has significantly decoupled from its environment,

i.e., close to the onset of microscopic superfluidity. Away from integer values of

ωeff/ω0, the flux plot indicates that the TG gas is harder to stir. There also exists

a velocity threshold for current generation at ωeff/ω0 = 1, which is indicative of

superfluid behavior. However, unlike in Ref. [133], below this threshold, F is not

exactly zero, nor is it zero between subsequent peaks. Rather, the background

current increases and eventually saturates. This predicts that Beff will converge

to a nanodroplet limiting value lower than B0, which is consonant with both

experiment and previous quantum Monte Carlo studies [78, 100, 113]. That is,

the molecular impurity will experience a drag force even at 0 K. Similar behavior

at 0 K has been noted previously in a quasi-1D Bose-Einstein condensate [132].

In summary, the BOAR model show the decoupling of molecule can be traced

primarily to the interplay between the purely repulsive interactions between the

bosonic 4He atoms and the strength and symmetry of the molecule-solvent inter-

action. Solving the TDSE in the TG limit reveals a drag force at 0K together with

a threshold for stirring. Because the energy spectra for 1D hard-core bosons and
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FIG. 3.4 (color online). Floquet eigenvalues εα (where α labels the Floquet
mode [142]) as a function of the ratio ωeff/ω0. The insert shows the long-
time-averaged, spatially integrated flux, F, obtained by propagating the time
dependent BF mapped wave function numerically (shown also as a function of
ωeff/ω0). The flux and its averaging were done as described in the text an in

Ref. [133]

fermions are identical [104], any significant differences between purely repulsive-

doped 1D fermionic 3He and bosonic 4He atoms confined to a ring must arise

because of the differences in the decoupling mechanism (that is, if decoupling

occurs at all for 3He [2, 61, 62, 143]). For fermions (3He) the attractive part of the

He-He PES may play a role by providing a pairing mechanism [144].
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CHAPTER 4

MICROSCOPIC SUPERFLUIDITY OF HCN DOPED 4HE DROPLETS

4.1 Abstract

The phenomenon of superfluidity, and its closely related counterpart the Bose-

Einstein condensate, in 4He has been extensively studied since its discovery in

1955. However, comparatively fewer studies have been done on the phenomenon

of microscopic superfluidity which has been observed in as few as four 4He atoms.

Microscopic superfluidity is characterized by the initial increase of the effective

moment of inertia with increasing cluster size (N) and a subsequent decrease at

N = 4 for (4He atoms) or N = 6 for (p−H2). This non classical turnaround

in the effective moment of inertia is considered an indicator of molecule-solvent

decoupling. The physics behind this decoupling are largely unexplored. In this

article we describe the study of microscopic superfluidity in 4He-HCN clusters

using a new fixed-node diffusion Monte Carlo(FNDMC) method. In this approach

a genetic algorithm is coupled to the FNDMC method and used to elucidate the

nodal surfaces of the wave function on the fly and a reduced dimensionality model,

a one dimensional model in which the 4He atoms are confined to a ring (BOAR

model), is introduced to study the decoupling mechanism of the dopant molecule

and the boson solvent. Previous studies [121] on a similar system, 4He-CO, show

the system can be modeled as a stirred Tonks-Girardeau gas which then allows

for the N -particle time-dependent Schrödinger equation to be solved directly. The

data obtained suggests that the decoupling mechanism is primarily a factor of

bosonic solvent-solvent repulsion.

4.2 Introduction

The quantum solvation of molecular dopants in bosonic solvents is currently

of great interest [2, 4, 7, 146, 147]. Conventional wisdom states that a molecule

dissolved in a liquid will not rotate as freely, with a few notable exceptions [7, 148],
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as it might in a gas. However, numerous studies have observed coherent molecular

rotations over many periods in ultra cold droplets of 4He atoms [2, 4, 6, 7, 12,

44, 54, 146, 149–153]. The pioneering “Andronikashivilli-type” experiments in

this field [2, 54] studied SF6 and OCS molecules doped into 4He nanodroplets

[1, 6, 12]. These experiments observed sharp rotational features, characteristic of

free (gas-phase) molecular rotations, but with reduced (renormalized) rotational

constants; a trend that was observed across the board in molecules seeded into

4He nano-droplets [4, 146]. In fact, impurity molecules doped in both 4He or p-

H2 clusters, seem to decouple from their environment with increasing cluster size

[2, 4, 21, 61, 62, 112]; indicated in experimental studies by the observation of

sharp, free-molecule-like, rotational lines in the spectra [5, 25, 27, 55, 61, 62]. This

decoupling has been attributed to a new phenomenon, microscopic superfluidity.

The relationship between microscopic superfluidity and bulk superfluidity re-

mains largely unexplored. The onset of microscopic superfluidity is indicated by

a nonclassical turnaround and subsequent increase in the effective rotational con-

stant (Beff ) of the molecule (a decrease in the effective moment of inertia) as the

number (N) of solvent particles is increased [21, 25, 55, 103]. This indicates a de-

coupling of the helium density from the rotational motion of the dopant molecule.

Often discussion of microscopic superfluity will adopt the language of the two-

fluid theory of Tisza and Landau [55–59], in which the helium or para-H2 density

surrounding the dopant molecule will consist of a normal fluid and a superfluid

fraction. Path integral Monte Carlo (PIMC) studies of small CO doped para-H2

droplets have observed microscopic superfluidity in clusters containing as few as

6 para-H2 molecules, with both the superfluid and the normal fraction coexisting

[25]. The PIMC calculations found the at the superfluid fraction declined from

roughly 95% at N = 1 to approximately 82% at N = 6, followed by an increase to

essentially 100% for N>10, which is congruent with experimental results. How-

ever, since PIMC simulates the properties of a superfluid by projecting the system
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in question onto a classical analogy [62], it is difficult to get an understanding of

the actual quantum behavior. It is very difficult, for example, to conceptualize

how there could exist a normal and a superfluid fraction for a N = 1 cluster [55].

The goal of the study is to gain insight into the physics that result in micro-

scopic superfluidity. There is no standard definition on microscopic superfluidity

[131] and the mechanisms that lead to the decoupling have been studied only once

before [121].

4.3 Genetic algorithm

Genetic algorithms are a subset of evolutionary algorithms that model biologi-

cal processes to optimize highly complex functions [98]. The method was developed

by John Holland and popularized by his student David Goldbergm who was able

to solve a difficult problem involving the control of gas pipeline transmission for

his dissertation [154]. The key idea of employing the GA in this project is to have

it hone in on the nodal hypersurfaces of the 4He-HCN excited states during the

DMC calculation itself. Genetic algorithms are an efficient and accurate method

of finding extrema in high-dimension spaces. The GA begins by creating a popu-

lation of candidate solutions (individuals) that are then evaluated against a user

defined fitness function. Each individual is a representation of a guess at a possi-

ble solution to the problem. The initial population is evaluated against the fitness

function. The individuals that perform the best against the fitness function are

then allowed to interbreed and mutate. The algorithm terminates after a specific,

user specified, number of generations have been propagated. If a satisfactory solu-

tion has not been attained, the last generation may be used as the starting point

for the evolution of future generations.

The two most important factors in setting up the GA are (i) encoding a repre-

sentation of a potential solution and, (ii) defining a fitness function against which
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to toes the individuals [155]. Therefore, in order to use the GA for nodal optimiza-

tion we need: (i) a parameterization of the nodal surface to be available and also

able to be progressively optimized by the GA and (ii) a set of optimization criteria.

