# **UF FLORIDA**



Deep Space Laser Communication Transmitter and High Precision Timing System for Small Satellites



Paul Serra, Nathan Barnwell, Tyler Ritz, John W. Conklin

pserra@ufl.edu



# Motivation and Objectives

- Precision timing of optical pulse for communication:
  - Reduced spread at optical frequencies
    - Compact, lower power design
    - x10 to x100 data throughout at equivalent SWaP
- Advantage of pulsed modulation scheme:
  - Higher peek-power
    - Longer range
    - Resilient to disturbances and absorption
  - One way-ranging
  - Non-linear detection



|          | Deep Space Network | LADEE LLCD          |  |
|----------|--------------------|---------------------|--|
| Туре     | S-Band (~2 GHz)    | 1550 nm, (~200 THz) |  |
| Aperture | 34 m               | 0.1 m               |  |
| EIRP     | 8.3 GW             | 8.1 GW              |  |
|          |                    |                     |  |

Don Boroson, MIT Lincoln Laboratory

PSSL

# Motivation and Objectives



Objective: Demonstrate small volume, low power optical communication.

- 2U, ~5W, ~100 Mbps (GEO) to ~5 Mbps (Lunar)
- Proof of Concept (TRL 1 to TRL 3)
- Focusing on downlink





CubeSat Space Processor with FPGA From Space Micro / CHREC

# M-slot Pulse Position Modulation $\bigotimes PSSL$

- Time is divided into M slots of duration au
- Guard time  $T_g$  begins after fixed interval  $T_g + M\tau$
- Pulse rising edge in one of *M* slots, transmitting one of *M* possible symbols



### Structure



Two subsystems:

- Software Defined Pulse Modulator (SDPM)
  - Generate electric pulses according to the modulation scheme
- Master Oscillator Power Fiber Amplifier (MOPFA)
  - Transform electric pulses into amplified light pulses



## Modulator Hardware: Clock



| Characteristic | Chip Scale Atomic Clock (CSAC)        |  |
|----------------|---------------------------------------|--|
| Standard       | Cesium                                |  |
| Alan deviation | Measured 10 <sup>-10</sup> @1s in lab |  |
| Power          | 0.12 W                                |  |
| Mass           | 35 g                                  |  |
| Size (LxWxH)   | 40.64 x 35.31 x 11.42 mm              |  |





CSAC in a CubeSat packaging

# Modulator Hardware: FPGA



- Fully software-defined modulator, no other hardware
- Platform specific design
- Flash-based FPGA SMARTFUSION 2 RTG4
  - Reprogrammable, allows for design exploration
  - Simple design: no configuration upset, no external programming
  - Rad-tolerant version with same IC process and structure



# Modulator Architecture



- Pulse picking with a fast slot clock
  - Low jitter (~1 ps), Limited resolution (~10 GHz  $\rightarrow$  100 ps)
  - High maximum pulse rate (= Clock frequency)



- Pulse skewing with delay chain
  - High jitter (~10 ps), High resolution (~1 ps)
  - Lower maximum pulse rate (delay chain overhead)



### Modulator Data Flow





## **Environmental Compensation**

- Temperature, voltage, radiation, aging  $\rightarrow$  chain delay variations
- Delay Locked Loop (DLL) measures delay variations



**PSSL** 

### **DLL Results**





• DLL oscillator: variable period resolution 1 ps typical, 2.3 ps max gap, range 4 to 24 ns

# Timing with Two Chains



### Residuals of linear fit to the measured delays



independent delay chains

| • [ | _SB: | 12 ps |
|-----|------|-------|
|-----|------|-------|

- Number of entries: 512
- Largest gap: >70 ps
- Max. nonlinearity: 97 ps
- Stdev of error: 39 ps

combinatorial chains

| • | LSB:               | 1 ps   |
|---|--------------------|--------|
| • | Number of entries: | 5100   |
| • | Largest gap:       | 6.7 ps |
| • | Max. nonlinearity: | 5.5 ps |
| • | Stdev of error:    | 1.4 ps |

### Errors on Two Chains



Calibration error, ps



Paul Serra, Small Satellite Conference 2016

# Premilinary Modulator Output

- Modulator programmed to generate delay sequence
  - 20 ns, 22 ns, 18 ns, 20 ns, 18 ns
- Measured jitter: 27 ps



