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ABSTRACT

Translating Temporal SQL to Nested SQL

by

Venkata Rani, Master of Science

Utah State University, 2016

Major Professor: Dr. Curtis Dyreson
Department: Computer Science

Sequenced and nonsequenced semantics are the two previously researched semantics for the

evaluation of an operation in a temporal database such as a query or data modification. Sequenced

semantics evaluates an operation in each time instant using only the data alive at that time. Nonse-

quenced semantics, in contrast, means that an operation explicitly references and manipulates the

timestamps in the data.

In this thesis we propose a new framework that shows both semantics are variants of a general

temporal semantics. We present the general semantics and show how additional semantics, such as

preceding semantics can be realized. The semantics are specified using annotations.

The primary contribution of this thesis is the translation from temporal SQL to nested SQL. We

focus on SQL’s SELECT statement, which is used to query data. Temporal SQL is SQL annotated

with temporal semantics. Nested SQL is SQL for non-1NF data, with additional operations, such

as COGROUP and FLATTEN to create and un-nest, respectively, bags of tuples (non-1NF data).

This thesis develops a denotational semantics for translating from temporal to nested SQL. We

implemented the denotational semantics for an SQLite ANTLR grammar, and the thesis also reports

on the implementation.
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PUBLIC ABSTRACT

Translating Temporal SQL to Nested SQL

Venkata Rani

Sequenced and nonsequenced semantics are the two previously researched semantics for the

evaluation of an operation in a temporal database such as a query or data modification. Sequenced

semantics evaluates an operation in each time instant using only the data alive at that time. Nonse-

quenced semantics, in contrast, means that an operation explicitly references and manipulates the

timestamps in the data.

In this thesis we propose a new framework that shows both semantics are variants of a general

temporal semantics. We present the general semantics and show how additional semantics, such as

preceding semantics can be realized. The semantics are specified using annotations.

The primary contribution of this thesis is the translation from temporal SQL to nested SQL. We

focus on SQL’s SELECT statement, which is used to query data. Temporal SQL is SQL annotated

with temporal semantics. Nested SQL is SQL for non-1NF data, with additional operations, such

as COGROUP and FLATTEN to create and un-nest, respectively, bags of tuples (non-1NF data).

This thesis develops a denotational semantics for translating from temporal to nested SQL. We

implemented the denotational semantics for an SQLite ANTLR grammar, and the thesis also reports

on the implementation.
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CHAPTER 1

INTRODUCTION

Sequenced and nonsequenced semantics were introduced as different semantics for the eval-

uation of a temporal operation such as a query or data modification. Böhlen and Jensen trace the

history and meaning of sequenced semantics [1], but, put simply, sequenced semantics evaluates

an operation in each time instant using only the data alive at that time. Nonsequenced semantics,

in contrast, means that an operation explicitly references and manipulates the timestamps in the

data [2]. In some sense, nonsequenced semantics is the absence of a implicit temporal semantics,

only explicit, direct manipulation of the timestamps is supported.

One important benefit of both semantics is that they reduce to non-temporal semantics. For

sequenced semantics, the reducibility is called snapshot reducibility [3] or S-reducibility [4]. The

idea is sketched in Figure 1.1. In the figure, temporal data is data annotated (in some fashion) with

times. The meaning of the sequenced evaluation of a query on the temporal data is that the result has

to be slice or snapshot equivalent [5] to evaluating the query using non-temporal semantics on each

slice of the data. So the temporal semantics is defined in terms of a (presumably easily understood)

slice of temporal to non-temporal, and the non-temporal semantics of query evaluation (also, well

understood).

Nonsequenced semantics is also reductive. The time information is converted to data, and the

non-temporal operation is evaluated on the data. Since time plays no special role in the evaluation,

each tuple in the result has no (implicit) time. Instead, the user explicitly manipulates the times

through temporal functions, temporal predicates, and temporal constructors specified in the query.

Some of the constructors can convert the data back into time.

Traditionally, the two semantics have been seen as profoundly different. In this thesis (and

previously published paper [6]) we reconcile the differences. We make the following contributions.

• We show that sequenced and nonsequenced semantics are variants of a more general tem-

poral semantics. We describe the general semantics and show additional semantics, such as
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Fig. 1.1: Snapshot reducibility of sequenced semantics
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Fig. 1.2: Nonsequenced reduces to non-temporal semantics

preceding semantics.

• We show how each semantics can be specified in a query language using annotations, which

are similar to statement modifiers, but more lightweight and syntactically separate from each

query expressed in the language.

• We provide a denotational semantics for translating temporal SQL to nested SQL. Temporal

SQL is SQL annotated with a temporal semantics. Nested SQL is SQL for a non-1NF data

model. The denotational semantics is the core contribution of this thesis.

• We describe an implementation of the denotational semantics for the SELECT statement in

an SQLite ANTLR grammar.
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1.1 Related Work

This thesis extends previous research in the area of temporal query languages, more specifically

it investigates what it means to make a query temporal. There are many temporal extensions of query

languages, c.f., [3, 7–12]. These extensions are designed to add to, rather than change or modify,

the prior syntax and semantics of a language. The extensions have been broadly characterized in

various ways. Sequenced vs. nonsequenced distinguishes extensions, in part, by whether the time

metadata is manipulated implicitly or explicitly. We broaden the meaning of sequenced semantics

in this thesis to cover a wide variety of implicit manipulation. Temporal languages have also been

characterized as abstract vs. concrete based on whether their syntax and semantics depends on a

specific representation of the time metadata [13]. Time is just one kind of metadata, so languages

that support a temporal extension can also been extended to cover other kinds of metadata using

aspect-oriented techniques [14, 15].

Two implementation approaches are common for SQL-like temporal query languages. A stra-

tum-approach adds a source-to-source translation layer to translate a query in a temporal extension

into an equivalent query in the original, non-extended language [16, 17]. Some constructs prove

difficult to translate, temporal outer join for instance, so a second approach is to extend the DBMS

itself [18]. Since temporal semantics are (largely) reductive, both approaches at their core reuse

SQL. But sequenced semantics cannot be directly supported in standard SQL because some of the

needed operations are not part of SQL, hence the second strategy extends the DBMS to support

additional operations for sequenced semantics. In this thesis we adopt the first option, but translate

to nested SQL rather than SQL. “Nested SQL” is something we invented by adding what we need

to SQL. We feel that the second approach makes it clearer at the language level which extensions

to SQL are needed for temporal semantics in general, and as a blueprint for needed extensions to

support other kinds of metadata, such as privacy, lineage, provenance, etc.
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CHAPTER 2

BACKGROUND

In this chapter we review background concepts and material.

2.1 Preliminaries

This research is orthogonal to assumptions about the time-line, number of temporal dimen-

sions, representations of time, and data model. But for simplicity, we make the following assump-

tions in this thesis.

• We use a discrete time-line, with chronons ranging from time −∞ to time∞.

• There is only one time dimension.

• We extend SQL’s data model (relations are bags of tuples) to a temporal data model in which

every tuple in every relation is annotated with temporal metadata that records the lifetime of

the tuple in some time dimension. That is, it is a tuple-timestamped model [19].

• A tuple’s lifetime is a temporal period, e.g., [b, e] represents the time from b to e, inclusive.

As a running example, consider the employees and departments relations depicted in

Figure 2.1. The Metadata columns record the metadata annotations for each tuple (the lineage

metadata will be explained below). For instance, the employee Joe worked in the Shoes depart-

ment earning a salary of 40000 from time 1 through 7.

The slice (or snapshot) operation produces the non-temporal state for a given time period.