This allows for the population (possible solutions) to evolve to an optimal solution

as governed by the user defined fitness function. In general, the nodal function

may be parameterized as Ψ =
∑

n cnφn where cn are expansion coefficients and φn

are a set of basis functions similar to those employed in variational calculations.

The GA refines cn using the defined optimization procedures. Since several differ-

ent excited states can be represented by the same basis vectors, but with different

expansion coefficients, multiple maxima may exist in the fitness function. In order

to narrow down to a specific state two approaches are possible: (i) modify the

fitness function so that only states within a given energy range are found and (ii)

bias the cn to target the state of interest.

In previous studies [64, 100], the optimization criteria required: (i) that the

separate DMC calculations inside each pocket result in identical “pocket energies”

if the node is exact and (ii) the directional flux histogram, obtained by binning the

walkers before and after they cross the node, be identical. This paper improves

on this procedure by using non-directional histograms in the optimization criteria

instead of directional flux histograms.

4.4 On the fly computation of nodal hypersurfaces

The diffusion Monte Carlo (DMC) method is a fairly straightforward and accu-

rate way of determining the ground state energies of quantum systems. Excellent

reviews of the DMC algorithm and its implementation are available [70, 93]. Al-

though the DMC method is numerically exact for the ground state, it is not so

for excited states or fermions. Fixed node diffusion Monte Carlo (FNDMC) is one

approach at adapting the DMC algorithm to calculations of excited and fermionic

states. In the FNDMC method any walkers that cross a predetermined nodal
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surface are eliminated. The accuracy of the results obtained using this method

depend of the accuracy of the nodal topography of the trial wave function used to

guide the calculations. In this respect the FNDMC algorithm is somewhat para-

doxical in nature; to be able to perform excited state calculation of an unknown

wave function one must have prior knowledge of the nodal topology of this un-

known wave function. While symmetry and other approximations may be used to

estimate the topology of the node, there has not been until very recently [121], a

systematic method of determining nodal hypersurfaces. Past studies within this

group [101, 121, 156] have begun the development, implementation and testing of

a new approach that allows for the systematic computation of nodal hypersurfaces

on the fly within DMC calculations.

On the fly computation of the the nodal hypersurfaces of the 4He-HCN wave

functions are done using a genetic algorithm (GA). This new algorithm improves

on the optimization criteria proposed by Lüchow and co-workers [90, 102]. The

criteria is based on the hypothesis that if the true wave function is governed

by ĤΨ = (T̂ + V )Ψ = EΨ where T̂ is the kinetic energy operator, then the

functions ΨT , T̂ΨT and ĤΨT will have the same nodal hypersurface if the the trial

wave function ΨT is exact. Therefore, one should be able to optimize the nodal

hypersurface of the trial wave function by minimizing the differences between ΨT ,

T̂ΨT and ĤΨT . There are, however, a number of problems with this approach:

(i) to derive explicit expressions for the distances between the nodal hypersurfaces

the surfaces must be close to each other and locally parallel, (ii) while ΨT and

T̂ΨT will have nodes in common when ΨT is an eigenfunction, it is possible for

T̂ΨT to have additional nodes, and (iii) it possible for functions to exist that are

not eigenfunctions but are such that ĤΨT and ΨT have nearly identical nodes. To

by pass these problems we developed a new algorithm that searches for the nodal

topology of a wave function within the DMC calculations. It is as follows:
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1. A genetic algorithm (GA) generates a random population of trial wave func-

tions based on a user defined parameterization of the node.

2. For every ΨT a new function ΞT = ĤΨT is formed.

3. Two DMC calculations, corresponding to regions where ΨT > 0 and ΨT <

0, are performed, yielding two pocket energies E+
Ψ and E−Ψ.

4. Step 3 is then repeated with ΞT in place of ΨT , yielding two energies E+
Ξ and

E−Ξ

5. Flux histogram are accumulated throughout the DMC calculations as walk-

ers cross the nodal surfaces of ΨT and ΞT independent of direction.

6. If ΨT is an exact eigenfunction then all the pocket energies and the his-

tograms will be identical. The goal of the GA is to iterate to a ΨT that

fulfills this criterion.

The fitness function is also user defined. In this case it requires that: (i) near

equality of pocket energies with small standard deviations, (ii) minimizing the

standard deviation between the energies E+
Ψ, E−Ψ, E+

Ξ and E−Ξ , and (iii) minimizing

the differences between the flux histograms.

4.5 Epochal GA-DMC

In practice, an epochal GA-DMC procedure was used during the nodal opti-

mization process. The procedure was as follows:

1. The first epoch uses a relatively small number of walkers and a large time step

during the DMC calculations. A given number of generations are evolved,

usually several hundred. In general, the specific values of walkers, time

step and generations are determined by the problem at hand through initial

experimentations.
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2. At the end of the first epoch the individuals with the highest fitness are

examined. Usually, the high fitness functions will cluster around one or more

excited states. The approximate value of the energy of interest is estimated

and a new fitness function is defined which is biased against those states

outside of the energy range of interest. This is done using an energy cutoff

outside of which the fitness function is set to zero.

3. A second epoch GA run is then performed. This time the number of walkers

used in the DMC calculations are increased and the time step is decreased.

4. The process is repeated for a number of epochs until satisfactory convergence

and standard errors are attained. The number of generations evolved for the

later epochs is reduced to decrease the overall computer time.

5. Convergence is achieved when the energies have converged as a function of

fitness. This is done by defining a fitness cut off, fcut; only individuals with

fitness greater than fcut, f > fcut, are included in computing the average

DMC energy. The calculation is considered converged once the energies are

stabilized as a function of varying fcut.

4.6 Computer methodology: fine grained parallel genetic algorithm

The GA method involves two basic procedures: (i) evaluating the fitness func-

tion and (ii) applying the genetic operators to each generation after calculation of

the fitness function. The most computationally demanding step is evaluation of

the fitness function. 99% of the computer time, in fact, is consumed in computing

the fitness function. To increase efficiency, each GA individual is farmed out to a

separate cpu core while a master cpu takes care of the GA related functions. It is

natural then to send one individual to each available thread. In this study, 5×4-

core HP 3130 Linux machines capable of hyper threading (two thread per core)

were used. This approach is known as fine graining. Each of the DMC calculations
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done for each individual guess at the node, if done on identical processors, are quite

similar in speed. This makes parallelization computationally efficient with little

idle time for any given cpu core. Maximal efficiency in the calculations is attained

by choosing a population size that is the same as the number of available core (or

possibly threads).

4.7 Reduced dimensionality models

It has been demonstrated that the physics of microscopic superfluidity in

bosonic solvents is quite similar to that of a stirred Tonks-Girardeau (TG) gas

with the barrier replaced by a rotating impurity molecule [121]. A TG gas is a

one dimensional gas of impenetrable bosons constrained to a ring of finite cir-

cumference. Theoretical studies have shown that the TG gas displays a critical

velocity below which the system is hard to stir [104–106] which is a characteristic

of a superfluid. This similarity enables us to do two things: (i) construct reduced-

dimensionality models of the 4He-HCN system with the the 4He atoms confined

to a ring (bosons-on-a-ring model (BOAR)) [121] to use in our calculations and,

(ii) to model the system as a stirred TG gas, which allows us to be able to solve

for the N-body-time-dependent Schrödinger equations numerically when calculat-

ing the particle current density. The particle current is calculated to determine

whether there is any superfluid behavior. The one dimensional model enables us

to perform accurate quantum basis set calculations for N ≤ 5.

