

SORTIE

Scintillation Observations and Response of The Ionosphere to Electrodynamics

30th Annual AIAA/USU Conference on Small Satellites Logan, UT Tuesday, 8/9/2016

M. Pilinski¹, E. Stromberg¹, C. Fish¹, G. Crowley¹, C. Huang², P. Roddy², L. Gentile², R. Heelis³, R. Stoneback³, A. Vera⁴, C. Kief⁴, B. Zufelt⁴, J. Retterer⁵

¹ASTRA LLC (booth 101)., ²AFRL, ³UTD, ⁴COSMIAC, ⁵Boston College

ASTRA • www.astraspace.net • 303-993-8039 • solutions@astraspace.net © 2015 Atmospheric & Space Technology Research Associates, LLC

ASTRA: Overview

*Science

Technology
 Applications

Bringing It All Together

Ground-based Data & Eng. Data Space Instrument Modeling Assimilation **Services Systems** Development **CubeSat Missions Space Based GPS-based Space Physics-Based High-latitude** Weather Monitor Data Modeling **Electrodynamics** (TIMEGCM) **Ground Based E-fields and** Data Global **Magnetometers Real-Time** Ionosphere **Forensic Space Specification** Weather **Plug-N-Play Avionics** of Low Power **Analysis Ionosphere**/ **CubeSat Instruments Thermospheric Ionospheric Sounder Thermosphere Neutral Density** Scanning **Spacecraft UV Photometer Modeling E-field Double Probe HF TID Mapper Satellite Drag &** g / cm³ **Systems RF Waves & Sounder** 3.88e-15 **Ballistic** 3.51e-15 Engineering **Coefficients** Wind Profiler 3.14e-15 sigma phi map from CASES SM-2 Dec 29, 2012 06 - 08 UT 2.77e-15 **Lidar Systems GPS-based Space** 2.41e-15 Weather Monitor 1.67e-15 **Magnetometer & Langmuir Probe** C O L O R A D O **Celebrating our** CASES/0 **Hosted Payloads** 11th Anniversary ASTRA **2016 WINNER**

SORTIE Mission Overview

*Science

Technology
 Applications

- 6U CubeSat Mission
- Team Members:
 - NASA
 - ASTRA
 - AFRL
 - UTD
 - COSMIAC
 - Boston College
- Slated to launch late Fall 2017 (CSLI opportunity for ISS Launch)
 - October '17 delivery, December '17 launch
 - Provide overlap with NASA's ICON mission
- CDR complete
- 1 Year of on-orbit lifetime

Science Goals

Science
 Technology
 Applications
 Bringing It All Together

Q1) To discover the sources of wave-like plasma perturbations in the F-region ionosphere Q2) To determine the relative role of dynamo action and more direct mechanical forcing in the formation of wave-like plasma perturbations.

M. Pilinski et al.

System Overview

*Science

Technology
 Applications

The Instruments

*Science

Technology

* Applications

Bringing It All Together

cs-IVM specifications

Parameters	Estimated Value	Parameters	Estimated Value
Mass	<750g	Voltages Required	+5VDC
Dimensions	< 98 x 98 x 75mm	FOV	±45° from edge of sensor
Power Consumption	450mW (average) 500mW (peak)	Pointing Required	+/- 0.05° (knowledge) +/- 10° (control) <0.125°/min (slew rate)

$\mu\text{-}PLP$ specifications

Parameters	Estimated Value	Parameters	Estimated Value
Mass	<300g	Voltages Required	+12VDC, +3.3VDC
Dimensions	<90 x 85 x 25mm	FOV	±30° from edge of sensor
Power Consumption	200mW (average) 300mW (peak)	Pointing Required	+/- 5° (knowledge) +/- 10° (control)

cs-IVM

 μ -PLP

Instruments: Ion Velocity Meter (IVM)

