FlexCore – Low-Cost Attitude Determination and Control Enabling High-Performance Small Spacecraft

Dan Hegel Director, Advanced Development Blue Canyon Technologies

BCT Overview

- BCT was founded in 2008 by industry veterans
- Staff of highly experienced engineering, production, procurement, and support personnel (Over 30 spacecraft prior to BCT)
- Over 35 employees, and growing
- 23,000 square feet for manufacturing, test, and mission operations center
- Recent equipment & systems automation investments
- Facility enhancements for volume manufacturing & test
- Located in Boulder, CO

BCT Products

Turn-key Spacecraft Solutions

- XB-based Spacecraft Buses
 - 3U, 6U, 12U, micro-sat
 - Support LEO and GEO missions
- Integration & Test
- Launch Vehicle Integration
- Mission Operations

First Flight of XB Spacecraft: RAVAN Launches mid Sept, 2016

- 3U spacecraft built by BCT
- Radiometer payload provided by JHU-APL

XACT ADCS Module

- Complete high-performance attitude control module
 - Nano Star Tracker for precise attitude determination (Integrated stray light baffle)
 - Three micro sized (or larger) reaction wheels enabling precise
 3-axis control
 - Three torque rods
 - MEMS IMU
 - MEMS Magnetometer
 - Sun sensors
- Multiple pointing reference frames, such as:
 - Inertial
 - LVLH
 - Earth-fixed target
 - Solar
 - Lunar
- Highly-integrated architecture with powerful processing core

0.5U ADCS module

First Flight of XACT: MinXSS Deployed May 16, 2016

• University of Colorado Boulder built & operates the cubesat

Photo: Time Peake, NASA

XACT Points 3U MinXSS Platform with High Accuracy

- Two independent measures of attitude control error
 - XACT telemetry based on star tracker, high-fidelity sun model
 - MinXSS fine Sun Point Sensor (SPS) with 2 asec dark noise
- X axis shows 5 asec performance across tracker boresight (BCT specification is 11 asec)
- Y axis shows 16-20 asec performance, mostly about-tracker boresight (BCT specification is 25 asec)
- Z axis shows 7-9 asec performance
 - Very low inertia makes this axis more sensitive to torque disturbances
 - Axis also has an about-tracker-boresight component
 - Long-term SPS data shows 7 asec performance over many days

Body	RMS Error (asec)					
Axis	Per XACT	Per SPS				
Х	5.3	n/a				
Y	15.8	20.1				
Z	9.4	6.8				

Comparison of XACT & FlexCore

R

Dual-tracker FlexCore should provide 0.002-deg pointing control on all three axes

XACT-Core Hardware

XACT with RWp100 wheels

FlexCore Hardware

• Core XACT technology used with larger BCT wheels and torque rods to support ESPA-class spacecraft

Nano Star Trackers

- High performance design, compatible with a variety of cubesat and nanosat configurations and missions. Features include:
 - Tracks stars down to 7.5 magnitude
 - On-board star catalog (>23,000 stars) and lost-in-space star ID
 - Easy-to-integrate digital interface
 - Compact packaging (CubeSat compatible)

Extended Baffle NST (+28V option, 17.5° half cone sun keep out zone)

Results of Night Sky Testing

13

- High-precision telescope gimbal used to slew NST at various rotation rates
- Mean motion removed, resulting in NST knowledge error

Stray Light Baffle Performance

- Stray light baffle allows operation within <45 deg of sun, and 25 deg of earth.
- Performance was verified using a heliostat at CU LASP
- Results matched analytical model extremely well

Tracker Photo-mode

- User can command Photo mode using selectable gains and integration times.
- Can store and downlink full frame images

Spacecraft display in daylight. (Lobby of CU LASP) Short integration time. "Star Wagon" at night. Long integration time.

Multiple Reaction Wheels Sizes Support Range of S/C Inertias

- BCT Reaction Wheels provide an efficient, high performance solution for spacecraft attitude control
- Available in a range of sizes, providing a wide combination of torque and momentum storage
- Control electronics can be included internally to the reaction wheel, or a separate unit
- Designs reviewed by NASA bearing and lubricant experts

							In Development		Future Products		
	Model #	RWp015	RWp050	RWp100	RWp500	RW1	RW4	RW8	RW12	RW25	RW50
Spec Torque	Nm	0.006	0.007	0.007	0.025	0.04	0.06	0.08	0.1	0.1	0.25
Max Momentum	Nms	0.015	0.050	0.100	0.500	1.5	4	8	12	25	50
Diameter	ст	4.3	5.8	7.0	11	15	16	17	19	21	25
Height	ст	1.8	2.3	2.5	3.8	7	9	9	11	11	12
RWA Total Mass	kg	0.115	0.24	0.35	0.85	1.5	3.1	3.3	4.9	6.9	9.3
Max Power	Watts	5.5	9	9	23	46	48	50	53	53	127
Nominal Power	Watts	0.5	0.5	0.5	3	5	5	5	7	7	9

Wheel Disturbance Measurements

- Jitter Environment Measurement System (JEMS)
- Measures static and dynamic imbalance
- Produces waterfall plots of all disturbances

Wheel Jitter Performance

- BCT wheels are designed for long life, and extremely low jitter
- Low wheel disturbances result in low payload line-of-sight motion

Software Development

- BCT uses proven method for software development, which is extremely efficient, robust, and supports near-100% code re-use across all spacecraft.
- Developed by highly-experienced GN&C and software personnel, having worked over 20 spacecraft programs at a variety of companies, prior to BCT.
- Capability-rich software goes far beyond most cubesats and microsats, and is *on-par with tier-1 spacecraft*.
- Over 90% of flight software is auto-coded using Matlab/Simulink.
- One of the most advanced spacecraft auto-code systems in the industry.
- Common core for all Blue Canyon Technologies software products.
- Automated code generation and build process substantially reduces effort over traditional methods.

Fully automated, scripted, closed-loop testing

• "Test as you fly" capability

- Fold in results of NASA Tipping Point Technology effort (Hyper-XACT)
 - Improved pointing performance
 - Improve radiation tolerance
- Include C&DH & EPS (similar to XB1) to make FlexB1

- Highly configurable ADCS: from CubeSat to ESPA
- High performance
- Highly experienced team

• We're hiring

bluecanyontech.com