The BOAR Hamiltonian is given by

Ĥ =
ĵ2
z

2IHCN
+

N∑
i=1

[
l̂2iz

2mR2
0

+ v(ψi − θ)] +
N∑
ik

U(ψi − ψk) (4.1)

where IHCN is the moment of inertia of the HCN molecule and ĵz is the molecular

rotational angular momentum (AM) operator. The moment of inertia I0 is defined

as I0 = mR2
0 and given by the quantity

}2

2mR2
0

∼ 0.19 cm−1; l̂iz is the orbital AM
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operator for the ith 4He atom (mass m), and φi and θ are the azimuthal angles

of the HCN molecule and the ith 4He atom [121]. V(φi − θ) is the atom-molecule

potential energy surface (PES) and U(φi − θk) is the He-He PES. The gas phase

rotational constant for HCN is B0 = 1.47822 cm−1. The masses of HCN and He

are 27.011 amu and 4.00260 amu respectively. All the DMC calculations were

perfumed using the rigid-body approximation.

4.8 Potential energy surface (PES)

Three different He-He PES were used: (i) the He-He PES of Aziz, McCourt and

Wong (AMcW) [135], (ii)a purely repulsive Gaussian barrier, given by U g
He−He(φij) =

g0e
−αφ2ij , where φij is the angle between the ith and jth 4He atoms, and (iii) a

δ-function potential similar to that of the TG gas. The Gaussian barrier lies some-

where between the AMcW PES and the TG limit; a soft barrier will be closer to

the actual van der Waals radius of the 4He atoms, whereas a hard barrier is closer

to the TG limit of a δ-function with strength going to infinity [131]. The Gaussian

barrier also has the advantage of simplifying the calculation of matrix elements

compared to the AMcW PES. In order to simplify the Hamiltonian of the sys-

tem further, only the first three dominant terms of the 4He-HCN PES expansion

in Legendre polynomials is retained, i.e., V (R,Θ) =
∑n=2

n=0 Vn(R0)Pn(cosθ) where

Θ = φi − θ.

4.9 Results and conclusions

Figure 4.1 shows data from simulations using BOAR models (main panel) and

BOAS(insert). Beff is defined as half of the energy difference between the ground

state and the lowest excited a-type state [21, 100]. All computations were done

using fixed-node diffusion Monte Carlo (FN-DMC) coupled to a genetic algorithm

(GA)[100, 156], and using the AMcW PES, and a soft, intermediate and hard

Gaussian barrier on the BOAR and BOAS model. The BOAS Hamiltonian is

closer to the full problem Hamiltonian than the BOAR; it better depicts the 4He
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FIG. 4.1 (color online). Energy splittings (2Beff ) for a-type, J = 1-0 rotational
transitions as a function of the number of 4He atoms (N). The main panel
shows data from the BOARs simulations. The results show data gathered using:
AMcW PES (green a steric); three different forms of the Gaussian barrier:
g0 = 100cm−1, α = 40rad−1 (soft barrier, orange triangles); g0 = 100cm−1, α =
500rad−1 (medium barrier, purple open squares); g0 = 500cm−1, α = 750rad−1

(hard barrier, blue circles); , with the error bars. The lower inset show data
from the BOAS simulations. Both the AMcW PES and the Gaussian barrier
capture the trend of the effective rotational constant (Beff ) with increasing
helium atoms (N), i.e, a gradual decrease in Beff , then a subsequent turn

around at N = 3.

density distribution in three dimensions. The BOAS results were done to illustrate

how well the reduced dimensionality models captured the physics of the system.

All data was compared to those obtained experimentally. Both models capture the

initial decrease of Beff with a turnaround at N = 3. The trend is observed even

when the AMcW potential is replaced by the purely repulsive Gaussian barrier,

which leads us to conclude that the decoupling mechanism is primarily due to the
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repulsive solvent-solvent interactions. This result agrees with that of an earlier

study on 4He-CO microscopic superfluidity [121].
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CHAPTER 5

RENORMALIZATION OF THE ROTATIONAL CONSTANTS OF NH3

SEEDED IN SMALL 4HE CLUSTERS

5.1 Abstract

The solvation dynamics of NH3 molecule seeded into a droplet of 4He con-

taining N = 1- 25 4He atoms are studied using diffusion Monte Carlo method for

ground state calculations and fixed node diffusion Monte Carlo method for ex-

cited state calculations. The investigation centers around the |0011〉 states using

anisotropic nodes. The accurate rotational constants (B0 = 9.945 cm−1, C0 =

6.229 cm−1 ) and “fudged” versions of the rotational constants (Bfudged = 0.9945

cm−1, Cfudged = 0.6229 cm−1) are used. Neither the accurate or fudged rotational

constant of this state exhibited the turn around behavior, i.e. initial decrease than

a subsequent increase with increasing number of 4He atoms, that is characteristic

of the onset of microscopic superfluidity. The reduction in B0 calculated using

the accurate rotational constants for the ammonia molecule for the |0011〉 state,

about 34% , is much higher than expected and requires further investigation. The

fudged rotational constants are in an indeterminate range between the light and

heavy rotors. The fudged rotational constants experience slightly smaller renor-

malization than the accurate rotational constants. This may be attributed to the

importance of molecular anisotropy versus the size of the rotational constants in

molecules whose rotational constants fall in an intermediate regime.

5.2 Introduction

Helium is a singularly unique substance with special properties. It has no

triple point and was the first material observed to exist as a liquid at arbitrarily

close to absolute zero [6, 57, 157, 158]. Although the study of helium has a

long history, going as far back as 1908, a new phase in the study of helium was

triggered by the creation of technology that allowed helium nanodroplets to be used
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for cluster isolation spectroscopy and microscopic Andronikashvili experiments. In

this early Andronikashvili-type experiments, with OCS and SF6 dopant molecules,

sharp rotational features, characteristic of free (gas-phase) molecular rotation,

were observed but with reduced (renormalized) rotational constants. SF6, for

example, had a renormalized constant that was
1

3
of its gas phase value. This

behavior, to varying degrees, seemed to be the norm for molecules doped into 4He

droplets. The rotational resolved spectra were however not observed in fermionic

3He clusters. These findings were taken to imply that free rotation of the dopant

molecule is a consequence of the superfluidity of the bosonic 4He clusters [2].

Several studies have been done with the goal of understanding how the prop-

erties of a system affect the renormalization constants. Generally, light rotors, for

example HF, H2O and NH3, experience smaller renormalization. This is largely

due to the fact that light rotors have large rotational constants which in effect

leads them to average the interaction potential so that the rotor appears to the

4He atoms as if the potential were spatially isotropic. In isotropic potentials the

angular momentum quantum numbers for the molecule and the atom are conserved

separately; in the case of light rotors (since the potential is not exactly isotropic),

the angular momentum of the molecule and atom are not conserved separately but

the angular momentum transfer between the dopant molecule and the 4He atoms is

relatively ineffective. In contrast, for heavy rotors a fraction of the helium density

is able to follow the rotor adiabatically which results in the large renormalization.