Definition [Slice] Let R be a temporal relation (that is, every tuple in the relation is annotated with

temporal metadata), data(s) be a function that strips a tuple s of its temporal metadata, time(s)

be a function that yields the temporal metadata for a tuple s, and [b, e] be a temporal period. Then

slice(R, t, [b, e]) = ({ data(s) | s ∈ R ∧ time(s) ∩ [b, e] 6= ∅ }, t)
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Data Metadata
name salary dept time lineage
Joe 40000 Shoes [1,7] {a}
Joe 41000 Hats [8,9] {b}
Fred 42000 Shoes [6,9] {c}
Mary 20000 Shoes [1,2] {d}
Mary 62000 Camera [8,9] {e}

(a) The employees relation

Data Metadata
dept floor time lineage
Shoes 4 [3,5] {f}
Shoes 2 [6,9] {g}
Camera 3 [2,9] {h}

(b) The departments relation

Fig. 2.1: Employee and Depatment

Note that the sliced relation, which had been stripped of its temporal metadata, is annotated or

associated with the slice time, t; t is usually in [b, e], but not always. The slice of a temporal

database (a set of relations) is the slice of each relation in the database. �

2.2 Lineage

Lineage metadata keeps track of which tuples are used to produce a result tuple, c.f., [18,20,21].

Lineage for temporal relational algebra is described in detail elsewhere [18]. To record the lineage,

each tuple, s, in each relation is assigned a globally-unique identifier, id(s). The lineage of a tuple

in the result is the set of identifiers corresponding to each tuple used to produce the result. For

example, suppose that a projection (without duplicate elimination) on column A is applied to tuple

s. Then the lineage of the result is {id(s)}.

Other common query operations (in SQL) are grouping and duplicate elimination (DISTINCT).

The lineage of a group is the union of the lineage of each tuple in the group, while the lineage of

the result of a duplicate elimination is also a group, the group consisting of the lineage of each

duplicate.

Some operations, such as join and Cartesian product, involve combinations of tuples from two
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or more relations. The lineage tracks the combinations that produce a tuple. For example, suppose

that tuple s joins with tuple w to produce tuple r in the result, then the lineage of r includes the

tuple (id(s), id(w)) denoting that this combination produced a result.

Let the lineage evaluation of a query, Q, on a (non-temporal) database state, S, be denoted

eval(Q,S).

2.3 Nested SQL Operations and Timestamp Operations

This thesis proposes translating from Temporal SQL to nested SQL. Nested SQL is SQL for

non-1NF relations. A relation is in first normal form (1NF) if the domain of each attribute contains

only atomic (indivisible) values, and the value of each attribute contains only a single value from

that domain. Non-1NF domains include bags and sets. Our temporal semantics requires some

operations that produce non-1NF relations (note that these operations are present in other database

query languages, such as Pig Latin [22]).

SQL lacks operations on bags or sets of tuples and timestamps. In this chapter we describe the

nested SQL operations that we need. We also present additional timestamp operations on bags of

timestamps.

2.3.1 COGROUP

COGROUP is similar to an inner join in SQL, in that both relate tuples from a pair of rela-

tions. The difference is that an inner join creates a 1NF relation containing the joined result, while

COGROUP forms bags of tuples that would join in an inner join grouped by their their common

field(s) (the fields that they would join on). The result of a COGROUP is a relation of three parts.

The first part is the join attributes. The second part is a bag of tuples of the first relation that have

the same values as the join attributes in the first part. The third part is a bag of tuples with the same

values of the join attributes from the second relation. The Cartesian product of the two bags forms

the tuples in the join.

To illustrate the difference consider the two relations in Figure 2.2. The (inner) JOIN and

COGROUP of the two relations is shown in Figure 2.3. The COGROUP is the bags of tuples that

would join if the relations actually were joined.
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name salary dept
Joe 40000 Shoes
Joe 41000 Hats
Fred 42000 Shoes
Mary 20000 Shoes
Mary 62000 Camera

(a) The employees relation

dept floor
Shoes 4
Shoes 2
Camera 3

(b) The departments relation

Fig. 2.2: Join Attribute of Employee, Department

2.3.2 FLATTEN

FLATTEN eliminates a level of nesting. Given a tuple which contains a bag, FLATTEN will

emit several tuples each of which contains one tuple from the bag. To illustrate FLATTEN, consider

the co-grouped relation in Figure 2.3(b). If the relation is FLATTENed, it will produce the relation

in Figure 2.3(a).

2.3.3 Timestamp Operations

The functions in this section take one or two bags of timestamps, and produce a bag of tuples.

TS INTERSECTION

TS INTERSECTION performs bag intersection on two bags of (period) timestamps.

Definition [TS INTERSECTION] Let b1 and b2 be two bags of timestamps.

TS INTERSECTION(b1, b2) = { t1
⋂
t2 | t1 ∈ b1 ∧ t2 ∈ b2 }

Consider the bag of timestamps in Figure 2.4(a) and Figure 2.4(b). Their bag intersection is shown in

Figure 2.4(c). [1,7] is in the result because [1,7] intersects [1,14] at times [1,7]. Similarly,

[6,6] is in the result because [1,6] intersects [6,9] only at time [6,6].
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name salary dept floor
Joe 40000 Shoes 4
Joe 40000 Shoes 2
Fred 42000 Shoes 4
Fred 42000 Shoes 2
Mary 20000 Shoes 4
Mary 20000 Shoes 2
Mary 62000 Camera 3

(a) The result of employees JOIN departments

dept employees departments
Shoes {(Joe, 40000, Shoes), {(Shoes, 4),

(Fred, 42000, Shoes), (Shoes, 2)}
(Mary, 20000, Shoes)}

Camera {(Mary, 62000, Camera) {(Camera, 3)}

(b) The result of employees COGROUP departments

Fig. 2.3: Join Vs CoGroup

TS UNION

TS UNION performs bag union on two bags of (period) timestamps.

Definition [TS UNION] Let b1 and b2 be two bags of timestamps.

TS INTERSECTION(b1, b2) = { t1
⋃
t2 | t1 ∈ b1 ∧ t2 ∈ b2 }

Consider the bag of timestamps in Figure 2.4(a) and Figure 2.4(b). Their bag union is shown in

Figure 2.4(d).

TS DIFFERENCE

TS DIFFERENCE performs bag difference on two bags of (period) timestamps.

Definition [TS difference] Let b1 and b2 be two bags of timestamps.

TS INTERSECTION(b1, b2) = { t1 − t2 | t1 ∈ b1 ∧ t2 ∈ b2 ∧ 6 (t1 ⊂ t2) }

Consider the bag of timestamps in Figure 2.4(a) and Figure 2.4(b). Their bag difference is shown in

Figure 2.4(e).
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timestamp
[1,7]
[8,9]
[6,9]

(a) Timestamps in a bag of employees

timestamp
[1,14]
[1,6]
[2,5]

(b) Timestamps in another bag of employees

timestamp
[1,7]
[8,9]
[6,9]
[1,6]
[6,6]
[2,5]

(c) The bag intersection, TS INTERSECTION

timestamp
[1,7]
[8,9]
[6,9]
[1,14]
[1,6]
[2,5]

(d) The bag union, TS UNION

timestamp
[6,7]
[8,9]
[7,9]
[1,1]
[6,7]
[8,9]
[6,9]

(e) The bag difference, TS DIFFERENCE

Fig. 2.4: Timestamp operations
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TS COALESCE

The TS COALESCE operation is unary and takes as input a bag of timestamps and returns

a maximal set of disjoint, non-overlapping timestamps. Essentially, TS COALESCE is the union

of the timestamps with duplicate elimination and merging of adjacent timestamps. Consider for

instance the bag of timestamps in Figure 2.4(a). When coalesced, the bag becomes the bag of

timestamps (there is only one timestamp in the bag) shown in Figure 2.5(a).

timestamp
[1,9]

(a) Coalescing of the bag in Figure 2.4(a)

timestamp
[1,14]

(b) Coalescing of the bag in Figure 2.4(b)

Fig. 2.5: Coalescing
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CHAPTER 3

SEMANTICS

In this chapter we review sequenced and nonsequenced semantics and offer a variety of addi-

tional semantics.

3.1 Sequenced Semantics

Sequenced semantics is perhaps the most straightforward temporal semantics. To understand

sequenced semantics, we can imagine the history of a database as a sequence of states, as depicted

in Figure 3.1. The state at time t consists of the (non-temporal) relations and data in the database at

time t, annotated with the metadata t.

