

13th Annual Summer CubeSat Developer's Workshop August 6-7, 2016, Logan, Utah

Attitude Determination and Control System Design

for STU-2A Cubesat and In-Orbit Results

Presented by Shufan Wu

Guowen Sun, Xiwang Xia, Shufan Wu, Ziyi Wu, Wen Chen, Zhao Li Shanghai Engineering Centre for Microsatellites, Chinese Academy of Science, Shanghai, China shufan.wu@mail.sim.ac.cn

Outline

• STU-2A Mission Overview

• ADCS Hardware

ADCS Algorithm

In-orbit Data Analysis and Experiment Results

Lessons learned

Size&Mass

3U Cubesat with a mass of 2.9kg; 114 mm × 114 mm × 343.3 mm; Launched on Sept. 25, 2015.

Missions

taking pictures of polar with an onboard CMOS color camera; Demonstration of Cubesats Networking based on Gamalink and CSP; Demonstration of MEMS based cold-gas micropropulsion ; In-orbit demonstration and verification of the GPS/Beidou receiver.

Cubesats in China

STU-2 are the first batch of nano satellites in China that are made in accordance with the Cubesat standard.

Requirements for ADCS

Pointing accuracy $\leq 2^{\circ}$ Attitude stability $\leq 0.28^{\circ}$ /s.

Designed performance of ADCS

ADCS Performance	Value
Attitude Determination Precision	$\leq 1^{\circ}$ (3 σ)
Pointing Accuracy	$\leq 2^{\circ}$ (3 σ)
Attitude Stabilization Precision	$\leq 0.1^{\circ}$ /s

• ADCS Subsystem Architecture

ADCS Hardware

Sensors and Actuators Type

3-Axis Magnetometer HMC5843 ×1

3-Axis Magnetometer HMC5883L ×1

Coarse Sun Sensors SLCD-61N8 Photodiodes ×5

> MEMS 3-Axis gyro MPU-3300 ×1

Fine Sun Sensor FSS-4 ×1

> Star Tracker ST-200 ×1

Magnetic coils ×3

Reaction wheels RW-1 ×3

S. Wu, 13th Annual Summer CubeSat Developer's Workshop,

Attitude Determination Sensors

> Attitude Control Actuators

ADCS Algorithm

Launch

• The basic algorithm is TRIAD, which determines the attitude by use of the knowledge from two non-parallel measuring vectors.

rosa

In-orbit Data Analysis and Results

Detumbling Phase

94 minutes after launch, the first received signals showed that the satellite had completed rate damping (three axis angular velocity have been reduce within 0.3° /s) within one orbit period time and entered Sun Pointing Mode automatically.

The in-orbit result was in conformity with simulation.

microsat

In-orbit Data Analysis and Results

Sun Pointing / Sun Acquisition

Sun vector in body coordinate system

Charge-discharge curve

In-orbit Data Analysis and Results

Nadir Pointing Mode

Three attitude angles were constrained within 1°. The time period is from 08:20 to 08:26, 30th Sep, 2015.

In-orbit Data Analysis and Results

• CMOS Camera Image

Image of polar glaciers captured on Feb 23 00:10:30 2016 UTC

Image of polar glaciers captured on Feb 23 23:41:34 2016 UTC

In-orbit Test Experiences – Thruster Firing

Micro-Propulsion In-Orbit Firing

On Nov 5th 2015, 10:09(UTC), thruster B and C are commanded for 5 min firing @ 1mN, aiming to raise the orbit

Firing Results

- Thruster B falls into problem rapidly
- Unbalanced thrust level leads high rate spinning
- Spinning rate upto ca 65 deg/s (measured by redundant MEMS gyro on Nano-Hub)

13

The resulted orbit change becomes very limited – ca 0.6km

In-orbit Test Experiences – Oscillation

14

• Local Oscillation work-point at ca 65 deg/s

- Initial tests try to reduce spin rate by counter-firing the thrusters
- Reduced 5 deg/s by firing in one pass, resumed back at ca 65 deg/s in next pass
- Reduced 10 deg/s by firing in one pass, back to 65 deg/s again in next pass

Local Oscillation work-point at ca 65 deg/s

- Ts= 1 sec delay in the magnetic control loop (take the measurement before sending out the magnetic control, to separate disturbance)
- > This delay in the control loop results in a steady oscillation work-point
- Simulation results revealed the oscillation work-point at ca 65 deg/s
- If remove the delay in simulation, the oscillation disappear

Condition back to 0 work-point

- Simulation shows, the initial rate needs to be below 20 deg/s
- Then, magnetic control can reduce the rate down to zero

In-orbit Test Experiences – Attitude Rescue

Rescue Process

105-

- Switch off ADCS loop
- 7 days successive firing to reduce the rate
- Rate down to ca 14 deg/s
- Switch on the ADCS
- Magnetic control bring the spin rate down to zero

Thanks to:

- CSP allows direct access to subsystem
- redundant MEMS gyro and magnetometer
- Open-loop control

Successful I Rescue around the 2015 Xmas week

Sequence of thrust firings to de-spin the STU-2A

15

Problems and Lessons Learned (1)

Redundant back ups of key sensors & actuators

- Redundant MEMS gyro
- Redundant magnetometer
- Cold-gas thrusters additional measure for attitude

□Magnetic residuals

- > leads to rotation in pitch axis one rotation / orbit
- accurate attitude performance was not achieved in STU-2A
- > the 18650 lithium-ion batteries could pose magnetic dipole

□ In-orbit injection of control parameters & software patches

- very important to calibrate off-set or errors
- ➢ if so, residual dipole can be compensated
- if so, oscillation work-point @ 65deg/s can be removed

Problems and Lessons Learned (2)

□ Magnetic Rod vs Magnetic Coil

- Magnetic rod gives higher flux than coils built in the PCB
- Thus to have more capacity to fight magnetic residuas
- Rod is preferred if space allows

□ Magnetometer & Magnetorque layout

- Magnetometer shall be kept away from large current devices, e.g. PC-104 socket (TM pulses cause high current,...)
- Magnetomer far away from magnetic coils or rods if possible
- Mangetometer on a deployed boom is preferred if possible

□Sensors testing coverage

- Fine sun sensor testing was not professional, accuracy degraded
- Shall use Sun simulator at varying angles and temperatures to calibrate the accuracy

han Ks

Prof Dr Shufan Wu Chinese Academy of Science(CAS) Shanghai Engineering Centre for Microsatellite Emial: shufan.wu@mail.sim.ac.cn Tel: 021-50735022, 15800537342