This generalized trend has been shown as an effective model by several studies

[111, 112, 115].

The extent of renormalization can be expressed as ∆ =
B

B0

, where B0 is the

free molecule rotational constant and B is the renormalized constant observed in

the 4He droplet [115]. There have been deviations to the trends stated above.

For example, in a computational study of HF, HCl and HBr in 4He nanodroplets

the renormalization observed for HF was larger than that calculated for HBr and
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HCl despite the fact that of the three molecules HF has the largest gas-phase

rotational constant. The values ∆ for HF, HCl and HBr were 0.98, 1, 1 respectively.

The greater renormalization of the HF molecule was attributed to the slightly

stronger anisotropic He-HF intermolecular potential. The effect of the molecular

anisotropy in this series of molecules, HX, though present seems to be relatively

weak in comparison to the renormalization induced by the size of the rotational

constants. The effects of anisotropy were observed as weak in a path integral

Monte Carlo (PIMC) simulation of the rotational dynamics of CH4 using the true

rotational constant of the molecule B0 = 5.1 cm−1 and a “fudged” version Bf

= 0.105 cm−1. Altering the rotational constants makes it possible to sort the

kinetic versus the potential anisotropic factors in the behavior of the molecule. Bf

exhibits a greater anisotropic potential than B0. B0, on the other hand, appears to

be essentially isotropic due to orientational averaging. For B0 the CH4 molecule is

almost completely decoupled from the 4He droplet. The results for Bf are similar

to those of SF6 (B0 = 0.091cm−1). This shows that in light rotors renormalization

is not directly the result of adiabatic following. However, it is important to note

that other studies [159] have reached conclusions that directly contradict this,

i.e. that the molecular anisotropy is in fact more important than the size of the

rotational constants and not vice versa.

The extent of renormalization of the rotational constants is also determined

by the rate at which the cluster attains its saturated value (nanodroplet limit) as a

function of the number of helium atoms. Saturation has been shown to occur with

as few as N = 8 4He atoms [112]. The rapid onset of saturation has been attributed

to the phenomenon of adiabatic following. In adiabatic following the 4He atoms

respond almost instantaneously to the motion of the doped molecule. This means

that the doped molecule in essence carries a “coating” of the 4He density along with

it. The interaction of the “molecule + coating” experiences a much more isotropic

interaction than the rest of the solvent as the number of 4He atoms increased. Once
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the coating is completed, saturation occurs quickly as a function of the number

of helium atoms (N). Light rotors, i.e., rotors with large rotational constants,

have very little adiabatic following. We instead consider the hypothetical limit in

which the potential is isotropic, known as the isotropic binary complex (IBC), in

which there is no possibility of angular momentum exchange between the molecule

and solvent atoms and so the nanodroplet should, theoretically, be arrived at

immediately. This suggests that light rotors acheive saturation relatively quickly

due to fast orientational averaging of the potential.

While fast saturation has been observed in previous computational studies for

several light rotors: HF, HCl and HBr [113] and CH4 [114] for example, ambiguous

results and even results that contradict the expected behavior of light rotors as it

pertains to saturation have also been observed. HCN, for example, which is a light

rotor exhibited three different rates of saturation under three different studies. In

projection operation calculations [76], HCN had a relatively slow approach to the

nanodroplet limit, i.e. requiring the participation of 4He atoms outside the first

solvation shell. However, in repatation Monte Carlo calculations [159] and adia-

batic node DMC (ANDMC) calculations [113] the saturation occurred relatively

quickly, i.e., within the first solvation shell. The unexpected results observed in

Ref. [76] was explained in a later study as being the result of coupling of the

HCN rotation to the collective excitations of the 4He atoms [160]. This results

were then later contradicted by another study by Moroni and Baroni [161] who

had found that the nanodroplet limit was in fact reached within the first solvation

shell. Similar discrepancies between the theorized results and actual results have

been observed in a study of the 4HeN -CO system [25]. The experimental study

found the effective rotational constant of the CO molecule to be ∼ 0.74% of its

gas-phase value when N = 14 (i.e., ∆ = 0.74) (in excellent agreement with results

obtained from computational simulations [162]) but a smaller renormalization con-

stant than the ∆ = 0.63 inferred from the nanodroplet experiments [25, 163]. CO
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(B0 = 1.923 cm−1) is expected to behave in a similar fashion to HCN (B0 = 1.478

cm−1) which has a ∆ = 0.80 at the nanodroplet limit. However, as pointed out by

Raston et al. [25], the experimental nanodroplet value of the rotational constant

(B) is much more accurately known for HCN than for CO; therefore, the observed

discrepancy in the HCN results may be due to the value of B used and not the

behavior of the molecule.

While the above results give an ambiguous overall picture for light rotors, it

should be noted that the rotational constants of the two molecules studied, HCN

and CO, are not exceptionally large when compared to those of HF, HCl, HBr,

H2O, NH3 and CH4. It is possible then that anisotropy is only important in an

intermediate regime of rotational constants, one in which the molecular anisotropy

competes with size of the rotational constants in determining the behavior of the

molecule.

Recent experimental studies have employed the angular momentum of the

bosonic solvent in their study of the renormalization of the rotational constants

of different molecules seeded into 4He droplets. To determine the accuracy of the

results they obtained and gain further insight into the mechanism that leads to

renormalization of rotational constants, we conducted fixed node diffusion Monte

Carlo (FNDMC) calculations on the ammonia molecule doped into 4He droplets.

NH3 is a light rotor (B0 = 9.9455 cm−1 and C0 = 6.229 cm−1) and has a poten-

tial that is not strongly anisotropic. A brief overview on the methodology and

discussion on the results is presented below.

5.3 Hamiltonian

Three Euler angles, (α, β, γ), define the orientation of the NH3 molecule (mass

M) and two more, (θi, φi), specify the angular location of the ith 4He atom in

the space fixed frame, neglecting three body effects. The distance of the ith 4He

atom from the center of mass of NH3 is Ri. If the NH3 molecule is rigid then the



75

potential energy surface (PES) is V(Ri,Θil,Φil), where Θil and Φil are spherical

polar angles in an axis system that coincides with the principal axes of the NH3

molecule, denoted in this paper as “I”. The polar angles relate the R-vector of

the ith 4He atom to the axis system. The He-NH3 potential used was outlined

by Hodges and Whitley [164] while the PES of the He-He interaction is that of

Aziz and Slaman [135, 165]. In the potential from Hodges and Wheatley the N

atom of the NH3 atom is used as the origin, rather than the center of mass of the

NH3 molecule which must be accounted for in the calculations. The mass of NH3

and 4He used were 17.0305 a.u. and 4.00260 a.u. respectively, and the gas phase

rotational constants of NH3 used were B0 = 9.945 cm−1 and C0 = 6.229 cm−1.

The umbrella angle of the NH3 molecule was fixed at 112.14◦. In the space fixed

frame the Hamiltonian is given as:

H =
−}2

2M
δ2
i −

}2

2m
+Hl +

N∑
i<j

V He
He (rij) +

N∑
i=1

V (RI ,Θil,Ψil), (5.1)

where

HI = B0j
2 + (C0 −B0)j2

z , (5.2)

and j is the angular momentum vector of the molecule.

5.3.1 Nodal functions

It is important to study carefully the nodal structures of the excited rotational

states since knowledge of these states are crucial in fixed-node DMC calculations.