Science
 Technology
 Applications
 Bringing It All Together

- Developed by UTD
- Suite of Ion Potential, Drift, and Velocity

CINDI C/NOFS

SORTIE

Specification	Mission Requirement	Performance	Margin
Spatial Resolution	< 100 km	< 4 km	25x
Vertical Drift Range	+/- 500 m/s	+/- 1000 m/s	2x
Vertical Drift Resolution	1 m/s	0.5 m/s	2x
Accuracy/Noise	< 20 m/s (13m/s allocated)	7 m/s	1.85x

Instruments: µ Planar Langmuir Probe

- Developed by AFRL
- Planar Langmuir Probe
 - Simplified design over heritage instruments
- Measures lonospheric
 plasma density fluctuations along the orbital track

Specification	Mission Requirement / Expected Performance	
Spatial Resolution	< 100 km	
Range	1x10 ² – 1x10 ⁷ cm ⁻³	
Resolution	10% or 100 cm ⁻³	
Accuracy/Noise	10% or 100 cm ⁻³	

*Science

* Technology

Mission Operations Center and Ground Station

*Science

Technology
 Applications
 Bringing It All Together

ANTENNA (WFF)

RADIO (WFF)

COSMIAC MISSION OPERATION CENTER

- Half-Duplex L-3 Cadet Radio
 - Downlink: 460-470 MHz band
 - 3 Mbps downlink
 - Proven on DICE mission
 - 8.4 Gigabytes of DICE mission data downloaded (> 20 Terabytes of raw data, I&Q)

SORTIE Mission Lifetime / Orbit Decay Analysis

*Science

Technology

* Applications

Bringing It All Together

Mission	Altitude	Inclination	Alignment	Туре	Launch
Design Ref: Primary	400 km	51.65 °, 0 RAAN	Geodetic Z (J2000 Z)	ISS Orbit	Sept 2017

M. Pilinski et al.

FlatSat Testing

Science
 Technology
 Applications

SORTIE: on the Pad and Beyond

Science
 Technology
 Applications

- Flight to ISS in Fall 2017
- 6-9 month wait at ISS
- Deploy below ISS orbit in Spring 2018

Questions?

*Science

Technology
 Applications
 Bringing It All Together

Backup Slides

Science
Technology

Bringing It All Together

* Applications

- Data and results will be available via the ASTRA web-site (<u>www.astraspace.net</u>)
- This information will include a description of the physics being investigated, and the new scientific results obtained from the proposed research
- ASTRA freely distributes model results and data via ftp to the scientific community for further use in their research
- NASA also has data hosting facilities that could be used for data archiving and distribution. These include the CDAWeb and NSSDC, and these options will be investigated.

ASTRA Mission Competencies

*Science

Technology
 Applications
 Bringing It All Together

ASTRA Core Competencies for Satellite Missions

- Mission Development / Science
- Mission Design
- Mission Management
- Mission Systems Engineering
- Instrument Development
- Algorithm Development
- Data Analysis and Interpretation
- Product Development

ASTRA staff have more than 70 decades of combined space flight & space science heritage, and have developed, tested, and flown systems on more than 20 orbital and sub-orbital space missions.