Sequenced semantics for query evaluation stipulates that a query is logically evaluated inde-

pendently on every database state. In Figure 3.1, the dashed box that surrounds the state at time t

shows the state on which the query is evaluated.

Definition [Sequenced query evaluation] The sequenced evaluation of a query, Q, on a temporal

database, D, is

sqEval(Q,D) = merge( { (R, t) |

R = eval(Q,S)

∧ −∞ ≤ t ≤ ∞

∧ slice(D, t, [t, t]) = (S, t) } )

�

Note that sequenced query evaluation is defined in the context of a merge operation, which we

define next.

Sequenced query evaluation (potentially) creates many duplicates. If the states at time t and

t+ 1 are identical then so are the query results, i.e., Rt = Rt+1. To reduce duplication in the results
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Timeline

… …

t t+1t-1

Fig. 3.1: Sequenced semantics

and associate a time with each result tuple, the results can be merged or coalesced using lineage.

Coalescing without lineage has been covered elsewhere [23–25].

Keeping track of lineage prevents value-equivalent duplicates originally present in the data

from being coalesced [18]. Merge can be defined as follows.

Definition [Merge] Let

• D be a temporal database,

• L(s) be the lineage of tuple s, and

• X̄ = {(W, t) | −∞ ≤ t ≤ ∞ } be a set of non-temporal (but with lineage) relations, where

each relation is associated with the time t (as might be produced by slice),

then

merge(X̄) = {(r, [b, e]) |

∀t [ b ≤ t ≤ e ⇒ ((W, t) ∈ X̄ ∧ (r, L(r)) ∈W ) ]

∧ ((Y, b− 1) ∈ X̄ ⇒ (r, L(r)) /∈ Y )

∧ ((Z, e+ 1) ∈ X̄ ⇒ (r, L(r)) /∈ Z)

}.

�

Consider three examples of sequenced query evaluation using the relations given in Figure 2.1.

The first query projects the departments of employees that earn more than 40000.

SELECT dept

FROM employees

WHERE salary >= 40000 AND dept = "Shoes"
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The result of the sequenced evaluation of the query is depicted in Figure 3.2(a). A projection in

SQL preserves duplicates.

The second query finds the maximum salary of the employees.

SELECT MAX(salary)

FROM employees

The result of the sequenced evaluation of the query is depicted in Figure 3.2(b). The maximum at

each time instant varies since at times different employees earned the maximum salary. Figure 3.3

depicts the merge for the maximum salary. The tuples in the employees relation are depicted on

the timeline. If the tuple is in the slice at a given time, it is represented with a circle. A filled in

circle represents the tuple with the maximum salary in that slice. The dashed boxes are the slices

that are merged. Each merged set of slices is a maximum coalescing of the lineage, i.e., those tuples

that went into producing the result (the group that was alive in the slice).

The third query performs a join.

SELECT name, dept, floor

FROM employees JOIN departments ON (dept)

WHERE employees.dept = "Shoes"

The result of the sequenced evaluation of the query is depicted in Figure 3.2(c). An employee may

have a lifetime that spans working in multiple departments, but the join limits the lifetime to when

the employee worked in a given department.

3.2 (Implicit) Nonsequenced Semantics

Nonsequenced semantics has traditionally been viewed as quite different than sequenced se-

mantics, but nonsequenced semantics is really just a different way to understand a database state at

time t. Implicitly, in nonsequenced semantics a state at time t is the database slice from time −∞

to∞, that is, the database’s entire history. So the nonsequenced state at time t is every relation and

all of the data in every relation over the entire history of the database.

We show nonsequenced semantics in Figure 3.4. In the figure, the dashed box encloses the

data on which the query is evaluated at time t, which is the entire history of the database. Except
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Data Metadata
dept time lineage
Shoes [1,7] {a}
Shoes [6,9] {c}

(a) Sequenced projection result

Data Metadata
max time lineage
40000 [1,2] {a,d}
40000 [3,5] {a}
42000 [6,7] {a,c}
62000 [8,9] {b,e}

(b) Sequenced aggregate result

Data Metadata
name dept floor time lineage
Joe Shoes 4 [3,5] {(a,f)}
Fred Shoes 4 [6,7] {(c,f)}
Fred Shoes 2 [7,9] {(c,g)}

(c) Sequenced join result

Fig. 3.2: Sequenced results

for the difference in state, nonsequenced query evaluation is exactly the same as sequenced query

evaluation.

Definition [Nonsequenced evaluation] The nonsequenced evaluation of a query, Q, on a temporal

database, D, is

nsqEval(Q,D) = merge( { (R, t) |

R = eval(Q,S)

∧ −∞ ≤ t ≤ ∞

∧ slice(D, t, [−∞,∞]) = (S, t) } )

�

Note that the eval produces identical results for every time, that is for all t, Rt = Rt+1. Hence,

every tuple in the result lives at every time t, so the merge produces the (not very useful) timestamp
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Timeline 21 43 65 87

a

b

c

9

d

e

100

Fig. 3.3: Merging the maximum salary using lineage

Timeline

…

t t+1t-1

…

Fig. 3.4: Nonsequenced semantics

[−∞,∞] for every result tuple. Since the timestamp is not very useful, explicit manipulation of the

timestamp is the standard indicator of nonsequenced semantics.

Figure 3.5 shows the result of (implicit) nonsequenced query evaluation on the three exam-

ple queries using the relations given in Figure 2.1. One difference with the sequenced result is

for the query to find the maximum salary. Unlike the sequenced evaluation, the query finds the

maximum across the entire history. The result of the nonsequenced evaluation of the join is given

in Figure 3.5(c). Employees are related to every department at which they worked in their entire

history.

3.3 General Temporal Semantics

The only difference between sequenced and nonsequenced is in how the data is sliced, which

lets us generalize the two semantics.

Definition [Temporal semantics for query evaluation] The temporal evaluation of a query, Q,

with a given slice function, F , is

timeEval(Q,F) = merge( { (R, t) |

R = eval(Q,S)
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Data Metadata
dept time lineage
Shoes [−∞,∞] {a}
Shoes [−∞,∞] {c}

(a) Nonsequenced projection result

Data Metadata
max time lineage
62000 [−∞,∞] {a,b,c,d,e}

(b) Nonsequenced aggregate result

Data Metadata
name dept floor time lineage
Joe Shoes 4 [−∞,∞] {(a,f)}
Joe Shoes 2 [−∞,∞] {(a,g)}
Fred Shoes 4 [−∞,∞] {(c,f)}
Fred Shoes 2 [−∞,∞] {(c,g)}
Mary Shoes 4 [−∞,∞] {(d,f)}
Mary Shoes 2 [−∞,∞] {(d,g)}
Mary Camera 3 [−∞,∞] {(e,h)}

(c) Nonsequenced join result

Fig. 3.5: Nonsequenced results

∧ −∞ ≤ t ≤ ∞

∧ F(t) = (S, t) } )

�

Sequenced and nonsequenced semantics can be expressed as follows.

• sqEval(Q,D) = timeEval(Q, slice(D, t, [t, t]))

• nsqEval(Q,D) = timeEval(Q, slice(D, t, [−∞,∞]))

3.4 Preceding Semantics

With our new understanding of the “state” of a database, we can articulate other semantics of

interest. Suppose that we define the state at time t to consist of all of the data up to and including

time t as shown in Figure 3.6. We can define a new semantics, which we call preceding semantics
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Timeline

… …

t t+1t-1

Fig. 3.6: Preceding semantics

that evaluates a query with respect to all of the data in the database up to the given time. Let

H(t) = slice(D, t, [−∞, t]) then

preceedingEval(Q,D) = timeEval(Q,H).

The semantics of query evaluation remains the same, only the meaning of the state differs. Figure 3.7

gives the results of evaluating the three queries using preceding semantics on the relations given in

Figure 2.1. The result of the preceding evaluation of the query to find the maximum employee salary

is depicted in Figure 3.7(b). Unlike the sequenced evaluation, the query finds the maximum up to

the time t, i.e., what is the maximum to this point in time.