Furthermore, the conflicting experimental results obtained for this complex in

regards to the extent of renormalization also dictates that a thorough investigation

of nodal hypersurfaces is done. Given the relatively large rotational gas phase

constants of NH3 it would seem reasonable that using a “isotropic-node” (a nodal
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function appropriate to the IBC) would be sufficient. However, the experimental

results [33] imply significant state mixing and, therefore, a potentially significant

distortion of the nodal topologies in the excited states. The calculations in this

study were therefore done using isotropic nodal functions as well as adiabatic nodal

functions.

5.3.1.1 Isotropic nodal functions

The potential in these 4He-NH3 complex nodal functions are assumed to be

isotropic. The interaction potential, for a single 4He atoms, can therefore be

expanded in terms of renormalized spherical harmonics Cnm(Θ,Ψ) [166]:

V (R,Θ,Ψ) =
∑
nm

VnmCnm(Θ,Ψ) (5.3)

Vnm ( R ) are known as radial strength functions. If only the strength function

with n = m = 0 is retained then the IBC is obtained. In the space-fixed frame,

after separation of the center of mass, the eigenfunctions of the IBC have the form

ΦJM
σ = XJσ

jkL(R)Y ml
L (θ, ψ)ψjmj ,k(α, β, γ) (5.4)

where Yml
L is a spherical harmonic and L, ml are the angular momentum quantum

numbers of the complex, i.e.,. the end-over-end angular quantum numbers; φjmj ,k

is a normalized rotation matrix and j,mj,k are the usual symmetric top quantum

numbers of the monomer, i.e., the quantum numbers of the free NH3 molecule in

the space-fixed frame [94, 166–168]; J, M are the quantum number corresponding

to the total angular momentum numbers of the complex; the Euler angles, α, β, γ,

specify the orientation of the monomer in the space-fixed frame while the angles,

θ, ψ, specify the orientation of the vector from the center of mass of the monomer

to the 4He atom in the space fixed frame.
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The angular nodal function of the IBC correspond to the angular part of Eq.

(5.4). They are, in general, the nodes of a product of spherical harmonic and a

rotation matrix and so are availably analytically. The wave function of more than

a single 4He atom, in the isotropic limit, are a generalization of those for the IBC

and the nodes are easily computed.

The degree of similarity of the nodes of the actual anisotropic complex to

the of the IBC depends on the degree of anisotropy of the potential as reflected

in the higher order radial strength functions. In the case of HCN dopants, for

example, using IBC nodes in fixed-node DMC calculations produces very poor

results [76, 101, 113]. Therefore, it is important that we also consider a study of

the 4He-NH3 nodal structure using a method that relies on an adiabatic separation

of the radial and angular motions [101, 111, 113].

5.3.1.2 Adiabatic nodal functions

The adiabatic node DMC (ANDMC) procedure is based of that of Holmgren

et al. [155], in which an adiabatic, i.e., Born-Oppenheimer-like, angular-radial

separation (BOARS) is made in the molecule fixed frame. The radial degree of

freedom is frozen at some value R = R0 and the angular portion of the resulting

Schrödinger equation is then solved. This procedure is then repeated for different

values of R0 which generates families of adiabatic radial potentials. The adiabatic

potentials are then used to solve for the radial wave functions. This method

generates a good estimate of the nodal surfaces for small helium clusters and is

also computationally quite efficient because the angular matrix elements can be

computed analytically or semi-analytically [169, 170].

The adiabatic Hamiltonian for N = 1 in a center of mass coordinate system of

the dimer is as follows:

Hadiabatic = Hl + kl2 + V (R0,Θ,Ψ) (5.5)
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where k =
1

2µR2
0

, l is the orbital angular moment of the complex and µ is the

reduced mass. Diagonalization of Hadiabatic at fixed J and N produces estimates

for the nodes. The basis function used have the same form as in Eq. (5.4) but

with R frozen at R = R0.

The solutions for Eq. (5.5) for a series of R0 values yield a set of effective

potentials which are then used to solve for the radial function τ ( R ) and eigen-

values. The value of R0 used to calculate the nodal topology of the angular wave

function was calculated as the expectation value of R for the appropriate radial

eigenfunction in the BOARS procedure. This procedure yields R0 = 9.1 a.u.

The ground and excited (J = 1) states were computed using nodal functions for

the hypothetical isotropic complex, adiabatic nodal functions and coupled channel

calculations obtained using the program BOUND [171]. The results are shown in

Table 5.1 and Table 5.2

5.4 Importance sampling

In importance sampling a trial wave function, ΨT , is used to guide the DMC

walkers. Utilizing importance sampling in DMC calculations has a number of

advantages: (i) it increases the precision of the computed energies, (ii) it mproves

the efficiency of the method, and (iii) it prevents dissociation for clusters containing

large numbers of 4He atoms [70]. Use of the guiding trial wave function results

in a diffusion-like equation for the mixed function f(R, ri) where R and ri are the

molecular and 4He atom coordinates respectively. Quantum forces, additional drift

terms, are employed to guide the walkers during the diffusive process to regions

of high probability density [72]. The trial wave functions were chosen to have the

form:

ΨT = {ΠN
i=1f(Ri)Π

N
i 6=jΞ(rij)}Υ(Ω, θi, ψi), (5.6)
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where Ω denotes the Euler angles and θi, ψi are spherical polar angles of the ith

4He atoms referred to in space fixed axes. The radial functions were chosen to

have the form [76, 112, 113, 116]:

f(R) = be(− c
R5−aR), (5.7)

where the parameters a, b, c were obtained by fitting the function f (R) to adiabatic

nodal functions. Υ is set to unity for ground state calculations; it contains the

nodal topology for the excited state wave functions. Ξ(rij), the 4He-4He portion

of the trial wave function, is used in previous studies [111].

5.5 Recrossing correction

FNDMC calculations use a finite-sized time step. Due to this there is the

possibility that a walker crosses and recrosses the nodal surface within a single

time step which results in artificially lowered excited state energies. To avoid this,

the walkers that recross a node are eliminated using a recrossing correction [172].

In this study, a modified version of the recrossing correction outlined by Petite

and McCoy [172] is used; Eqs. (10) - (12) from Petite and McCoy are used but

with the intramolecular vibrations of the rotor frozen. The general expression for

the probability that a walker should be removed from the simulation because it

has crossed and recrossed a particular node during the time step from τ to τ + δτ

is

Precross = e[−
meff d(τ)d(τ+δτ)

δτ
] (5.8)

where meff is the effective mass associated with the nodal coordinate and d(τ) is

the distance from the nodal surface at imaginary time τ [67]. The Euler angles

{θ, χ, φ}, for a rigid body, transform a set of space axes, whose origin is fixed

at the center of mass, into the chosen body-fixed axis system. Since the nodal
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surfaces are defined here as θ = θnode or χ = χnode, the distances in Eq. (5.8) will

be d(τ) = θ(τ) − θnode or d(τ) = χ(τ) − χnode, where the angles are all measured

in radians. For symmetric rotors, meff for a node in θ is defined as:

meff,θ = [
IAA(τ) + IBB(τ)

2
][
IAA(τ + δτ) + IBB(τ + δτ)

2
] (5.9)

while for a node in χ, meff is defined as:

meff = ICC(τ)ICC(τ + δτ) (5.10)

5.6 Computational details

The calculations were done using 10,000 walkers with continuous weighting.

