

μ CHREC Space Processor (μCSP) A Diminutive, Hybrid, Space Processor for Smart Modules and CubeSats

CHREC Students

Christopher Wilson, James MacKinnon, Patrick Gauvin, Sebastian Sabogal

CHREC Principal Investigator

Alan George NASA Goddard Partners Gary Crum, Tom Flatley

Research highlighted in this presentation was supported by CHREC members and by the I/UCRC Centers Program of the National Science Foundation under Grant Nos. EEC-0642422 and IIP-1161022.

National Science Foundation's

Industry/University Cooperative Research (I/UCRC) Program

Outline

- Acknowledgements
- Brief Background and Challenges
- CSP "The Concept"
- µCSP
- Smart Modules
- Conclusions

CSP Acknowledgements

- CSP is a research project at CHREC
 - NSF Center for High-Performance Reconfigurable Computing (CHREC)
 - Founded in 2007
 - Comprises 3 university sites and over 30 industry and government partners
- CSP is a collaborative CHREC effort
 - o Original partners:
 - University of Florida (lead), NASA Goddard, and Brigham Young University
 - o Additional partners:
 - NASA Kennedy, Honeywell, Space Micro, Lockheed Martin SSC, NASA Johnson, NASA Ames, Xilinx, Space Sciences & Engineering and growing!

See www.chrec.org for more info

Universities Basic Research

Goddard Code 587

Science Data Processing Branch **Advanced Avionics and Architectures Group**

- "To enable a new class of future Goddard missions by developing technology for small spacecraft architectures, mission concepts, component subsystem hardware, and deployment methods."
- o Provide strong science rationale for using small spacecraft platforms & constellations

Key Platforms

- o Scalable components for 3U, 6U, 12U, SmallSat
- Success with SpaceCube v1, SpaceCube v1.5, SpaceCube v2, SpaceCube Mini and now CSPv1

Challenges and Key Terms

- Challenges
 - Escalating high-speed computing demands for both sensor-data and autonomous processing
 - o Restrained by limited bandwidth
- Requirements
 - o Space environments have strict requirements and restrictions
 - Performance (throughput and real-time)
 - Size, Weight, Power, Cost (SWaP-C)& Reliability
- Key Terms
 - o FPGA (Field-Programmable Gate Array)
 - Large amount of logic resources and specialized cores connected with configurable routing network
 - Massive algorithm parallelism for immense speedup
 - o SoC (System on a Chip)
 - Integrated circuit that combines many processing technologies into single chip
 - Some applications are control-flow oriented and better suited for CPUs

Spe

CSP "The Concept"

Multifaceted Hybrid

Space Computing

Hybrid processor (multicore CPU [fixed] + FPGA subsystem [reconfig])

Hybrid system (commercial + rad-hard)

Robust design Novel mix of COTS, rad-hard, & FTC

Fault-Tolerant Computing

preconfigured and adaptive

CHREC Space Processor v1

Motivation

Create a scalable, high performance, lower power, reconfigurable, and high reliability development system to meet future mission needs

Overview

CHREC Space Processor v1 (CSPv1) is first design in family of CHREC-developed boards embodying CSP concept

- Unique selective population scheme supports assembly of Engineering Model (EM) or flight design
- Flexible app speedup with hybrid and reconfigurable architecture coupled with cost-effective prototyping

····· Keystone Principle · · · ·

Commercial technology featured, for best in high performance and energy efficiency, but monitored by radiation-hardened devices, and augmented with fault-tolerant computing strategies

S: 1U CubeSat form factor (10x10 cm) /:60 g P:1.6-2.9 W (Request Datasheet for more info)

µCSP Introduction

Motivations

- Create high-performance and reliable space-computing platform with lower SWaP-C than CSPv1
 - Several missions reported CSPv1 has too high power for mission needs during several proposals
 - Many commercial CubeSat kits feature microcontrollers with catastrophic latch-up
- Develop scalable and flexible capabilities to provide "smart" functionality to additional modules

Goals

 Develop multifaceted mini hybrid computer featuring SmartFusion2 SoC (ARM-M3 processor + FPGA) retains <u>original</u> CSP concept definition

µCSP Details

Additional Info

Power: 50-100 mw (standby) .5 – 1W (nominal)
Temperature: -40°C to +85°C (Industrial)
IO: 30 differential pairs (also used as single-ended)
Interfaces: 1 CAN, 1 USB2.0, 100 Mb/s Ethernet PHY, 1 lane PCI-Express, JTAG, 2x (UART, I²C, SPI)

SmartFusion2 Specifications

ARM Specifications	
Maximum Clock Frequency	166 MHz
Instruction Cache	8 KB
Embedded SRAM (eSRAM)	64 KB
Embedded Nonvolatile Memory (eNVM)	512 KB
FPGA Specification	
Logic Elements	86,184
Math Blocks	84
SRAM Blocks	2074

