Solar Cell CIC Optimization and Factorization for CXBN-2

Lead Engineer:
Jacob R. Wade

Why?

Dicing solar cells can be an effective method of optimizing surface area and packing factor on CubeSats, while providing the necessary wattage.

CXBN2's solar panels will be tested to see if dicing solar cells and electrically connecting the string of diced cells in series will keep a positive power output for mission success.

Need to dice solar cells in order to achieve voltage matching for each string of cells.

Purpose of CIC Dicing

CIC- Solar Cell Interconnects Coverglass
This project will involve dicing the solar cell CIC to satisfy the small satellite system requirements while having the most effective surface area and providing the necessary wattage.

CXBN-2 Solar Cell System

Original Mission

- Double fold out solar panels have a double hinge system

Single Fold Out Design

- Payload power requirement is less, each

CXBN2 original solar array design payload reduced to ~1 watt each.

- Less Risk
- Less Expensive

CXBN2 Model

Solar Cell

- Solar Cells are from Azur Space.
- Approximately 30\% Triple Junction GaAs Solar Cell
- Type: TJ Solar Cell 3G30C - Advanced
- Equipped with an integrated bypass diode, which protects the adjacent cell in the string.

Before Dicing Full Cell Test

Azure Space Data

Azure Space Solar Cell Testing

Scale Factor from Azure Space Data sheet to testing procedures by a factor of 1.05.
Original Cell Data From Azure Space

Date: $\quad 3 / 23 / 15$

Cell: 80361134458
80361134460

Isc mA	Voc V
509.3	2.694
512.5	2.713

Max Power 1372.0 mW
1390.4 mW

Full Cell Data Before Dicing

Azure Space Solar Cell Testing

Full Cell Test Data (Measured)

Date: $\quad 3 / 23 / 15$

Cell: 80361134458

Isc mA	Voc V	Max Power
489.5	2.46	1204.1 mW
502.3	2.48	1245.7 mW

Solar Cell Before Dicing Dimensions

Cut area
-12 mm^{2}

Cut area
Kerf $-6 \mathrm{~mm}^{2}$
$-6 m m^{2}-6 m m^{2}$

Solar Cell Dicing Process

Diamond embedded dicing saw

Dicing Saw
Work was performed at University of Louisville Miso Nano Technology Center
Cutting the cells in two cuts and three pieces to test efficiency.

Entering in cutting dimensions

CubeSats need specific cuts for maximum surface area and to fit to design constraints.

After Dicing Dimensions

Solar Cell after dicing (backside)

Solar Cell diced and snapped for separation (front side)

Testing after dicing

Azure Space Solar Cell Testing

Original Cell Data From Azure Space

Cell: 80361134458
80361134460

Isc mA
509.3
512.5
Voc V
2.6
2.7

Max Power 1372.0 mW 1390.4 mW

Azure Space Solar Cell Testing

Cut Cell Test Data (Measured)

| | Isc mA | Voc V | Max Power |
| ---: | :---: | :---: | :---: | :---: |
| Cell: 80361134458 | 169.6 | 7.8 | 1323.4 mW |
| 80361134460 | 170.6 | 7.6 | 1297.0 mW |

Dicing Issues

Cell Chipping and Fogging along cuts.

What caused the fogging and cracking?

Chipped Cell after dicing

Solar Cell Cuts with fogging

Direction

Possible Causes of fogging damage

- Speed rate of dicing saw.
- Vibrations from saw.
- Temperature increase.
- Water might not have been the best solution to dice with.
- Will thermal bake and vacuum remove fogging?

Testing at MSU

- After cells are diced they under went performance testing determining
- Power output and voltage max power, to Azure Space datasheet measured under AMO.
- Extrapolate Cut Cell Power Output @ AMO?
- Compare Efficiency of cells at max power.

