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1. Introduction

We develop a gauge theory based on the conformal group of a Euclidean space, and show that its
group properties necessarily lead to a Lorentzian phase spacetime with vacuum solutions carrying both
a cosmological constant and a cosmological perfect fluid as part of the generalized Einstein tensor. In curved
models, this geometric background may explain or contribute to dark matter and dark energy. To emphasize
the purely geometric character of the construction, we give a description of our use of the quotient manifold
method for building gauge theories. Our use of the conformal group, together with our choice of local
symmetry, lead to several structures not present in other related gauge theories. Specifically, we show the
generic presence of a symplectic form, that there exists an induced metric from the non-degenerate Killing
form, demonstrate (but do not use) Kähler structure, and find natural orthogonal, Lagrangian submanifolds.
All of these properties arise directly from group theory.

In the remainder of this introduction, we give a brief historical overview of techniques leading up to,
related to, or motivating our own, then describe the layout of our presentation.

As mathematicians began studying the various incarnations of non-Euclidean geometry, Klein started
his Erlangen Program in 1872 as a way to classify all forms of geometries that could be constructed using
quotients of groups. These homogeneous spaces allowed for straightforward classification of the spaces
dependent on their symmetry properties. Much of the machinery necessary to understand these spaces
originated with Cartan, beginning with his doctoral dissertation [1]. The classification of these geometries
according to symmetry foreshadowed gauge theory, the major tool that would be used by theoretical
physicists as the twentieth century continued. We will go into extensive detail about how these methods are
used in a modern context in section 2. Most of the development, in modern language, can be found in [2].

The use of symmetries to construct physical theories can be greatly credited to Weyl’s attempts at
constructing a unified theory of gravity and electromagnetism by adding dilatational symmetry to general
relativity. These attempts failed until Weyl looked at a U(1) symmetry of the action instead, thus
constructing the first gauge theory of electromagnetism. These efforts were extended to non-Abelian groups
by Yang and Mills [3], including all SU(n) and described by the Yang-Mills action. The success of these
theories as quantum pre-cursors inspired relativists to try and construct general relativity as a gauge theory.
Utiyama [4] looked at GR based on the the Lorentz group, followed by Kibble [5] who first gauged the
Poincaré group to form general relativity.

Standard approaches to gauge theory begin with a matter action globally invariant under some symmetry
group H. This action generally fails to be locally symmetric due to the derivatives of the fields, but can
be made locally invariant by introducing an H-covariant derivative. The connection fields used for this
derivative are called gauge fields. The final step is to make the gauge fields dynamical by constructing their
field strengths, which may be thought of as curvatures of the connection, and including them in a modified
action.

In the 1970’s the success of the standard model and the growth of supersymmetric gravity theories
inspired physicists to extend the symmetry used to construct a gravitational theory. MacDowell and
Mansouri [6] obtained general relativity by gauging the de Sitter or anti-de Sitter groups, and using a
Wigner-Inönu contraction to recover Poincaré symmetry. As a pre-cursor to supersymmetrizing Weyl
gravity, two groups [7–10] looked at a gravitational theory based on the conformal group, using the
Weyl curvature-squared action. These approaches are top-down, in the sense that they often start with
a physical matter action and generalize to a local symmetry that leads to interactions. However, as this
work expanded, physicists started using the techniques of Cartan and Klein to organize and develop the
structures systematically.

In [11,12] Ne’eman and Regge develop what they refer to as the quotient manifold technique to construct
a gauge theory of gravity based on the Poincaré group. Theirs is the first construction of a gravitational gauge
theory that uses Klein (homogeneous) spaces as generalized versions of tangent spaces, applying methods
developed by Cartan [13] to characterize a more general geometry. In their 1982 papers [14,15], Ivanov and
Niederle exhaustively considered quotients of the Poincaré, de Sitter, anti-de Sitter and Lorentzian conformal
groups (ISO (3, 1), SO (4, 1), SO (3, 2) and SO (4, 2)) by various subgroups containing the Lorentz group.

There are a number of more recent implementations of Cartan geometry in the modern literature. One
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good introduction is Wise’s use of Cartan methods to look at the MacDowell-Mansouri action [16]. The
“waywiser” approach of visualizing these geometries is advocated strongly, and gives a clear geometric way
of undertsanding Cartan geometry. The use of Cartan techniques in [17] to look at the Chern-Simons action
in 2 + 1 dimensions provides a nice example of the versatility of the method. This action can be viewed as
having either Minkowski, de Sitter or anti-de Sitter symmetry and Cartan methods allow a straightforward
characterization of the theory given the various symmetries. The analysis is extended to look first at the
conformal representation of these groups on the Euclidean surfaces of the theory (2-dimensional spatial
slices). The authors then look specifically at shape dynamics, which is found equivalent to the case when the
Chern-Simons action has de Sitter symmetry. Tractor calculus is yet another example using a quotient of
the conformal group, in which the associated tensor bundles are based on a linear, (n+2)-dim representation
of the group. This is a distinct gauging from the one we study here, but one studied in [18].