Selected CubeSat Missions

*Science

Technology
 Applications

Launch	Instruments	Description
Est. 2017 Status: Entering I&T phase	 Two Langmuir probes to measure in-situ ionospheric plasma densities. Science and attitude magnetometers Four electric field probes on 3.5-meter cable booms 	Currently being built for the Air Force. A CubeSat solution for monitoring electric fields in Low-Earth Orbit implementing lessons-learned from on-orbit experience with DICE. Form: 1.5 U
 Est. 2018 Status: UV Detector Built and tested, including mechanical/thermal Sensor flown on the SENSE mission Front End optics Scan mirror built, & tested: mechanical/thermal 	Combination: • UV Detector (photometer) • Scanning mirror Higher SNR than DMSP SSUSI instrument (clearer features) Viable SSUSI replacement (lower SWaP, and cost by 10x)	Low cost and versatile sensor for UV remote sensing of the ionosphere Capable of providing night-time images of the ionosphere enabling almost continuous monitoring of the night-side ionosphere. Resolves ionospheric structures at 1 vertical TEC unit (better than GPS TEC) Form: 6U
Est. 2018 Status: Sensor completed – Q4FY15 demonstration for AF	 Large deployable HF antennas Miniaturized ultrasensitive receivers 	Low power FMCW HF Sounding instrument to make topside measurements of the ionosphere from a CubeSat platform. Form: 12U
	Launch Est. 2017 Status: Entering I&T phase Est. 2018 Status: UV Detector • Built and tested, including mechanical/thermal • Sensor flown on the SENSE mission Front End optics • Scan mirror built, & tested: mechanical/thermal Est. 2018 Status: Sensor completed – Q4FY15 demonstration for AF	LaunchInstrumentsEst. 2017• Two Langmuir probes to measure in-situ ionospheric plasma densities.Status: Entering I&T phase• Science and attitude magnetometersStatus: Entering I&T phase• Science and attitude magnetometersEst. 2018• Science and attitude magnetometersStatus: UV Detector • Built and tested, including mechanical/thermal• Combination: • UV Detector (photometer)• Sensor flown on the SENSE mission Front End optics • Scan mirror built, & tested: mechanical/thermal• UV Detector (photometer)• Status: Sensor completed – Q4FY15 demonstration for AF• Large deployable HF antennas• Miniaturized ultrasensitive receivers• Miniaturized ultrasensitive receivers

Electric Field Constellation Pathfinder: DICE

*Science

Technology
 Applications

Bringing It All Together

Instrumentation: LP/E-FIELD/Mag Observations: E, B, N_e, N_i, T_e

Sensor SWaP		
Volume (U)	0.4	
Mass (g)	350	
Power (mWDC)	520	

DICE: Data Analysis and Dissemination

*Science

Technology

Applications

Bringing It All Together

ASTRA: Measurement to information

Assimilating data into models for operational products

Above: DICE plasma density observations compared with IDA4D assimilation of the south polar ionosphere. Note that the enhanced densities observed by DICE (red arrows in the bottom plot) correspond to when the DICE satellite passes through a tongue of ionization during successive passes (red arrows).

SORTIE at a Glance

Science
 Technology
 Applications
 Bringing It All Together

- Customer: NASA (HTIDES)
- Broader impact: scintillation
- Motivation: better understanding of the distribution of initial wave-like plasma perturbations and the conditions under which they can be related to intense plasma instabilities
- ASTRA is the PI institution (G. Crowley, C. Fish, M. Pilinski)
- Teaming with:
 - UT Dallas: providing mini Ion drift meter
 - Rod Heelis
 - Russel Stoneback
 - AFRL: providing micro planar Langmuir probe and GFE XaCT system
 - Cheryl Huang
 - Patrick Roddy
 - James Lyke
 - Louise Gentile
 - Boston College: modeling support
 - John Retterer
 - COSMIAC: bus integrator
 - Alonzo Vera
 - Craig Kief
- Mission Completed by October 2018 (launch in last quarter of 2017)

SORTIE vs. C/NOFS

Science
 Technology
 Applications

Apex height-longitude sampling

C/NOFS, 400x850km, *i*=13°

SORTIE, 406x416km, *i*=13°

SORTIE, 406x416km, *i*=52°

SORTIE vs. C/NOFS

*Science

Technology Applications Bringing It All Together

- SORTIE will complement C/NOFS dataset by sampling from a different orbit
- SORTIE will provide new/continuing data now that C/NOFS has reentered
- The near-circular SORTIE orbit will provide more optimal ionospheric sampling
- SORTIE instruments: mini-IVM, micro-PLP
- C/NOFS instruments: IVM, PLP, NWM, CORISS, CERTO, VEFI
- SORTIE will complement the NASA ICON mission that will launch in 2017