3.5 Context Semantics

Nonsequenced and preceding semantics both evaluate a query with respect to the start of the

history of a database. But in many queries, it is beneficial to use a more restricted window. Hence,

we can stipulate a context in which a query is evaluated. The context can be a fixed window, e.g.,

2012, or a periodic partitioning, e.g., yearly.

Context is just a different slice function in the general temporal semantics. For example, sup-

pose we want to use sequenced semantics in the context of the period [3, 7]. Let

C(t) = if 3 ≤ t ≤ 7 slice(D, t, [t, t]) else ∅

then timeEval(Q, C) uses sequenced evaluation in the period from 3 to 7. Alternatively, suppose

we want implicit nonsequenced semantics in the context [3, 7]. Let

G(t) = if 3 ≤ t ≤ 7 slice(D, t, [3, 7]) else ∅
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Data Metadata
dept time lineage
Shoes [1,∞] {a}
Shoes [6,∞] {c}

(a) Preceding projection result

Data Metadata
max time lineage
40000 [1,5] {a,d}
42000 [6,7] {a,c,d}
62000 [8,∞] {a,b,c,d,e}

(b) Preceding aggregate result

Data Metadata
name dept floor time lineage
Joe Shoes 4 [3,∞] {(a,f)}
Joe Shoes 2 [6,∞] {(a,g)}
Fred Shoes 4 [6,∞] {(c,f)}
Fred Shoes 2 [6,∞] {(c,g)}
Mary Shoes 4 [3,∞] {(d,f)}
Mary Shoes 2 [6,∞] {(d,g)}
Mary Camera 3 [8,∞] {(e,h)}

(c) Preceding join result

Fig. 3.7: Preceding semantics results

then timeEval(Q,G) uses only the tuples in [3, 7].

Periodic slicing can also be specified. Let

P(t) = slice(D, t, [bt/2c ∗ 2, t])

then timeEval(Q,P) stipulates preceding semantics within a periodic window of size 2 (every 2

chronons). Figure 3.8 shows the result of evaluating the example queries using this semantics. Note

that unlike the preceding semantics the slice window at time t only extends back in time to (at most)

t− 1.
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3.6 Distinguishing Transitions

To this point, the slice function has not depended on the timestamps being sliced. But slice

functions can be defined to slice relative to (combinations of) timestamps. This is important in

distinguishing transitions in the data. That is, a semantics may take interest in whether a tuple at

time t, began its lifetime, ended its lifetime, or continued its lifetime. Such distinctions are often

of interest to a user. For instance, suppose that a user wants to know “which employees started

working in Shoes in [3,7]?” Distinguishing transitions of tuples into and out of states provides a

semantics for evaluating such queries. Let start(R, t, [b, e]) represent the collection of tuples that

Data Metadata
dept time lineage
Shoes [1,8] {a}
Shoes [6,12] {b}

(b) Preceding context projection result

Data Metadata
max time lineage
40000 [1,5] {a,d}
42000 [6,7] {a,c,d}
62000 [8,12] {a,b,c,d,e}

(b) Preceding context aggregate result

Data Metadata
name dept floor time lineage
Joe Shoes 4 [3,8] {(a,f)}
Joe Shoes 2 [6,8] {(a,g)}
Fred Shoes 4 [6,12] {(c,f)}
Fred Shoes 2 [6,12] {(c,g)}
Mary Shoes 4 [3,4] {(d,f)}
Mary Camera 3 [8,12] {(e,h)}

(c) Preceding context join result

Fig. 3.8: Preceding semantics within a context of two chronon periods

began a lifetime in slice(R, t, [b, e]), finish(R, t, [b, e]) represent the collection of tuples that ended

a lifetime at time t in database R, and continue(R, t, [b, e]) represent the collection of tuples that
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continued (neither started nor ended) a lifetime at time t in database R. Note that slice(R, t, [b, e])

equals

start(R, t, [b, e]) ∪ finish(R, t, [b, e]) ∪ continue(R, t, [b, e])

Start, finish, and continue can be defined using slicing. For instance start is the following slice

function, with b refering to a timestamp’s begin time (note that the slice is applied to a tuple to

determine membership in the slice, so the tuple’s timestamp is available).

S(t) = if t == b slice(D, t, [t, t]) else ∅

To determine which employees started working in Shoes from [3-7], let

B(t) = if 3 ≤ t ≤ 7 start(D, t, [t, t]) else ∅,

then we would evaluate with the semantics timeEval(Q,B) (assuming the data captures the start-

ing times in the tuples).

3.7 Precise Semantics

Continuing with the theme of using timestamps implicit in the data, consider a semantics that

slices based on the whether a pair of timestamps meets. That is, let t1 and t2 represent a pair of

timestamps, as might be involved in a combination of tuples in a join or Cartesian product. Let

P(t) = if t1.e == t2.s start(D, t2.s, [t2.s, t2.s]) else ∅,

where t.s and t.e select the begin and end times of a timestamp, respectively. Then we would

evaluate a precise (meets) semantics with timeEval(Q,P).

The semantics might be used for instance to find which employees got a raise (using an in-

equality join) or from the employees that got a raise, who earned the maximum salary for the raised

salary (and when).
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These are only a few of the many possible varieties of semantics that can be expressed. We

focus next on how the semantics can be woven into a query using an annotation.
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CHAPTER 4

ANNOTATIONS

In this chapter we show how to specify the semantics in a language, like SQL, using annota-

tions. Annotations are a lightweight language extension, often used to signify meta-actions. For

instance annotations are used in Java for documentation (e.g., a @param annotation to document a

parameter) or extensibility (e.g., a @key to specify a key attribute in BerkeleyDB-java).

This chapter also discusses how lineage can be used to implement a semantics. Recall that

lineage tracks which tuples lead to the production of a result tuple.

4.1 Overview of Annotations

Syntactically, a temporal annotation is a specification of how to construct a timestamp from

a list of timestamps. Each timestamp is an interval, [begin time, end time]. An annotation has

two parts, a begin time constructor and an end time constructor. So an annotation has the following

general form.

@temporal [begin time constructor; end time constructor]

The @temporal annotation specifies that this is a temporal semantics, rather than some other kind

of metadata, such as privacy. Each constructor is an expression composed of temporal constructors

(such as the functions, min, max, and intersects), time literals, and timestamp references. A

timestamp reference has two potential forms. First, a reference can precisely name a timestamp

by its position in the list of timestamps. As an example, @1 refers to the first timestamp in the

list, @1.b to the begin time of the first timestamp, and @1.e to the end time. As an example the

constructor,

max(@1.b, @2.e)

computes the maximum of the begin time of the first timestamp and the end time of the second

timestamp in the list of timestamps.
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More common however, is a semantics applied to lists of indefinite length. The second form is

used to iterate over the list with @c used to refer to the current timestamp, and @p used to refer to

the previously computed (in the iteration) timestamp. As an example, the constructor

min(@p.b, @c.b)

computes the minimum time of the current begin time with the previously computed begin time.

The reference @c is assumed by default so an equivalent formulation is

min(@p.b, @b)

where @b is the same as @c.b.

When iteration is used, the constructor is split into two parts, a base case, and an iterative case,

i.e., each timestamp constructor has the following form: base case; recursive case. As an example,

@b ; min(@p.b, @b)

will compute the minimum of the begin times of the list of timestamps (recursive case), starting

with the begin time of the first timestamp (base case).

The list of timestamps usually comes from the cartesian product of tables in the FROM clause

of an SQL query. Each table has (or is given) a table variable. So the list of timestamps can be

referred to by the corresponding list of table variables. As an example, consider the following

FROM clause.

FROM Workers, Employees E

Table variables can be automatically generated for Workers resulting in the following FROM

clause.

