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Near Earth Asteroid (NEA) Scout Overview

The Near Earth Asteroid Scout Will
» Image/characterize a NEA during a slow flyby

+ Demonstrate a low cost asteroid reconnaissance
capability

Key Spacecraft & Mission Parameters
« 6U cubesat (20 cm X 10 cm X 30 cm)
« ~86 m? solar sail propulsion system

« Manifested for launch on the Space Launch System
(EM-1/2018)

« Up to 2.5 year mission duration
<1 AU maximum distance from Earth

Leverages: Combined experiences of MSFC (PM, SE, Solar
Sail, AMT, G&C, and Mission Operations) and JPL (Flight
System Bus, Instrument, Science) with support from GSFC,
JSC, and LaRC

Target Close Proximity Imaging
Reconnaissance with Local scale morphology,
medium field imaging terrain properties, landing

Shape, spin, and local site survey

environment



NEA Reconnaissance
<100 km distance at encounter

50 cm/px resolution over 8@/0 surface .
SKGs: volume, global shape sprn. :

properties, local envr ronment

Reference
stars

Close ﬂroxrmrty Scrence L

 High#resplution imaging, z
10'/px ‘GSD over >30% surface .
i SKGs:'Local morphology
: Regolrth propertres

JPL IntelliCam
(Updated OCO-3
Context Camera)

Target Detection and Approach:
50K km, Light source observation
SKGs: Ephemeris determination and
composition assessment (color)




Mission ConOps
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B ‘Propellantless’ primary propulsion method
using momentum exchange with incident
photons

Leverages MSFC NanoSail-D (2010) and
collaborate arrangements with the
Planetary Society and University of Surrey
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Flight System Overview

Star Tracker/

NEA Imager Drive Control

Electronics*

Iris 2.1 Transponder
and Electronics

i Sun Sensors*
(BCT)

IMU
(Sensonor)

6x 18650 Lithium Batteries

(Panasonic)

Active Mass Translator

@
\ 4X RV:leNmS

(BCT)

Solar Sail
Subassembly

HAWK Solar Array
(MMA) 7



Solar Sail Mission Implementation Challenges

Sail Spool \

€ Solar Sail transient
deployment event and
ground testing

Wrapped

€ Persistent generation of
strong disturbance torques
with limited expendable
propellant

€ Need for robust ADCS to
enable trajectory, Earth-
pointing slews, and NEA
detection/SKG science
objectives

€ Predictable thrust modeling



Single sail membrane drives initial ‘bow tie’ effect: Booms are do not maintain 90deg relative
orientation (less predictable induced disturbance force) and direct sunlight on booms drive
significant thermal deflections






WHAT IS “ACTIVE MASS TRANSLATION"?
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Relative adjustment of part of the spacecraft relative to the other to
alter the inertial properties of the vehicle and align the Solar Sail
Center-of-Pressure (CP) and Center-of-Mass (CM)
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Disturbance Torques: Active Mass Translator (AMT)

Nominal State Trimmed State

KEY

Thrust

CP

Disturbance
Torque
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ADCS: Z-Momentum Build-up

AMT does not completely
eliminate ‘windmill’ torque
about sail normal

Generated torque varies with
roll (‘clock’) angle and solar
angle of incidence (AQOI)

<20deg AOI, RCS must be
used for Z-momentum
desaturation

>20deg AOI, clock angle can
be adjusted to manage or
minimize accumulation of Z-
momentum

Underscores importance of
characterization period early
in the mission

Z torque (Nm)

Z torque variation with roll angle at optimal AMT position
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ADCS: Pointing Stability
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Pointing stability requirements are met after a settling time of:
« ~200 sec for 13 arcsec in 0.7 sec
« ~600 sec for 130 arcsec in 60 sec 14



Integrated model

* Detailed model of booms

* One-element model of membrane

» Structural analysis with thermal
deformations

Thermal model

+ Radiative and
conductive heat

transfer
)

\

Shape
solution

displacements .

Corner

Dynamic model Reduced/simplified
dynamic model

* Fixed-bus model

+ Stiffness matrix includes the effects
of sail tensioning and thermal loading

* Reduced dynamic model is
integrated with the spacecraft bus for
attitude control studies

Sail/Boom CG, rigid mass|
node 999999

Bus CG, rigid mass
l\ node 999997

Equipment recovery
. nodes 800001-800014

Fixed-Bus Sail System Bending Mode

Thrust
model

Attitude
control
model



Summary & Project Status

€ Summary

Numerous challenges exist in implementing a Solar Sail mission,
particularly within a CubeSat form factor

Extensive design, analysis, and testing has been performed to-date to
address these challenges

Difficulty in validating analytical models and performing ground (1G)
demonstrations given gossamer nature of Solar Sails

NEA Scout flight on SLS EM-1 flight opportunity (2018) will provide a
giant leap forward in clarifying our understanding of Solar Sail modeling
and performance

€ Project Status

On track for August Design Review with significant flight procurements
to follow

Flight System integration starts June 2017
Manifested on SLS EM-1 for 2018 deep space flight opportunity
NEA flyby anticipated in 2021
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BACKUP

17



Synergies Across Fields

HUMAN OPERATIONS SCIENCE

Internal structure (regolith vs. Internal structure (regolith vs. monolith)

monolith) Sub-surface properties
Sub-surface properties Detailed mineral, chemical, isotopic composition

General mineral, _
chemical composition Intersection of All

Location (position prediction, orbit)
Size (existence of binary/ternary)
Rotation rate and pole position
Particulate environment/Debris field

Electrostatic charging and Plasma field
Thermal environment

Gravitational field structure
Mass/density estimates

Internal structure Surface morphology and properties

(regolith vs. mor_mlith) Regolith mechanical and geotechnical properties
Sub-surface properties (=

beta)
General mineral,
chemical composition

PLANETARY DEFENSE RESOURCE UTILIZATION

Detailed mineral, chemical composition




P Space Launch System (SLS) Exploration Mission 1 (EM-1)
&, Accommodation




Solar Sail Mission Applications

NEA Reconnaissance & Rapid Outer Solar System
Small Body Science Exploration and Escape

Earth Pole Sitting

Solar & Out of the

Ecliptic Science Toward Higher Performance

Beamed Energy Propulsion
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) 14 Scale Deployment
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NEAS Inside PSC
6U Dispenser

116.2mm

239.4mm
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Boom Deployer Interface

Breadboarding
hardware
development as
proof-of-concept
EDU hardware in
development for
environmental
testing and wire
harness
implementation

Avionics Interface




Thrust Model: Underlying Physics

F _normal

F solar

€ Flat Plate optical model published in
Wright and cited by Mcinnes

Shows tangential and normal components
Tangential component important to torque

L 2R 4

P = solar pressure

A = area

7 = total reflectivity

s = fraction of reflection that is specular
a = sun incidence angle

Bf, Bb = front and back side non-Lambertian
coefficients
ef, eb = front and back side emissivities

ccBf — €,B
it bbcosa}

f, = PA {(1 +7s) cos* a + B(1 — s)Fcosa + (1 —7)
& T &p

ft = PA(1 —fs)cosasinat
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NEA Scout - Reaction Control System (RCYS)
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