Utah State University DigitalCommons@USU

Water Stress

Research

2002

Water & Nutrient Stress Increase Root Exudation

A. Henry Utah State University

J. Chard Utah State University

J. Norton Utah State University

M. Petersen Utah State University

Bruce Bugbee Utah State University, bruce.bugbee@usu.edu

M. Hamilton INEEL

See next page for additional authors Follow this and additional works at: https://digitalcommons.usu.edu/cpl_waterstress

Part of the Plant Sciences Commons

Recommended Citation

Henry, A.; Chard, J.; Norton, J.; Petersen, M.; Bugbee, Bruce; Hamilton, M.; Palmer, C.; and Hess, J. R., "Water & Nutrient Stress Increase Root Exudation" (2002). *Water Stress.* Paper 2. https://digitalcommons.usu.edu/cpl_waterstress/2

This Presentation is brought to you for free and open access by the Research at DigitalCommons@USU. It has been accepted for inclusion in Water Stress by an authorized administrator of DigitalCommons@USU. For more information, please contact digitalcommons@usu.edu.

Authors

A. Henry, J. Chard, J. Norton, M. Petersen, Bruce Bugbee, M. Hamilton, C. Palmer, and J. R. Hess

Water & Nutrient Stress Increase Root Exudation

Develop procedures to:

- Grow *healthy* plants under sterile conditions
- Manipulate root exudation with stress
- Quantify total organic carbon in exudates
- Determine composition of exudates using GC-MS

Implications for Phytoremediation

Our focus for the qualitative analysis: organic acids

The chelating properties of these compounds can be useful for phytoremediation, and they are a class of compound most likely to be found in root exudate

Co-metabolism /

Increased/decreased contaminant mobility

System for sterile culture

HPS ______ lamps

> Laminar flow hood

Treatments

• High NH_4^+

K⁺ stress

Drought

Flooding

Assessing microbial contamination

\$7

36

Verifying Plate Counts: Acridine Orange Stain of Leachate

Clean sample

10 µm

Verifying Plate Counts: Acridine Orange Stain of Leachate

Contaminated sample

10 µm

bacteria

Phenolic Aniline Blue Stain of Root

Clean root

10 µm

Phenolic Aniline Blue Stain of Root

Contaminated root

10 µm

bacteria

Treatment Averages

Cumulative carbon exuded per gram dry plant

	mg C exuded per g dry plant		Percent
	Average	Std. dev.	of control
control	2.6	0.4	
NH4+	2.3	0.1	90
K+	3.7	0.6	144
flood	3.8	0.9	145
drought	4.4	0.5	170

Primary types of exudates

Based on the distribution of carbon released by the roots (mostly soluble with not much left on the sand), we conclude that the exudates we're seeing are mostly compounds released directly from the root, not whole cells released from the root.

GC-MS Data: Exudates

Unlike the TOC graph, organic acids were exuded in the largest

amounts from the drought and

What's in the root vs. what's released by the root

Conclusions

 Stress increases root exudation. Drought and flooding treatments increased release of organic acids.

2. Concentrations of succinic and fumaric acid in the root correlated with amounts released by the root.

