

...Big Performance, Smaller Satellites

FIBER OPTIC GYRO-BASED ATTITUDE DETERMINATION FOR HIGH-PERFORMANCE TARGET TRACKING

Elias F. Solorzano University of Toronto (Space Flight Laboratory) Toronto, ON (Canada)

August 10th, 2016 30th AIAA/USU Conference on Small Satellites

Research Motivation

• Earth observation (EO) market opportunities

Agriculture

- Precision Farming
- Crop Health & Production > Forestry Operations

Environmental

- Monitor Carbon Emissions > Disaster Response

Humanitarian Aid

- > Crisis Management

- Applications beyond LEO
 - Asteroid mining
 - Planetary exploration \triangleright

August 10th, 2016

SFL-Built Target Tracking Platforms

- The Next-Generation Earth Monitoring and Observation (NEMO) bus is developed specifically for ground-target tracking applications.
- The standard NEMO-bus structure is used for EO-specific missions such as NEMO-AM and GHGSat-D.

SFL's standard NEMO-class spacecraft

GHGSat-D being launched on-board a PSLV rocket on June 2016 (credit: ISRO)

NEMO Bus: System Overview

- Suitable for autonomous observations of selected ground targets.
- Peak tracking control error constrained below 0.3° on target-tracking mode.

Specification	Nominal Value	
Dimensions	20 x 20 x 40 cm	
Max. Weight	15 kg	
Peak Power @20°C	80 W	
Payload Capacity	9 kg	
	~ 2° ¹	
ACS SLADIILY	~ 60″ ²	

¹ Using MAG, FSS, and RWs ² With Star Tracker

- ACS design satisfies the requirements of current EO missions.
- Future missions may require superior pointing performance.

NEMO Bus: ADCS Architecture

- Orbit and attitude determination EKF and controller run at 1Hz.
- PID three-axis controller based on quaternion and rate feedback.
- Control modes:
 - Inertial Pointing
 - Align & Constrain
 - ECEF-frame Target Tracking
- Other features:
 - Gyroscopic torque cancellation.

Terrestrial Target Tracking Overview

- Spacecraft is commanded to maintain line-of-sight (LoS) with specific ground target.
- Only star tracker measurements (sampled at 1Hz) are used to determine satellite's attitude during the slew maneuver.
 - > May not be sufficient for future missions requiring pointing performance better than $0.3^{\circ} (2-\sigma)$.
 - High-grade fiber-optic gyro (FOG) measurements can be used to augment the star tracker.

STK-generated animation of a NEMO-class satellite in target tracking

30th AIAA/USU Conference on Small Satellites - SSC16-VIII-1

Fiber Optic Gyros (FOGs)

- High-grade miniaturized FOGs are suitable for high-rate targettracking maneuvers.
 - High bandwidth
 - Low noise parameters (e.g. angular random walk, bias drift, etc.).
 - Commercially accessible
- ST is augmented using FOG measurements at high cadence (≥2Hz), allowing for more frequent control torque commands.
- Can compensate for the attitude error drift caused by invalid star tracker measurements.

The Challenge

To design a technology that improves the current pointing performance of SFL's terrestrial target tracking spacecraft by allowing the ACS subsystem to run at frequencies above 1Hz.

Proposed Solution:

- To implement a combination of star tracker and high-grade FOG running at high cadence.
- Modify our existing attitude determination algorithms to account for additional gyro states.

...Big Performance, Smaller Satellites

GUIDANCE & NAVIGATION

August 10th, 2016

30th AIAA/USU Conference on Small Satellites - SSC16-VIII-1

Trajectory Construction: Slew Maneuver

Trajectory Construction: Orbital Parameters

 Position and Velocity at t_k and t_{k+1} are obtained in the ECEF and converted into ECI coordinates to be used in the navigation model.

Pointing Geometry as Observed in a non-rotating ECEF Frame

- $\underline{\mathbf{X}}$: Target Position Vector
- \underline{r} : Satellite Position Vector
- \underline{k} : Satellite-To-Target Vector

$$k_{e,k} = \mathbf{x}_e - \mathbf{r}_{e,k}$$
$$k_{i,k} = \mathbf{C}_{ie,k} (\mathbf{x}_e - \mathbf{r}_{e,k})$$
$$k_{i,k+1} = \mathbf{C}_{ie,k+1} (\mathbf{x}_e - \mathbf{r}_{e,k+1})$$

Trajectory Construction: Desired Attitude and Rates

 Desired attitude, body rates and angular accelerations can be constructed based on position and velocity.