The time step value, ∆τ , was selected to be 20 a.u. for the ground state calcu-

lations and 5 a.u for excited state calculations. A total run of 350,000 steps was

done to ensure convergence.

5.7 Results

This study focused mainly on the behavior of the |0011〉 excited state. In this

labeling scheme |jklJ〉, j is the orbital angular momentum of the molecule; k is

the orbital angular momentum of the complex; l is the orbital angular momentum

of the 4He atoms and J is the total angular momentum. For the |0011〉 state the

rotational constants of note are the orbital angular momentum of the 4He atoms.

The effective rotational constant of the state were computed at each cluster size,

by comparing the difference between the ground and the excited state energy of the

|0011〉 state using the accurate rotational constants- see Table 5.1- and the fudged

rotational constants shown in Table 5.2 to the corresponding expressions for a

pure symmetric top. The equations used to solve for the renormalized rotational
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constants B and C are

EJK = J(J + 1)
}2

2Ib
+K2}2(

1

2IA
− 1

2Ib
) (5.11)

and

Be =
h

4π2Iec
(5.12)

where J and K are angular momentum operators. The inertia components satisfy

IaIb = Ic and Be is the rotational constant.

The rotational constant Be obtained using the accurate rotational constants

(B0 = 9.945 cm−1, C0 = 6.229 cm−1 ) and using the “fudged” versions of the

rotational constants (Bfudged = 0.9945 cm−1, Cfudged = 0.6229 cm−1) are shown in

Fig 5.1 for the state |0011〉. The fudged rotational constants were in an indeter-

minate range between the light and heavy rotors. While both show a reduction

in the renormalization constants the simulations done with the fudged rotational

constants experienced a slightly smaller reduction than those done using the accu-

rate rotational constants. This may be attributed to the importance of molecular

anisotropy versus the size of the rotational constants in molecules whose rotational

constants fall in an intermediate regime. It is possible that, in this intermediate

regime of the fudged rotational constants of the NH3 molecule studied, the effects

of the molecular anisotropy govern the extent of renormalization much more than

the size of the bare gas rotational constant. The 4He-NH3 intramolecular poten-

tial energy is dominated by the isotropic radial strength function V00[115]. Thus

the weak anisotropy of the He-NH3 intermolecular potential results in a small re-

duction of the gas phase rotational constant B0. This confirms an earlier theory

suggested by Suárez et al. [115] that in intermediately sized rotational constants

there exists a complex interplay between the effect of the size of the gas-phase
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FIG. 5.1 (color online). Renormalized rotational constants (RC) for NH3 as
a function of the number, N, of 4He atoms. The filled red squares show the
B rotational constant obtained using the accurate rotational constants (B0 =
9.945 cm−1, C0 = 6.229 cm−1 ) and the filled blue circles are the B rotational
constants found using the “fudged” versions of the rotational constants (Bfudged

= 0.9945 cm−1, Cfudged = 0.6229 cm−1). These results were obtained using the
IBC nodes corresponding to the |0011〉 state.

rotational constant of the molecule and the anisotropic contributions to the atom-

molecule potential energy that makes it very hard to predict the extent or the

rate of renormalization based solely on the knowledge of the size of the gas-phase

rotational constants and the degree of anisotropy of the potential.

The reduction in B0 calculated using the accurate rotational constants for the

ammonia molecule for the |0011〉 state, about 34% achieved for N∼ 15-20, was

much higher than that found by Slipchenko and Vilesov [35], Suárez et al. [115],

a 3% reduction of B0 and even the controversial finding by Behrens et al. [33]

of a reduction of ∼ 25%. This discrepancy might be due to the state used for



83

the simulations, i.e., the fact that the calculations for the B0 was based off of the

excited state energies calculated for the |0011〉 state. This, to our knowledge, is the

first time that simulations of the 4He-NH3 complex have been done primarily using

the 4He angular momentum. The results also show that the rate of renormalization

as a function of N was relatively fast. The nanodroplet limit was attained within

the first salvation shell. It should be noted that while saturation occurs within the

first solvation shell, the rate of convergence to the nanodroplet limit within that

shell is slower for light rotors than for heavy rotors. This slower rate of saturation,

comparative to the molecules with smaller rotational constants, was also noted

by Suárez et al. [115]. Light rotors have large rotational constants which in turn

means that they have more rotational energy in the system for any given value of

J. Therefore, depending on the degree of molecule anisotropy, a larger number of

solvent atoms might be needed to equilibrate this angular momentum and reach

saturation.

The main conclusion of this study is that the “rule-of-thumb” theories that are

used to predict the extent or the rate of renormalization for light or heavy rotors

are not applicable to those rotors that fall in the intermediate regime. A new set

of rules needs to be developed for these rotors. Also, while the results on the rate

of renormalization were in agreement with previous studies [111, 113, 115], the

data obtained for the renormalization of the rotational constants are far off from

the expected values. Thus further investigations needs to be done to determine

the root cause of this discrepancy.
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Table 5.1 Ground and selected J = 1 excited state energies and standard errors
for the 4HeN -NH3 clusters considered for N = 1, 20. The rotational constants
used are B0 = 9.945 cm−1, C0 = 6.229 cm−1. Energies are from the DMC

computations.

He E0000(cm−1) E0011(cm−1) ∆Energy (cm−1)
1 -5.294941 ± 0.0032454 -4.704268 ± 0.00201131 0.590680 ± 0.00203732
2 -10.816842 ± 0.0054568 -9.907839 ± 0.00322129 0.909010 ± 0.00633669
3 -16.572129 ± 0.0125475 -15.434471 ± 0.00723680 1.137658 ± 0.01448455
4 -22.477943 ± 0.0165846 -21.084647 ± 0.01025689 1.393295 ± 0.01950007
5 -28.539917 ± 0.0153859 -26.941385 ± 0.01271693 1.598527 ± 0.01996118
6 -34.772809 ± 0.0164827 -32.830224 ± 0.01435483 1.942585 ± 0.02185727
7 -40.943716 ± 0.0177730 -38.413471 ± 0.01448251 2.530245 ± 0.02292564
8 -47.204731 ± 0.0364123 -44.160130 ± 0.02056581 3.044600 ± 0.04181875
9 -53.317812 ±0.0430032 -49.746168 ± 0.03714673 3.571644 ± 0.05682565
10 -59.216946 ± 0.0654167 -54.973646 ± 0.05498657 4.243294 ± 0.08545670
11 -64.766344 ± 0.0946687 -59.421072 ± 0.10684566 5.343527 ± 0.14275208
12 -69.692717 ± 0.1005689 -63.933998 ± 0.11602214 5.758719 ± 0.15354230
13 -74.705026 ±0.1200316 -68.346411 ± 0.10999465 6.358641 ± 0.15947467
14 -78.108150 ± 0.1589564 -71.515256 ± 0.12846523 6.592900 ± 0.16280788
15 -83.423224 ± 0.1765371 -76.633811 ± 0.13299465 6.789415 ± 0.22102697
17 -89.674059 ± 0.1944356 -83.189617 ± 0.17686034 6.484435 ± 0.26283984
18 -92.625574 ± 0.2015986 -86.270892 ± 0.19551892 6.354582 ± 0.28083746
19 -95.018032 ± 0.2248321 -88.614477 ± 0.19965435 6.403554 ± 0.30068476
20 -97.777826 ± 0.2657535 -91.379186 ± 0.20358954 6.398640 ± 0.33477390
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Table 5.2 Ground and selected J = 1 excited state energies and standard
errors for the 4HeN -NH3 clusters considered for N = 1, 10 using the “fudged”
rotational constants Bfudged = 0.9945 cm−1, Cfudged = 0.6229 cm−1. Energies

are from the DMC computations.