📀 PSSL

### MOPFA Testbed



 Testbed designed to explore fiber laser & driver designs that can take advantage of the SDPM



#### Paul Serra, Small Satellite Conference 2016

### **MOPFA** Performance



- 50 mW, 1544 nm seed
- 500 mW, 976 nm pump

**OPSSL** 

- Variable erbium fiber gains & lengths
- Connectors, modemismatches limit gain

### Custom APD Detector





- Custom APD unit designed & tested based on AFRL/NASA time-transfer CubeSat mission tech
  - Fiber-coupled, 80 μm, InGaAs APD
  - Temp controlled APD via TEC
    → stable breakdown voltage
  - Tunable high voltage reverse bias
  - Analog + digital outputs



### 1000 optical pulses generated by seed, measured by APD



Measured jitter

- Modulator: 27 ps
- Pulse Driver: 52 ps
- Custom APD analog: 52 ps
- Custom APD digital: 47 ps
- Likely limited by seed laser driver

# Conclusion



- Completed:
  - Automated modulator test bed
  - Delay chain design
  - Laser amplifier testbed

### • Future work:

- Fully embedded calibration
- Packaging and SWaP reduction
- Seed laser driver improvement
- Demo on a CubeSat ~2018



#### Gold-coated 5 inch primary, from NASA Glenn

Paul Serra, Small Satellite Conference 2016



# Backup Slides

### **MOPFA** Testbed Design



Paul Serra, Small Satellite Conference 2016

**PSSL** 

## MOPFA Hardware: Seed Laser

- 1550 nm, 1 to 2 GHz laser diode
- Highland technologies 200 ps pulse driver



**OPSSL** 

## Premilinary Results





- Single ended, unterminated modulator signal
- Commercial APD BW limit (< 100 ps with custom design)

### Differential Pulse Position Modulation

- The guard time starts immediately after the previous pulse
  - Increased data rate
  - Reduced noise immunity: 2 symbols lost when 1 pulse is missing
  - Increased ground segment complexity as 1<sup>st</sup> slot position is changing



P

# Delay Chain



- Coarse resolution: counter (5 ns)
- Fine resolution: delay chain (<10 ps)
- Methodology: Route electrical pulses through different elements of FPGA  $\rightarrow$  different delays



# Delay Chain Performance

• Methodology: Route electrical pulses through different elements of FPGA  $\rightarrow$  different delays



- Measured on die by DLL circuit
- 6 ns variable delay + 6 ns static delay, ~3 ps jitter, for 256 elements
- Typical 1 bit increment = 12 ps, > 92 ps nonlinearities

**PSSL** 

## Balancing with 2 Delay Chains



- Need at least 5 ns of delay variation : 2 chains required
- Result: 1 ps monotonic steps with selected delay chain pairs

> PSSI

### 1<sup>st</sup> Prototype

# **OPSSL**



### Uncoded, Theoretical BER





## Optical Pulses from Detector



52 ps

244 ps

### **Previous results**

- Modulator: 27 ps
- Pulse Driver:
- Commercial APD:

### **Custom APD**

PSSL

- Custom APD analog: 47 ps
- Custom APD digital: 52 ps
- Likely limited by seed laser driver



# Chain realization



- Hardware described with general logic tile macro (ARI1) from Verilog library
- Automated VHDL generation, using python.
- Automated placement (.pdc) generation, using python
- Libero "SmartDesign" for interconnects.
- DLL piloted by python script on UART or modulator with time vector from UART



## DLL "Digital Harmonics"





Paul Serra, Small Satellite Conference 2016

# Modulator Scalability



- Pulse Generator are limited by the delay chain.
- We probably are limited at 50 Mpulses by second on smartfusion2.
- Can have several pulse generator for one timestamp FIFO, and several FIFO
- May need to switch to fixed-size code (like non-differential PPM) to put PPM encoder in parallel.
- If delay chain are always working on data, we will need extras for calibration.
- <u>Crosstalk?</u>



## **Modulator Error Sources**



### Random Sources (Gaussian)



Systematic Sources (not Gaussian)