Testing Model (Indoor and Outdoor)

Conditions:

Indoor under Halide and Flood lamps to simulate part of the visible light solar spectrum from $500 \mathrm{~nm}-700 \mathrm{~nm}$. Humidity $=0 \%$ Room Temp $=20^{\circ} \mathrm{C}$

Outside: AM1.0-1.2;
Sunny (No Clouds)
Region Forecast- $26.6-31.6^{\circ} \mathrm{C}$
Temp. Measured- $31.1^{\circ} \mathrm{C}$
Humidity 88\%
Wind @ 2MPH (干WC)
Time: 12:51 AM - 1:51 PM
Cells were placed onto 3D printed plates

Testing Performance after dicing at MSU

Solar Light Table- Uncalibrated but simulates solar spectrum inside.

Indoor Solar Light Table

AMD
The spectrum outside the atmosphere, approximated by the $5,800 \mathrm{~K}$ black body, is referred to as "AM0", meaning "zero atmospheres". Solar cells used for space power applications, like those on communications satellites are generally characterized using AMD.

AM

The spectrum after travelling through the atmosphere to sea level with the sun directly overhead is referred to, by definition, as "AM1". This means "one atmosphere". AM1 ($\mathrm{z}=0^{\circ}$) to AM1.1 ($\mathrm{z}=25^{\circ}$) is a useful range for estimating performance of solar cells in equatorial and tropical regions.

Testing Block Diagram

Indoor Solar Table

Halide \& Flood Lamp
Outside testing

Power Output Results (AM1)

Full Cell Test 1
(2.2v, 0.837 W)

$\operatorname{Cut}_{\text {AMO }}=\left(\text { Cut }_{\text {AM1.5 }}\right)^{*}\left(\left(\right.\right.$ Full $\left._{\text {AMO }}\right) /\left(\right.$ Ful $\left.\left._{\text {AM1 }}\right)\right)$
Cut $_{\text {AMO }}=(0.837 \mathrm{~W})(1.205 \mathrm{~W}) /(0.812 \mathrm{~W})$

Cut Cell Test Max Power Point(6.78v,0.732W)

Full Cell Test 2-
(2.22v,0.787 W)

Thermal Vacuum Residual Gas Analysis Testing

Thermal Vacuum RGA test to determine the effect of the space environment on fogged regions on diced cells.
Start = Saturday, June 04, 2016
4:46:40 PM:000
Span = 4 Day(s) 20 Hour(s) 33 Min(s) $20 \mathrm{Sec}(\mathrm{s})$

Three Thermocouples (TC)
TC1- Between Aluminum plate and kapton Tape.
TC2- Cell \#60 (Top Row)-Left Cut TC3- Cell \#58 (Bottom Row)-Right Cut

Other Measurements
Platen Temperature
Oven Temperature- $21.85^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$ Pressure- 9.3×10^{-7} Torr

Test Conditions

Oven Max	$63.6{ }^{\circ} \mathrm{C}$	
TC1 Max	$100.8{ }^{\circ} \mathrm{C}$	
TC2 Max	$98.6{ }^{\circ} \mathrm{C}$	
TC3 Max	101.8	${ }^{\circ} \mathrm{C}$
Platen Max	92.3	${ }^{\circ} \mathrm{C}$
Pressure	$9.98 \mathrm{E}-07$	Torr

Post TVAC Fogging Inspection Cut Cell

Left Cut

Left Center

Right Center

Right Cut

Full Cell vs Cut Cell CXBN2 Mission Requirements

- Full Cell is 29\% efficient.
- Cut cell with no damage is 29% efficient.
- Cut cell at AM1.5 is ~28\% due to fogging.
- Would have to connect two cells that are diced in series with fold out panel to keep solar array at max power output and solar efficiency.

Cut cells will provide more voltage at Vmp(Voltage Max Power) AM0 compared to full cell.

Conclusions

Dicing method is successful as long as the cut rate stays below $0.5 \mathrm{~mm} / \mathrm{s}$.

Cut cells that are not damaged from dicing will keep the same efficiency and provide the mission requirements needed.

Fogging of cells is permanent damage, proof after environmental testing.

Questions/Comments