Smart Module Introduction

• Motivation

- o Currently, there are many missions that have **one-off**, one-time designs, with little to no reuse between missions
- Universally many spacecraft will need same types of components on each mission
- Need for network interfaces for distributed space systems
- Goals
 - Develop framework for designing series of hardware platforms that can be easily configured, integrated, and tested in preparation for new mission
 - o Three Main Objectives
 - Provide "Smart" capability to each design slice
 - Achieve faster configuration and prototyping (Plug-and-Play designs)
 - Exploit reuse of designs through qualification
 - Focus on application and not on low-level implementation
 - Create inventory of designs that can be reused, to take designs from "shelf-to-spacecraft"

Wiring Advantages

- Another benefit of Smart Module is reduction of extensive wiring
- Smart modules place processing intelligence closer to sensors
- Unified communications system reduces bulk of wiring for power and communication interfaces
- Reduction of wiring has multitude of benefits:
 - Reduces weight of spacecraft, thereby reducing cost by extension
 - Decreases integration and test time involved with building, assembling, and testing wiring harness
 - Simplifies debugging and emulation of system; no longer have to be familiar with multiple interface standards

Example Smart Modules

- Construct a series of hardware "cards" or "slices" that have desired functionality while following provided design template
- Make each smart module capable of computing and networking, however modest with µCSP "Brain"

Subsystem	Example Components
Power	Solar Cells
	Batteries
	Power Generator
Propulsion	Thruster
	Solar Sail
Communication	Transmitters
	Flight Terminal
Instruments	Optical Spectrometer
	Photometer
	Particle Detector
Attitude Determination and Control	Reaction Wheels
	Magnetorquer
	Control Moment Gyros
	Star Track
	Sun Sensors
	GPS Receiver and Antennas

Example Template

- 1U form factor board for CubeSat
- 2 high-density connectors
 - Mate µCSP to design
- Backplane
 - Provides power, ground, and bus communications
- Optional SpaceWire connectors (can go through backplane)

Smart Module Boards

- Several modules in development to showcase versatility of µCSP
- General Instrument Interface
 - o Hi-speed ADC/DACs, RTC, Instrument amplifiers, JTAG programmer
- BLDC Driver and Torquer
 - Three motor drivers, H-bridges, Acc/gyro
 Support as attitude control unit
- CMV4000 Imager
 - o 4.2-megapixel 1" visual spectrum sensor
 - o Pin-compatible NIR variant available
- Network-Attached Storage (NAS)
 - Support long-term data storage
 - Incorporates fast memory for buffering, in addition to large capacity non-volatile mem.

Full System Configuration

Disclaimer! Diagrams NOT to scale

Modular Integrated Stackable Layers

- Introduction
 - o Original concept by NASA Johnson
- Goals
 - Design space environment capable instrumentation systems with flexible design
 - Developed to have reusable modules to meet different mission requirements

• Objectives

- o Small microcontroller applications
- Not limited to one µController/Processor
- o Modular, Scalable, Reconfigurable
- o Industrial temperature environments
- o Low Earth Orbit environments

NASA

NSF Center for High-Performance Reconfigurable Computing

What's Next?

- Engineering Models and Production
 - μCSP-EM available for CHREC members Q4 2016 along with evaluation board
 - o Smart Modules available Q1 2017
- Future Mission Planning and Proposals
 - $\circ\,$ Making proposals for missions including μCSP targeting LEO in distributed system
- Radiation Testing
 - Planning heavy-ion radiation testing Q4 2016

FUTURE

AHEAD

Conclusions

Major challenges lie ahead

- o Escalating app demands in harsh environments
- o Tightening constraints of platform, budget, process
- Necessitates adeptly doing more with less

• µCSP and Smart Modules for future missions

- o Focus upon verifying new μCSPv1 flight design
 - CSP "The Concept" (multifaceted-hybrid and hardwarereconfigurable design) in lower SWaP-C form factor
- o Establish Smart Module framework and library of "slices"
 - Provide easily configuration, integration, and testing
- o Push the bounds of possibility in space
 - Explore flexibility and scalability with distributed systems

Contact Information

Publications and

Presentations

- Center Web Site
 - o <u>www.chrec.org</u>
- Center Director
 - o Alan D. George, Ph.D., FIEEE
 - Email: george@chrec.org
 - Home Page: <u>www.chrec.org/george/</u>
 - Phone: 352-392-5225
- Center Coordinator
 - o Darlene Brown, M.S., M.B.A.
 - Email: <u>brown@chrec.org</u>
 - Phone: 352-392-9036

CHREC HSF Center for High-Performance Reconfigurable Computing

Questions?

00

0910

2510 ISIC

ě e

Brpge Bank

Con file

Parks 9020 4+ ICI 6

G+ 151 4

E+IN TT

9

TO LA

