Model Based Design and Auto Coding of an FPGA Based Satellite Control System

Jorden Luke

What is Model Based Design?

Model-Based Design

Traditional design process

- 1. An expert creates a high level computer simulation: Control system, commutation, etc.
- 2. Engage with a firmware developer/expert to code model to FPGA hardware.
- 3. Lots of back and forth between these two experts.

FPGA Implementation

- Simulink is often used to model the spacecraft system

 - ADCS subsystem
- The programmer often creates diagrams of the FPGA functionality required
- Text entry of the system in a descriptive language like HDL
- Synthesis tools take HDL code and place on an FPGA

Model Direct Implementation

Model Based Auto coding

- 1. Expert creates a model.
- 2. Expert generates FPGA code from model.
- 3. Expert deploys code to hardware.
- 4. Expert confirms that model is working properly on hardware.

Why FPGA for Small Sats?

- Ease of Parallel and real time processing.
- Radiation Tolerance.
- Advanced Computational Capabilities.

Simulink/HDL Coder

Simulink

- R Block level design
- Arithmetic functions (filters, FFT's)
- State flow

 - State Machines
- Real HDL Encoder
 - Auto codes both to HDL

Where we are using this process

ADCS

Ion Drift Meter

J. Transmission
J. Transmi

Ion Drift Meter Hardware

- Reference of FPGA Microsemi Igloo

 - Recketizes Data
- - Designed to measure currents down to femto amps

The Drift Meter Simulink Model

The Drift Meter Simulink Model

Inside Look at the DDC FSM

DDC Chart

State Flow Diagram

Generated Code Vs Model

IN	<pre>std_logic;</pre>
IN	<pre>std_logic;</pre>
OUT	<pre>std_logic_vector(79 DOWNTO 0); ufix80</pre>
OUT	<pre>std_logic;</pre>
OUT	<pre>std_logic;</pre>
OUT	<pre>std_logic_vector(7 DOWNTO 0); uint8</pre>
OUT	std logic vector(31 DOWNTO 0) wint32

uint32

Outputs From Scopes

Simulink Scope

Bit Scope

Synthesized Model

UtahState University

Results

- We were able to use Simulink and HDL coder to talk to low level hardware.
- We were able to use Simulink to quickly generate HDL code to packetize our data.

ADCS

- Full simulation of AttitudeDetermination and ControlSystem
- Real orbit simulation of ADCS
- Real Hardware in the loop

ADCS Model

Conclusions

A really good option for faster development

R Produces well optimized HDL Code

Questions?