N E0000(cm−1) E0011(cm−1) ∆ E (cm−1)
1 -6.317783 ± 0.0016220 -5.704739 ± 0.0026350 0.613044 ± 0.00309420
2 -12.785293 ±0.0054568 -11.684794 ± 0.0042382 1.100502 ± 0.00690934
3 -19.368862 ± 0.0052481 -17.936108 ± 0.0064023 1.432754 ± 0.00827840
4 -26.029469 ± 0.0081025 -24.196897 ± 0.0095569 1.832571 ± 0.00819383
5 -32.639206 ± 0.0118965 -30.465489 ± 0.0139876 2.173717 ± 0.01836245
6 -39.176090 ± 0.0186493 -36.750274 ± 0.0166713 2.425816 ± 0.02501456
7 -45.670744 ± 0.0187012 -42.885139 ± 0.0236431 2.785610 ± 0.03014516
8 -52.035207 ± 0.0263370 -48.693062 ± 0.0325189 3.342414 ± 0.04184634
9 -58.198456 ± 0.0414089 -54.425595 ± 0.0689546 3.772860 ± 0.08043279
10 -64.010720 ± 0.0574458 -59.594215 ± 0.0674724 4.416504 ± 0.08857773
15 -85.599537 ±0.1773056 -78.684042 ± 0.0929081 6.915495 ± 0.20017290
18 -102.855953 ± 0.2093145 -96.260908 ± 0.1592199 6.646871 ± 0.26298961
20 -114.872467 ± 0.2931846 -108.322220 ± 0.2310984 6.550253 ± 0.37331445
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CHAPTER 6

SUMMARY

Ultra cold droplets of 4He atoms have been and continue to be of great interest

in multiple scientific fields. These droplets have been utilized in a variety of ways.

The 4He droplet is used, for example, as an ultra cold (∼ 0.38K) matrix to study

other species [28–33, 35–41], to develop new spectroscopic techniques that have

greater sensitivity [53] and for atmospheric studies [173]. A long list of molecules

doped into 4He droplets have been studied, experimentally and theoretically. The

question of bulk superfluidity had been tackled extensively. For example, in early

“Andronikashvili-type” experiments that, using spectra, showed superfluid behav-

ior in 4He droplets doped with SF6 and OCS dopants. The spectra showed sharp

rotational features, characteristic of free (gas-phase) molecular rotation but with

renormalized (reduced) rotational constants. In the case of SF6, the renormalized

rotational constant was approximately one third of its gas phase value; this be-

havior is the norm, to varying extents, for molecules seeded into 4He droplets [1].

Microscopic superfluidity has also been observed in helium atoms [3–13, 25, 55]

and more recently in clusters of para-H2 molecules [55]. Microscopic superfluid-

ity is indicated by the nonclassical turnaround, and subsequent increase, in the

effective rotational constant (Beff ) of the doped molecule with increasing number

of 4He atoms. This turnaround indicates a decoupling of the helium density from

the rotational motion of the dopant molecule.

The physics of macroscopic superfluidity has been attributed to both Bose Ein-

stein condensation (BEC) and superfluidity. BEC is a result of the macroscopic

occupation of the same quantum state and occurs because of the underlying bose

statistics. Superfluidity, however, is considered to be a hydrodynamic phenomenon

characterized by zero viscosity and frictionless flow. Though similar, the two phe-

nomena are not the same; for example, condensate and superfluid fractions are
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often different. Superfluidity is fundamentally a microscopic effect and no ther-

modynamic limit is necessary. In fact, the signature of superfluidity has been

observed in as few as 4-6 4He atoms [25, 61, 103]. The relationship between con-

ventional bulk superfluidity and microscopic superfluidity has not been extensively

studied. Many discussion of microscopic superfluidity use the two-fluid theory of

Tisza and Landau [56] which states that below a critical temperature there exists

both a superfluid and a normal fluid fraction. In a PIMC study doped p-H2N -CO

clusters were found to have a superfluid fraction that declines from about 95% at

N = 1 to about 82% at N = 6 followed by an increase to 100% for N = 10. 0

K quantum Monte Carlo (QMC) calculations have also predicted a turnaround in

Beff for CO doped in 4He droplets; which is curious since at that temperature

there should be no normal fraction of the 4He solvent. The overarching goal of

this research, as a whole, is to understand the mechanics behind the decoupling

of the doped molecule from the bosonic solvent.

In order to investigate the physics behind the decoupling mechanism we first

had to develop a method that would allow to ascertain the wave function nodal

topology of the target complex system which would be used in our diffusion Monte

Carlo (DMC) calculations. Although these systems are not large in size they

still pose a challenge for computational studies since they must be treated fully

quantum mechanically. Most studies employ variations on quantum Monte Carlo

(QMC) methods to do so. QMC methods converge to the exact ground state of

a many-body system only if that ground state wave function contains no nodes.

This is the origin of the “sign problem” which complicates calculations of fermions

and excited state systems. A way to combat this problem is through the use of

fixed node diffusion Monte Carlo (FNDMC). The studies presented in this text

were done using FNDMC. In the FNDMC method, the nodes of the wave function

partition the space into pockets within which the wave function is either positive

or negative. Any walkers that cross these nodes are eliminated. This means
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that the energy of the system can then be calculated by performing two separate

DMC calculations yielding two pocket energies, corresponding to the positive and

negative configuration space of the wave function, denoted as Ei
+ and Ei

−. If the

nodal hypersurface used is exact the separate DMC calculations inside all of the

pockets will yield the same energy. In general the FNDMC method is somewhat

paradoxical, in that in order to perform any calculations prior knowledge of the

nodal surface of the unknown wave function is required. While symmetry or

approximations may be used to estimate the topology of the node they are not

always viable options. We developed a systematic method of determining the

nodal hypersurface of a wave function within the DMC calculation using a genetic

algorithm.

Genetic algorithms (GA) are used to determine global extrema in high di-

mensional search spaces. They are particularly advantageous in that, provided

the problem and a suitable fitness function can be encoded, the GA algorithm

is easy to implement, portable and requires little interfacing between the GA

code and the intended application. In GA simulations, possible solutions to the

problem are encoded as a string of binary bit; each solution represented as an

“individual” in the simulation. A population of randomly chosen individuals is

generated and then evaluated against a user defined fitness function. The indi-

viduals that perform best against the fitness function are then used to generate

the next generation (breeding). The new population is used in the next iteration

of the algorithm. The algorithm terminates after a certain predetermined num-

ber of generations. In this way the initial guess at the solution to the problem

is refined until it yields a satisfactory solution. In practice, the most important

steps are (i) encoding a representation of possible solutions to the problem, and

(ii) defining a fitness function against which to test the individuals. Given the

observation that ĤΨT = (T̂ + V )Ψ = EΨ, where T̂ is the kinetic energy operator

and V the potential energy surface, then the functions ΨT , T̂ΨT and ĤΨT should
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all change signs at the same place. The optimization scheme used in this project

then was based on minimizing the distances between the nodal hypersurfaces of

the trial wave function ΨT , T̂ΨT and ĤΨT . The fitness function was defined as

follows: (i) requiring the pocket energies, Ei
+ and Ei

− to be equal, (ii) minimizing

the distance and standard deviation between Ei
+ and Ei

− and (iii) minimizing the

difference between the flux histograms (generated by binning walkers that cross

nodes independent of direction).