Inertial-To-Body Attitude:

$$\mathbf{C}_{bi,k} = \mathbf{C}_{ba,k} \mathbf{C}_{ai,k}$$

Desired Angular Rate:

 $\vec{\omega}_{bi,k+1} = \vec{\omega}_{ba,k} + \vec{\omega}_{ai,k}$

Desired Angular Acceleration:

$$\vec{\alpha}_{bi,k+1} = \vec{\alpha}_{ba,k} + \vec{\alpha}_{ai,k}$$

Target Tracking Trajectory at Discrete Timesteps

30th AIAA/USU Conference on Small Satellites – SSC16-VIII-1

...Big Performance, Smaller Satellites

ATTITUDE DETERMINATION

August 10th, 2016

30th AIAA/USU Conference on Small Satellites - SSC16-VIII-1

Attitude Determination: Overview

State Vector

Original:
$$\mathbf{x} = [\boldsymbol{\omega}_{bi}^T \quad \mathbf{q}_{bi}^T]^T$$

To:
$$\mathbf{x} = \begin{bmatrix} \boldsymbol{\omega}_{bi}^T & \boldsymbol{q}_{bi}^T & \boldsymbol{s}_g^T & \boldsymbol{b}_g^T \end{bmatrix}^T$$

where,

 $\boldsymbol{\omega}_{bi} \in \mathbb{R}^3$: spacecraft body rate $\mathbf{q}_{bi} \in \mathbb{R}^4$: attitude quaternion $\boldsymbol{s}_g \in \mathbb{R}^3$: gyro scale factor $\boldsymbol{b}_g \in \mathbb{R}^3$: gyro bias

Measurements

Interoceptive:

- Reaction Wheel Torques
- Environmental Disturbances

Exteroceptive:

- Star Tracker Quaternions
- FOG Angular Rates

Note: Measurement vector changes size depending on which sensors are reporting values (star tracker, FOG, or both)

Attitude Determination: State Propagation

Attitude Determination: EKF Architecture

...Big Performance, Smaller Satellites

TERRESTRIAL TARGET TRACKING SIMULATIONS

Target Tracking Simulation: Overview

- 500km sun-synchronous orbit
- Total duration is 650 seconds
- Epoch: 29-August-2014 [08:32:15 UTC]
- Peak angular velocity of ~0.8°/s directly overhead%
- Control torques, disturbances and true body attitude/rates generated using SFL's high-fidelity simulator.
- Torques are used as interoceptive measurements in the EKF.
- True attitude/rates are perturbed with noise in sensor models to simulate exteroceptive measurements.

Top to Bottom: Reaction wheel torques, disturbances, and body rates.

August 10th, 2016

Attitude Determination Cases

• **Case 1:** Simulation runs at 1Hz, single star tracker sampling at 1 Hz (current method used in orbit).

• **Case 2:** Sensor fusion using FS-EKF, simulation runs at 5Hz, star tracker at 1Hz, and fiber optic gyro (FOG) at 5Hz.

• **Case 3:** Simulation runs at 5Hz, and star tracker at 1Hz (open loop approach). No FOGs.

August 10th, 2016

Attitude Determination: Preliminary Results

- Rate estimation errors using FS-EKF are within the 0.01°/s req. circle 100% of the time.
- Slightly better attitude estimates. Overall fusion approach offers better attitude estimates than ST-only solution.
- 5Hz star tracker-only open loop solution resulted in the worst estimation out of all cases.

RMS Attitude & Rate Estimation Errors (over 650 seconds)

Error	RMS Attitude Error [°]			RMS Rate Error [°/s]		
Туре	$\delta \theta_x$	$\delta heta_y$	$\delta \theta_z$	$\delta \omega_x$	$\delta \omega_y$	$\delta \omega_z$
1Hz-ST	0.016	0.010	0.004	0.017	0.011	0.009
FS-EKF	0.016	0.010	0.002	0.005	0.004	0.002
5Hz-OL	0.002	0.022	0.006	0.027	0.021	0.011

30th AIAA/USU Conference on Small Satellites - SSC16-VIII-1

Conclusion & Future Work

 A fiber optic gyro-based attitude estimation scheme has been proposed to allow the controller on-board NEMO-class target tracking satellites to command torques at ≥2Hz to improve pointing performance.

Future work: The modified Kalman filter (FS-EKF) will be implemented in the loop with the controller to demonstrate that the control pointing accuracy can be reduced substantially and bounded well below 0.3° (2- σ).