FROM Workers A0, Employees E

and the resulting list of table variables

(A0, E)

If the semantics
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min(@1.b, @2.e)

is used for this list, the table variables can be substituted for the references to build an expression

using actual columns.

min(A0.b, E.e)

4.2 Formal Specificatio of the Annotation Language

We propose specifying the semantics in a query language, like SQL, using annotations. The

annotations have the following components.

• @temporal specification The semantics annotation specifies the kind of semantics. The

semantics is described by the specification.

• specification - The specification is a constructor for the start and end times of a timestamp. It

has one of the following forms:

[start;end]

or

[startBaseCase;startRecusiveCase;endBaseCase;endRecursiveCase].

The first form is the simple case where start and end are functions that each construct a time.

The second form is for a list of timestamps, startBaseCase, startRecursiveCase, endBase-

Case, and endRecursiveCase are functions that construct times. The semantics specifies a

fold higher-order function (also commonly known as reduce, foldl, or foldr) for an arbitrary

list of timestamps. The time construction functions are built from the following components.

– @t.b - Refers to a tuple’s beginning timestamp value.

– @t.e - Refers to a tuple’s ending timestamp value.

– @c.b - Refers to the start time for the current timestamp in a list.

– @b - Same as @c.b.
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– @c.e - Refers to the end time for the current timestamp in a list.

– @e - Same as @c.e.

– @p.b - Refers to the previously folded timestamp’s begin time.

– @p.e - Refers to the previously folded timestamp’s end time.

– @n.b - Refers to the begin time of the nth timestamp.

– @n.e - Refers to the end time of the nth timestamp.

– MIN TIME - Represents the minimum time.

– MAX TIME - Represents the maximum time.

– NOT VIABLE - Represents a non-viable time.

– =,<,<=,+,-,max,min, etc. - Assume integer operators, e.g., as available in Java.

– (c) ? e1 : e2 - Conditional operator, if condition c is true, produces e1, else e2.

We could extend the language with operators from Allen’s algebra [26], or other temporal construc-

tors, but this simple specification is suitable for our purposes.

Below we give specifications for some of the semantics discussed in this thesis. Each of the

following is a fold-style annotation.

• Sequenced - [MIN TIME; max(@p.b,@b); MAX TIME; min(@p.e,@e)]

• Nonsequenced - [MIN TIME; MIN TIME; MAX TIME; MAX TIME]

• Preceding - [MIN TIME; max(@p.b,@b); MAX TIME; MAX TIME]

• Context 3-7, sequenced - [3; max(@p.b,@b); 7; min(@p.e,@e)]

An annotation always specifies how to construct a time. But some constructed times are not viable,

that is, when the begin time is after the end time, then the constructed time is not viable. The final

semantics (Context 3-7, sequenced) may produce nonviable timestamps when the times do not fall

within the range 3-7.
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4.2.1 Annotation Examples

Let’s consider some examples, to show how a @temporal annotation works. The following

query projects Shoe employees using sequenced semantics.

@temporal [MIN_TIME; max(@p.b,@b); MAX_TIME; min(@p.e,@e)]

SELECT dept

FROM employees

WHERE salary >= 40000

The annotation is effectively a temporal statement modifier [4]. The annotation specifies the con-

structed timestamp for each group of lineage tuples, which is the timestamp of the result tuple.

Projection is straightforward because there is only one group for each result tuple (recall that this

is projection without duplication elimination). Only two tuples qualify for the result as shown in

Figure 3.2(a). The timestamp for lineage tuple id(a) is [1,7]. We fold sequenced semantics using

the previously folded timestamp (the base case is is [MIN TIME, MAX TIME]). So for the first

timestamp the fold function computes

[max(MIN_TIME,1), min(MAX_TIME,7)]

which yields [1,7] for the timestamp of the result. The same logic is applied to the second result

tuple.

Now consider the join result in Figure 3.2(c). The first tuple in the result has the lineage

(a,f). The semantics is applied to each timestamp in the lineage combination (in order). So first

a is folded.

[max(MIN_TIME,1), min(MAX_TIME,7)]

Next b is folded.

[max(1,3), min(7,5)]

Yielding a timestamp of [3,5] as shown in Figure 3.2(c).

Finally let us consider the second query, to find the maximum salary. This query involves

groups of lineage. Recall that the fold function computes a timestamp for the group, but lineage
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must be grouped first, and the timestamp plays a role in the grouping. Group timestamps are always

computed by intersection since they are involved in merging. Let us consider how the maximum

salary is computed. First tuple a is chosen and placed in a group. Sequenced semantics stipulates

that the group’s timestamp becomes [1,7]. Next tuple b is chosen. Tuple b’s timestamp does not

intersect with the group {a}[1,7] so we add a new group yielding.

{{a}[1,7], {b}[8,9]}

After tuple c is added we have.

{{a}[1,5], {a, c}[6,7], {b, c}[8,9]}

Finally, after tuples d and e are grouped, we get.

{{a, d}[1,2], {a}[3,5], {a, c}[6,7], {b, c, e}[8,9]}

Note that the timestamp for each group is affixed to the aggregate result.

In summary, lineage and timestamps interact in two ways. First, the timestamp for a tuple is

computed, or combination of tuples, is computed using the semantics. Next, groups are determined

using intersection semantics.

As a second example, consider the preceding semantics grouping for the maximum salary

computation. First tuple a is chosen and placed in a group. Preceding semantics stipulates that the

group’s timestamp becomes [1,MAX TIME]. Next tuple b is chosen yielding.

{{a}[1,7], {a, b}[8,MAX TIME]}

After tuple c is added we have.

{{a}[1,5], {a, c}[6,7], {a, b, c}[8,MAX TIME]}
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Finally, after tuples d and e are grouped, we get.

{{a, d}[1,5], {a, c, d}[6,7], {a, b, c, d, e}[8,MAX TIME]}

The computation of the timestamp as specified by the semantics influences the grouping.

4.3 Precise Manipulation of Timestamps

The viable/nonviable distinction allows us to precisely control a semantics. Precise semantics

manipulate a fixed number of timestamps (i.e., supports explicit nonsequenced semantics). We now

give some specifications for some precise semantics. Recall that @b.1 refers to the begin time of

the first timestamp, @e.1 refers to the end time of the first timestamp, while @b.2 refers to the

begin time of the second timestamp, and so on.

• Timestamp 1 meets timestamp 2

[(@2.b == @1.e) ? @1.b : NOT_VIABLE; @2.e]

• Timestamp 1 is before timestamp 2

[(@2.b < @1.e) ? @1.b : NOT_VIABLE; @2.e]

For example, suppose that we want to find Shoe employees who got a raise and when they got that

raise (a Shoe employee tuple meets another with a higher salary).

@temporal [(@2.b == @1.e) ? @1.b : NOT_VIABLE; @2.e]

SELECT A.name

FROM employees A, employees B

WHERE A.dept = ’Shoes’

AND B.dept = ’Shoes’

AND A.name = B.name

AND A.salary < B.salary
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The query manipulates the timestamps of the combination of tuples in the FROM clause (as specified

by the annotation). Note that a semantics must always construct a timestamp, so the result is always

a temporal relation (unlike in traditional nonsequenced semantics [27]). Since the semantics has

access to the timestamps and can enforce a precise semantics on the query, we do not see a need for

explicit functions embedded in a query. The query is imbued as temporal by annotating it.

4.3.1 Sequenced Support is Key

We close this section by observing that lineage offers a way to implement the temporal seman-

tics. Dignös et al. showed how to engineer Postgres to support sequenced semantics [18]. For a

subset of SQL, which we style SQL--, which consists of the constructive parts of SQL consisting of

projection, join, selection, grouping, and aggregation, implementation is relatively straightforward.

For the eliminative parts of SQL, such as some subqueries, difference, and outer join, changes are

needed in the DBMS to support sequenced semantics for tuples timestamped with intervals. But

the same kinds of changes are needed to support any sequenced semantics. That is, if sequenced

semantics is supported, then all of the other semantics should be able to be supported using the same

techniques.

We consider a new approach in the next chapter.