To test the viability of the genetic algorithm-diffusion Monte Carlo (GA-DMC)

method, it was applied to the calculation of the excited states of a coupled quar-

tic oscillator and the excited states of the He-C2H2 van der Waals complex. The

algorithm was first applied to quartic oscillators with increasing complex nodal

hypersurfaces. Contour plots of the exact eigenstate, obtained from Jacobi diag-

onalization matrix calculation and the best estimate obtained from the GA-DMC

calculation were plotted and compared. The wave function from the exact eigen-

state and the best variational function were used in FNDMC calculations, the

resultant energies from the two were then compared. In all cases the GA-DMC

calculations yielded nodal topologies and energies that were virtually indistin-

guishable from those of the exact eigenstate. For the highest energy state studied,

additional calculations were done in which a symmetry restriction, i.e., one in

which the symmetry of the Hamiltonian is exploited, was applied to the search.

This was done to compare the differences between the unrestricted and restricted

nodal search. The nodal surface found in the symmetry-restricted calculation was

slightly superior to that in the unrestricted calculation. However, the energy differ-

ence between the two was negligible. Application was then made to calculation of

several excited states of He-C2H2. The wave function and energies obtained using

the GA-DMC algorithm were compared to those obtained via an accurate diago-

nalization of the He-C2H2 Hamiltonian. The results obtained with the GA-DMC

were nearly identical to those from the diagonalization.
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The results all indicate that combining a GA to the FNDMC calculations is

an effective way of locating or improving nodal surfaces on the fly. While there

are challenges still to be solved in using this method, for example how to deal with

complications that may arise from pathologies of the nodal hypersurfaces involved,

the results showed that it was a viable method of determining the nodal topology

of a wave function. It was then utilized in the study of the decoupling mechanism

of molecules doped into 4He solvent.

The first case study involved 4He clusters doped with a CO molecule. Theoret-

ical studies have shown that a one dimensional (1D) gas of impenetrable bosons

(a Tonk Girardeau gas) [104–106] constrained to a ring of finite circumference

displays a critical velocity below which the system is hard to stir and a vanish-

ing drag force; characteristics that are associated with microscopic superfluidity.

A one dimensional model, with the 4He atoms confined to a ring, referred to as

bosons-on-a-ring (BOAR) was used. Originally conceived as a way to simplify the

search for nodal surfaces for use in full-dimensional FNDMC calculations, the re-

duced dimensionality model was simply introduced and the results it yielded used

to prove that it captured much of the essential physics of the system. Three forms

of the He-He potential energy surface (PES) were used: (i) the accurate Aziz PES

[135], (ii) a purely repulsive Gaussian barrier, and (iii) a δ-function potential as in

the TG gas. The Gaussian potential interpolates between the Aziz potential and

the TG limit. Two different Gaussian barriers were used: a soft barrier, which

roughly models the actual van der Waals potential and a hard barrier that lies

closer to the TG limit of a hard δ-function potential.

The GA-DMC algorithm was then used to compute the effective rotational

constant (Beff ) of various 4He cluster size. The FNDMC results obtained using the

BOAR model and a 3-dimensional version in which the 4He atoms were confined

to a sphere, bosons-on-a-sphere (BOAS) were compared to experimental results.

The accurate results for clusters containing less than 5 4He atoms were obtained
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using a finite basis set consisting of bose symmetrized products of eigenfunctions

of the operators ĵz and l̂iz. The results were as follows: (i) both the BOAR and

BOAS model captured the initial decrease in Beff and subsequent turn around at

N = 3. Both sets of results agreed with the experimental results, with the BOAS

data in better quantitative agreement with the experimental results, (ii) the results

obtained using the two Gaussian barriers and the Aziz potential were all similar

to each other and (iii) the FNDMC calculations agreed with those done using

basis set calculations for N ≤ 5. Calculations were also done for ĵ2
z as a function

of cluster size (N). After an early rise, ĵ2
z fell rapidly with increasing N which

indicates the decoupling of the molecule from the 4He atoms. These results show:

(i) the BOAR model is able to detect the hallmarks of microscopic superfluidity,

(ii) that this phenomenon is quite insensitive to many of the details of the 3D

Hamiltonian and, (iii) the repulsive part of the He-He PES is implicated in the

decoupling of the molecule form the 4He atoms because decoupling is evident even

when the Aziz PES is replaced with a purely repulsive barrier.

Microscopic superfluidity was also studied in a 4He-HCN complex. Once again

the reduced dimensionality BOAR model was employed and the same three types

of PES were used in the simulations. The results obtained were in agreement

with those of the 4He-CO study. The BOAR model was able to capture the

characteristic “turn around” of the effective rotational constant, Beff , of the HCN

molecule with increasing numbers of 4He atoms. Once again the repulsive He-He

interactions are implicated in the decoupling of the molecule form the 4He atoms

since replacing the Aziz PES does not have any effect on the trend observed for

the effective rotational constant.

Lastly, the effects of rotor size versus anisotropy on renormalization of the

rotational constants of an ammonia molecule seeded into a 4He droplet were stud-

ied. Simulations were done using the accurate rotational constants (B0 = 9.945
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cm−1, C0 = 6.229 cm−1 ) and using a “fudged” versions of the rotational con-

stants (Bfudged = 0.9945 cm−1, Cfudged = 0.6229 cm−1) for the |0011〉 state where

the rotational dynamics of note were that of the 4He atoms. A reduction in the

renormalization constants was observed for both. The simulations done with the

fudged rotational constants experienced a slightly smaller reduction than those

done using the accurate rotational constants. This may be attributed to the im-

portance of molecular anisotropy versus the size of the rotational constants in

molecules whose rotational constants fall in an intermediate regime. It is possible

that in this intermediate regime of the fudged rotational constants of the NH3

molecule the effects of the molecular anisotropy govern the extent of renormaliza-

tion much more than the size of the bare gas rotational constant. The reduction

in B0 calculated using the accurate rotational constants for the ammonia molecule

for the |0011〉 state, about 34% achieved for N ∼ 15-20, was much higher than that

found by Slipchenko and Vilesov [35], Suárez et al. [115], a 3% reduction of B0 and

even the controversial finding by Behrens et al. [33] of a reduction of ∼ 25%. This

discrepancy might be due to the state used for the simulations, i.e., the fact that

the calculations for the B0 was based off of the excited state energies calculated

for the |0011〉 state. The main conclusion of this study is that the “rule-of-thumb”

theories that are used to predict the extent or the rate of renormalization for light

or heavy rotors are not applicable to those rotors that fall in the intermediate

regime. A new set of rules needs to be developed for these rotors. Also, while

the results on the rate of renormalization were in agreement with previous studies

[111, 113, 115], the data obtained for the renormalization of the rotational con-

stants are far off from the expected values. Thus further investigations needs to

be done to determine the root cause of this discrepancy.
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