30

CHAPTER 5

TRANSLATION

In this chapter we describe how temporal SQL is translated to nested SQL, which is described

in Chapter 2.3. We focus only on the SELECT statement in SQL, which is how SQL users query

data. We first give an example to illustrate the translation process, then a denotational semantics for

the SELECT statement translation is provided.

5.1 Translation Example

In Temporal SQL an SQL query can be annotated with a temporal semantics. The annotation

converts the query to a temporal query since the query is evaluated using the temporal semantics

specified in the annotation. As our first example, we translate a simple SELECT statement that

computes the Cartesian product of two relations.

@temporal [MAX_TIME; max(@b,@p.b); MIN_TIME; min(@e,@p.e)]

SELECT *

FROM r,s;

In the above example we are adding the annotation for sequenced semantics to a simple SELECT

statement. The translated query is given below.

SELECT *, max(A1.begin,max(MAX_TIME,A0.begin)) as begin,

min(A1.end,min(MIN_TIME,A0.begin)) as end

FROM r A0, s A1

WHERE max(A1.begin,max(MAX_TIME,A0.begin)) >=

min(A1.end,min(MIN_TIME,A0.begin))

The translation adds table variables A0 and A1 to the FROM clause so that fields in each tuple from

a table can be referenced elsewhere in the query. The translation also adds a predicate (the WHERE

clause) to determine if a viable timestamp can be computed by the pair of tuples chosen to be in
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the Cartesian product. If the tuple from relation r does not intersect with the tuple from relation s

then the two tuples were never in the database as the same time and hence do not produce a result

tuple. The sequenced semantics annotation specifies that temporal intersection should be computed.

Finally, to the SELECT clause is added constructors for the begin and end times in the result.

5.2 A Denotational Semantics for Temporal SQL

Our goal is to translate temporal SQL to nested SQL. The formal semantics of the transla-

tion is given as a denotational semantics. A denotational semantics is an approach of formalizing

the meanings of programming languages constructs by describing their meanings as mathematical

objects (called denotations).

Let’s consider the denotational semantics for a basic SELECT statement.

J@temporal S

SELECT A1, . . . , An

FROM R1, . . . , Rn

[WHERE P ]

K ≡

SELECT A1, . . . , An, TA(S, [α1, . . . , αn])

FROM α1 = JR1K, . . . , α1 = JRnK

[WHERE P AND TP(S, [α1, . . . , αn])]

JRK ≡ R L() returns α

JR LK ≡ R L returns L

In the translation, a temporal attribute is added to the SELECT clause

SELECT A1, ..., An, TA(S, [α1, . . . , αn])

TA(S, [α1, . . . , αn]) is a semantic function, called the temporal attribute function, that takes a tem-

poral semantics annotation, S, and a list of table references, [α1, . . . , αn] and constructs a pair of
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times. A temporal predicate is also added to the WHERE clause (or if the WHERE clause is absent, it

is created) as follows.

WHERE P AND TP (S, [α1, ..., αn])

TP (S, [α1, ..., αn]) is also a semantic function, called the temporal predicate function, that is added

to the WHERE clause. The temporal predicate function ensures that the begin time is before or equal

to the end time, that is, that the constructed interval is a viable interval.

For example, consider the following translation.

J@temporal[max(@1.b,@2.b); min(@1.e,@2.e)]

SELECT B.X, C.Y

FROM B, C

WHERE B.X > C.YK

K ≡

SELECT B.X, C.Y, TA([max(@1.b,@2.b); min(@1.e,@2.e)], [α1, α2])

FROM α1 = JBK, α2 = JCK

WHERE B.X > C.Y AND TP ([max(@1.b,@2.b); min(@1.e,@2.e)], [α1, α2])

K ≡

SELECT B.X, C.Y, TA([max(@1.b,@2.b); min(@1.e,@2.e)],[A1,A2])

FROM B A1, C A2

WHERE B.X > C.Y AND TP ([max(@1.b,@2.b); min(@1.e,@2.e)],[A1,A2])

K ≡

SELECT B.X, C.Y,

max(A1.begin, A2.begin) as begin,

min(A1.end, A2.end) as end

FROM B A1, C A2

WHERE B.X > C.Y AND

max(A1.begin, A2.begin) <= min(A1.end, A2.end)
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The temporal attribute and predicate functions utilize the temporal semantics to specify begin and

end time constructors. TP tests whether the constructed begin time is before or equal to the con-

structed end time, while TA produces a pair of attribute values: the begin time and the end time

values.

5.2.1 INTERSECT

The SQL INTERSECT clause is used to evaluate the intersection of two SELECT statements.

It returns each row from the evaluation of the first SELECT statement that is identical to some row

in the evaluation of the second SELECT statement.

J@temporal S

(SELECT A1, . . . , An FROM R1, . . . , Rn [WHERE PR])

INTERSECT

(SELECT A1, . . . , An FROM S1, . . . , Sn [WHERE PS ])

K ≡

SELECT A1, . . . , An, TIME

FROM FLATTEN (

SELECT A1, . . . , An, TS INTERSECTION(α1.TIME,α2.TIME) AS TIME

FROM

(J@temporal S SELECT A1, . . . , An FROM R1, . . . , Rn [WHERE PR]K) α1 = L( )

COGROUP

(J@temporal S SELECT A1, . . . , An FROM S1, . . . , Sn [WHERE PS]K) α2 = L( )

ON (A1, . . . , An)

) WHERE TIME IS NOT NULL

5.2.2 EXCEPT

The SQL EXCEPT clause/operator performs set difference between two relations, that is, EX-

CEPT returns only rows in the first SELECT, which are not in second SELECT statement.

J@temporal S
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(SELECT A1, . . . , An FROM R1, . . . , Rn [WHERE PR])

EXCEPT

(SELECT A1, . . . , An FROM S1, . . . , Sn [WHERE PS ])

K ≡

SELECT A1, . . . , An,TIME

FROM FLATTEN (

SELECT A1, . . . , An,TS DIFFERENCE(α.TIME)

FROM

(J@temporal S SELECT A1, . . . , An FROM R1, . . . , Rn [WHERE PR]K) α1 = L( )

COGROUP

(J@temporal S SELECT A1, . . . , An FROM S1, . . . , Sn [WHERE PS]K) α2 = L( )

ON (A1, . . . , An)

) WHERE TIME IS NOT NULL

5.2.3 UNION

The SQL UNION clause is used to perform the union of two SELECT statements.

J@temporal S

(SELECT A1, . . . , An FROM R1, . . . , Rn [WHERE PR])

UNION

(SELECT A1, . . . , An FROM S1, . . . , Sn [WHERE PS ])

K ≡

SELECT A1, . . . , An, TIME

FROM FLATTEN (

SELECT A1, . . . , An, TS COALESCE(α.TIME)

FROM

(J@temporal S SELECT A1, . . . , An FROM R1, . . . , Rn [WHERE PR]K)L( )

UNION

(J@temporal S SELECT A1, . . . , An FROM S1, . . . , Sn [WHERE PS]K)L( )
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GROUP BY(A1, . . . , An) α = L( ))

)

5.2.4 Subqueries

A subquery is a query in the WHERE clause of a SELECT statement. There are three kinds

of subqueries based on the kind of result they produce: scalar, single column, or multi-column.

Different keywords are used to compare an outer query value with the result produced by a subquery.

A scalar producing subquery produces a single value, so scalar comparison predicates, e.g., equals,

can be used. A single-column producing subquery essentially produces a list so membership IN the

list can be tested, or other comparisons like a value is > ALL the values in the list. A multicolumn

subquery can only be tested to determine whether it produces a result, using the EXISTS keyword.

A subquery might also be correlated.

A correlated subquery references a table variable from the outer query. Correlated subqueries

are the same as non-correlated queries for our purposes, assuming the inner and outer queries share

the same annotation.

For our purposes, the interesting part about a subquery is that the result it produces varies over

time. So a scalar producing subquery produces a single value at any time t, and at different times

could produce different values.

Single-column producing Subqueries

Single-column producing subqueries produce a list of values. Different operators are used to

test the list.

The outer query can test to see if an expression, X , is IN the result of a single-column produc-

ing subquery.

J@temporal S

SELECT A1, . . . , An

FROM R1, . . . , Rm

WHERE C AND X IN (SELECT B FROM T )
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K ≡

J@temporal S

(SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C)

INTERSECT

(SELECT T.A1, . . . ,T.An

FROM (SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C ) A0 JOIN T ON (X))K

The intuition is that the subquery behaves like a (left) semi-join. The second operand in the

INTERSECT performs a superset of the semi-join, since duplicates could be created. To remove the

duplicates obeying the temporal semantics, we perform an INTERSECT with the original relation.

The NOT IN operator used with a subquery translates to an EXCEPT rather than an INTERSECT

operation as follows.

J@temporal S

SELECT A1, . . . , An

FROM R1, . . . , Rm

WHERE C AND X IN (SELECT B FROM T )

K ≡

J@temporal S

(SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C)

EXCEPT

(SELECT T.A1, . . . ,T.An

FROM (SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C ) A0 JOIN T ON (X))K

The intuition is to remove from the outer query all of the times that X is in the subquery (produced

by the semi-join).

Another form uses a comparison to a value, e.g., <= ALL. We refer to this as P ALL below.

J@temporal S

SELECT A1, . . . , An

FROM R1, . . . , Rm
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WHERE C AND X P (SELECT B FROM T )

K ≡

J@temporal S

(SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C)

EXCEPT

(SELECT T.A1, . . . ,T.An

FROM (SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C ) A0 JOIN T ON ( 6 (X P B)))K

The intuition is that we compute values and times when the negation of the comparison P holds.

We remove these values and times from the outer query using EXCEPT.

The P ANY version of the subquery is similar, but uses INTERSECT. We omit the denotation

for brevity.

Scalar-producing subquery

A scalar producing subquery produces a result that is then compared to a value in the outer

query using comparison operator P , e.g., >=.

J@temporal S

SELECT A1, . . . , An

FROM R1, . . . , Rm

WHERE C AND X P (SELECT B FROM T )

K ≡

J@temporal S

(SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C)

INTERSECT

(SELECT T.A1, . . . ,T.An

FROM (SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C ) A0 JOIN T ON (X P B))K

The second operand in the INTERSECT produces tuples and times where X P v (v is the value

produced by the subquery) holds. For those times, the INTERSECT chooses the appropriate tuples

from the outer query.



38

Multi-column producing subquery

A multi-column subquery can be tested to determine if it produces any tuples (using EXISTS)

or produces nothing (using NOT EXISTS). The subquery may produce tuples at some times, but

not at others. The intuition to the translation is to select tuples in the outer relation that live at the

same time as some tuple in the inner relation. Note that because of correlated subqueries the inner

relation is computed for every tuple in the outer relation.

J@temporal S

SELECT A1, . . . , An

FROM R1, . . . , Rm

WHERE C AND EXISTS (SELECT B1, . . . , Bi FROM T1, . . . , Tj WHERE F )

K ≡

J@temporal S

(SELECT A1, . . . , An FROM R1, . . . , Rm WHERE C)

INTERSECT

(SELECT T.A1, . . . ,T.An

FROM (SELECT A1, . . . , An FROM R1, . . . , Rm, B1, . . . , Bi WHERE C AND F ) T )K

The NOT EXISTS form replaces INTERSECT with DIFFERENCE.

5.2.5 Outer Join

A left outer join returns all the values from an inner join plus all values in the left table that do

not match to the right table, including rows with NULL (empty) values in the link field. Right outer

join is the symmetric case and full outer join is the union of the left and right outer joins. We give

the left outer join translation below.

J@temporal S

SELECT A1, . . . , An

FROM R LEFT OUTER JOIN S ON (J)

[WHERE P ]

K ≡
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J@temporal S

SELECT A1, . . . , An

FROM R JOIN S ON (J)

[WHERE P ] K

UNION

SELECT A1, . . . , An,TIME FROM

(SELECT A1, . . . , An

FROM ( R

EXCEPT

(SELECT R.*

FROM R JOIN S ON(J)

[WHERE P]) QK

) R LEFT OUTER JOIN S

5.2.6 Grouping and Aggregation

This area has been well-studied in previous research in temporal databases [28]. We leave

grouping and aggregation for future work.

5.3 Examples

In this section we present some examples of the translation, and how it works in the evaluation

of a query.

Now let’s focus on the translation and evaluation of a temporal INTERSECT. Consider the

relations in Figure 5.1. First, let’s evaluate a sequenced temporal INTERSECTION. As the first

step, COGROUP is applied to the relations, yielding the relations shown in Figure 5.2. Next, the

relations are COALASCEd, resulting in the intermediate result of Figure 5.3 Then the coalesced

relations are INTERSECTed (Figure 5.4. Finally, the relations are FLATTENed (Figure 5.5).

Now let’s consider a preceding EXCEPT. Initially, the timestamps are interpreted as given in

Figure 5.6. Again, the first step is to COGROUP as shown in Figure 5.7. Then the relations are
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Employee Table One
dept time
Shoes [1,7]
Hats [8,9]
Shoes [6,9]
Shoes [1,2]
Camera [8,9]

Employee Table Two
dept time
Hats [1,14]
Shoes [1,6]
Shoes [8,11]
Camera [3,14]
Tape [2,5]

Fig. 5.1: Example Tables of Employees

dept time
Shoes {(Shoes,[1,7]),(Shoes,[6,9]),

(Shoes,[1,2])}
{(Shoes,[1,6]),(Shoes,[8,11])}

Hats {(Hats,[8,9])},{(Hats,[1,14])}
Camera {(Camera,[8,9])},{(Camera,[3,14])}
Tape { (Tape,[2,5])}

Fig. 5.2: After COGROUP

dept time
Shoes { (Shoes,[1,9])},

{(Shoes,[1,6]),(Shoes,[8,11])}
Hats {(Hats,[8,9])}, {(Hats,[1,14])}
Camera { (Camera,[8,9])},{(Camera,[3,14])}
Tape {(Tape,[2,5])}

Fig. 5.3: After COALESCE

dept time
Shoes (Shoes,[1,6],(Shoes,[8,9])
Hats (Hats,[8,9])

Camera (Camera,[8,9])
Tape (Tape,[2,5])

Fig. 5.4: After INTERSECT
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dept time
Shoes [1,6]
Shoes [8,9]
Hats [8,9]

Camera [8,9]
Tape [2,5]

Fig. 5.5: After FLATTEN

COALESCED (Figure 5.8) and the EXCEPT is done (Figure 5.9).

dept time
Shoes [1,MAX]
Hats [8,MAX]
Shoes [6,MAX]
Shoes [1,MAX]
Camera [8,MAX]

dept time
Hats [1,MAX]
Shoes [1,MAX]
Shoes [8,MAX]
Camera [3,MAX]
Tape [2,MAX]

Fig. 5.6: Preceding Except Tables

dept time
Shoes {[1,MAX],[6,MAX]},

{[1,MAX],[8,MAX]}
Hats {[8,MAX]},{[1,MAX]}
Camera {[8,MAX]},{[3,MAX]}
Tape {[2,MAX]}

Fig. 5.7: Preceding COGROUP

Finally, let’s consider a nonsequenced UNION. Initially, the timestamps are interpreted as

given in Figure 5.10. Again, the first step is to COGROUP as shown in Figure 5.11. Finally, the

relations are FLATTENed yielding the result shown in Figure 5.12.
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dept time
Shoes {[1,MAX]},{[1,MAX]}
Hats {[8,MAX]},{[1,MAX]}
Camera {[8,MAX]},{[3,MAX]}
Tape {[2,MAX]}

Fig. 5.8: Preceding COALESCE

dept time
Hats [1,7]
Camera [3,7]
Tape [2,MAX]

Fig. 5.9: Preceding EXCEPT Result

dept time
Shoes [MIN,MAX]
Hats [MIN,MAX]
Shoes [MIN,MAX]
Shoes [MIN,MAX]
Camera [MIN,MAX]

dept time
Hats [MIN,MAX]
Shoes [MIN,MAX]
Shoes [MIN,MAX]
Camera [MIN,MAX]
Tape [MIN,MAX]

Fig. 5.10: Nonsequenced Interpretation

dept time
Shoes [MIN,MAX],[MIN,MAX]
Hats [MIN,MAX],[MIN,MAX]

Camera [MIN,MAX],[MIN,MAX]
Tape [MIN,MAX]

Fig. 5.11: Nonsequenced COGROUP

dept time
Shoes [MIN,MAX]
Hats [MIN,MAX]

Camera [MIN,MAX]
Tape [MIN,MAX]

Fig. 5.12: Nonsequenced FLATTEN
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CHAPTER 6

IMPLEMENTATION

Our Goal is to translate Temporal SQL to Nested SQL. The translation is a two step process.

First, what should go into the translation. Second, where should the translated code go.

To understand the above two steps let us consider a temporal SELECT statement using deno-

tational semantics.

@temporal [max(1,(max(@1.b,@2.b)); min(7,min(@1.e,@2.e))]

SELECT * from r,s;

The translated SELECT is given below.

SELECT *, max(1,(max(A0.begin,A1.begin)) AS begin,

min(7,min(A0.end,A1.end)) AS end

FROM r A0,s A1

WHERE max(1,(max(A0.begin,A1.begin)) <= min(7,min(A0.end,A1.end))

The first step is to generate labels for the tables listed in the FROM clause.

FROM r A0,s A1

These labels are used in the other parts of the translation. Next, the temporal attribute function,

TA, and temporal predicate function, TP , are computed. TA evaluates to the following, which is

appended to the SELECT clause to project the “hidden” temporal attributes for the result.

max(1,(max(A0.begin,A1.begin)) AS begin,

min(7,min(A0.end,A1.end)) AS end

TP generated code to ensure that the start time is less than or equal to the end time. It evaluates to

the following, which is added as a conjunct in the WHERE clause.

max(1,(max(A0.begin,A1.begin)) <= min(7,min(A0.end,A1.end))
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6.1 Translation using SQLite and ANTLR

To implement the translation we choose to use the SQLite grammar. SQLite is an in-process

library that implements a self-contained, serverless, zero-configuration, transactional SQL database

engine. SQLite has an ANTLR, version two, grammar. ANTLR is a parser generation tool, similar

to a combination of LEX and YACC. ANTLR is pure Java and generates a parser in Java.

To implement the translation we rewrote the token stream. ANTLR first converts a program

(text) into a stream of Token objects. It is easy to manipulate the program by inserting into, deleting

from, and modifying the tokens using the following methods.

• InsertBefore(Token t, Object text): InsertBefore tokenstream goes to the token ’t’ and adds

’text’ to it before the end of token.

• InsertAfter(Token t, Object text): InsertAfter tokenstream goes to the token ’t’ and adds ’text’

to it after the token.

• Replace(Token t, Object text): Replace tokenstream replaces the token ’t’ value with the ’text’

that is being inserted.

• itemize

The token stream rewrites were woven into the grammar as semantic actions. Consider the

grammar rule for aliasing the table names.

table_or_subquery :

( database_name ’.’ )? table_name

( K_AS? table_alias )?

We need to add semantic actions to generate a new label or capture the existing table variable and

add it to the list of table variables. This is complicated by the potential for name clashes. A name

clash occurs when a generated table variable is used elsewhere in a query. First we have to capture

the table name token (for other purposes).

table_or_subquery :

( d=database_name ’.’ )? t=table_name
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The above line does the job for us. t as the table name token. We add the text of the token to the

list of table names. In case there is no alias name we will assign a unique name to it. The below

code performs that task.

{

// Capture the table name

tableNameList.add((($d)? $d.text . "." : "") . $t.text);

}

In case we have an alias name we need to grab its token, as follows.

K_AS? r=table_alias

r as the table alias. If the alias exists, then we should use the alias, otherwise we should generate a

new alias, or rather remember in the token stream where a new alias should be placed.

{

if ($r != null) {

// have alias, add to list

aliasNames.put(new Alias($r.text));

// maintain a set of previously used table names

aliasNameSet.add($r.text);

} else {

// generate a previously unused alias, update alias set

Alias alias = generateAlias(aliasNameSet,alias);

// use the alias

aliasNames.put(alias);

// insert into list of token stream places to update

aliasTokenList.add(new Pair(t,alias));

}

}

Putting it all together we get the following rule.
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table_or_subquery :

( d=database_name ’.’ )? t=table_name

{

// Capture the table name

tableNameList.add((($d)? $d.text . "." : "") . $t.text);

}

K_AS? r=table_alias

{

if ($r != null) {

// have alias, add to list

aliasNames.put(new Alias($r.text));

// maintain a set of previously used table names

aliasNameSet.add($r.text);

} else {

// generate a previously unused alias, update alias set

Alias alias = generateAlias(aliasNameSet,alias);

// use the alias

aliasNames.put(alias);

// insert into list of token stream places to update

aliasTokenList.add(new Pair(t,alias));

}

}

As an example, suppose we are considering the below temporal SELECT statement.

@temporal [max(1,(max(@1.b,@2.b)); min(7,min(@1.e,@2.e))]

SELECT *

FROM r, s, t A1;

Then we will get the following output based on the above grammar. A0 and A2 are generated table

aliases. A1 would have been generated but already existed as a table alias so A2 was generated
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instead.

SELECT *

FROM r A0, s A2, t A1;
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CHAPTER 7

CONCLUSION AND FUTURE WORK

Temporal databases are databases that have special capabilities for handling time. Prior re-

search identified two common semantics for temporal operations: sequenced and nonsequenced.

Sequenced semantics evaluates an operation in each time instant using only the data alive at that

time. Nonsequenced semantics, in contrast, means that an operation explicitly references and ma-

nipulates the timestamps in the data. The semantics were considered as very different.

In this thesis we proposed a novel framework that shows both sequenced semantics and non-

sequenced semantics are variants of a general temporal semantics. The general semantics uses

different slices of the database. A slice is the data “alive” at a given time. At its core sequenced

semantics considers the data alive in an instantaneous slice, that is only data whose lifetime overlaps

the instant is part of the database state at that instant. Nonsequenced semantics then has a different

slice. All of the data in the database is alive at every instant. Hence, they are both variants of a

general temporal semantics. Other semantics, such as preceding semantics can be defined using

different slices. Preceding semantics is the data alive up to a given time.

The primary contribution of this thesis is the translation from temporal SQL to nested SQL. In

order to do the translation we use annotations. In Temporal SQL an SQL query can be annotated

with a temporal semantics. The annotation imbues the query with a temporal interpretation. The

query is evaluated using the temporal semantics specified in the annotation. We adopted source-to-

source translation layer, and translated the output to nested SQL rather than SQL. “Nested SQL” is

an SQL with non-1NF constructs, necessary for computing with bags of tuples and timestamps.

We provide a denotational semantics for translating temporal SQL to nested SQL. We imple-

mented the denotational semantics using an SQLite ANTLR grammar. We gave a denotational

semantics for SQL-92, except for grouping and aggregation. Temporal grouping and aggregation

have been previously researched [28].

In conclusion, we showed that it was possible to translate temporal SQL to nested SQL. But
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much remains to be done. In particular, the key remaining challenge is to implement nested SQL. We

think that our strategy for implemented temporal SQL can be reused for other kinds of metadata,

e.g., privacy, security, lineage, etc. So the blueprint we developed could be used for translating

lineage SQL to nested SQL. But supporting the plethora of metadata requires an implementation of

nested SQL.

We also need to consider post SQL-92 extensions of SQL, such as CUBE BY and windowing

functions. The SQL language is a moving target and we have only considered the basic parts of

SQL’s query construct.
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