Our research focuses primarily on gaugings of the conformal group. Initially motivated by a desire to
understand the physical role of local scale invariance, the growing prospects of twistor string formulations of
gravity [19] elevate the importance of understanding its low-energy limit, which is expected to be a conformal
gauge theory of gravity. Interestingly, there are two distinct ways to formulate gravitational theories based
on the conformal group, first identified in [14, 15] and developed in [18, 20, 21]. Both of these lead directly
to scale-invariant general relativity. This is surprising since the best known conformal gravity theory is the
fourth-order theory developed by Weyl [22–26] and Bach [27]. When a Palatini style variation is applied to
Weyl gravity, it becomes second-order, scale-invariant general relativity [18].

The second gauging of the conformal group identified in these works is the biconformal gauging. Leading
to scale-invariant general relativity formulated on a 2n-dimensional symplectic manifold, the approach took
a novel twist for homogeneous spaces in [28]. There it is shown that, because the biconformal gauging leads
to a zero-signature manifold of doubled dimension, we can start with the conformal symmetry of a non-
Lorentzian space while still arriving at spacetime gravity. We describe the resulting signature theorem in
detail below, and considerably strengthen its conclusions. In addition to necessarily developing a direction of
time from a Euclidean-signature starting point, we show that these models give a group-theoretically driven
candidate for dark matter.

In the next Section, we describe the quotient manifold method in detail, providing an example by
applying it to the Poincaré group to produce Cartan and Riemannian geometries. Then, in Section 3, we
apply the method to the conformal group in the two distinct ways outlined above. The first, called the
auxiliary gauging, reproduces Weyl gravity. Focusing on the second, we identify a number of properties
posessed by the homogeneous space of the biconformal gauging. In Section 4, we digress to complete both
gaugings by modifying the quotient manifold and connections, then writing appropriate action functionals,
thereby establishing physical theories of gravity. We return to study the homogeneous space of the
biconformal gauging in Section 5, developing the Maurer-Cartan structure equations in an adapted basis.
Then, in the next Section, we transform a known solution to the structure equations into the adapted basis
and identify the properties of the resulting space. This reveals two previously unknown objects, one a tensor
of rank three, and the other a vector. In Section 6 we find the form of the connection and basis forms when
restricted to the configuration and momentum submanifolds. This reveals the possibility of Riemannian
curvature of the submanifolds, even though the Cartan curvature of the full space vanishes. Imposing the
form of the solution, we find the configuration space has a generalized Einstein tensor which contains both a
cosmological constant and cosmological dust in addition to the usual Einstein tensor. Finally, we summarize
our results.

2. Quotient Manifold Method

We are interested in geometries – ultimately spacetime geometries – which have continuous local symmetries.
The structure of such systems is that of a principal fiber bundle with Lie group fibers. The quotient method
starts with a Lie group, G, with the desired local symmetry as a proper Lie subgroup. To develop the local
properties any representation will give equivalent results, so without loss of generality we assume a linear
representation, i.e. a vector space Vn+2 on which G acts. Typically this will be either a signature (p, q)
(pseudo-)Euclidean space or the corresponding spinor space. This vector space is useful for describing the
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larger symmetry group, but is only a starting point and will not appear in the theory.
The quotient method, laid out below, is identical in many respects to the approaches of [16, 17]. The

nice geometric interpretation of using a Klein space in place of a tangent space to both characterize a curved
manifold and take advantage of its metric structure are also among the motivations for using the quotient
method. In what follows not all the manifolds we look at will be interpreted as spacetime, so we choose not
to use the interpretation of a Klein space moving around on spacetime in a larger ambient space. Rather
we directly generalize the homogeneous space to add curvatures. The homogeneous space becomes a local
model for a more general curved space, similar to the way that Rn provides a local model for an n-dim
Riemannian manifold.

We include a concise introduction here, but the reader can find a more detailed exposition in [2]. Our
intention is to make it clear that our ultimate conclusions have rigorous roots in group theory, rather than
to present a comprehensive mathematical description.

2.1. Construction of a principal H-bundle B (G, π,H,M0) with connection

Consider a Lie group, G, and a non-normal Lie subgroup, H, on which G acts effectively and transitively.
The quotient of these is a homogeneous manifold, M0. The points of M0 are the left cosets,

gH = {g′ | g′ = gh for some h ∈ H}
so there is a natural 1 − 1 mapping gH ↔ H. The cosets are disjoint from one another and together cover
G. There is a projection, π : G → M0, defined by π (g) = gH ∈ M0. There is also a right action of G, gHG,
given for all elements of G by right multiplication.

Therefore, G is a principal H-bundle, B (G, π,H,M0), where the fibers are the left cosets. This is the
mathematical object required to carry a gauge theory of the symmetry group H. Let the dimension of G be

m, the dimension of H be k. Then the dimension of the manifold is n = m−k and we write M
(n)
0 . Choosing

a gauge amounts to picking a cross-section of this bundle, i.e., one point from each of these copies of H.
Local symmetry amounts to dynamical laws which are independent of the choice of cross-section.

Lie groups have a natural Cartan connection given by the one-forms, ξA, dual to the group generators,
GA. Rewriting the Lie algebra in terms of these dual forms leads immediately to the Maurer-Cartan structure
equations,

dξA = −1

2
cABCξ

B ∧ ξC (1)

where cABC are the group structure constants, and ∧ is the wedge product. The integrability condition for
this equation follows from the Poincaré lemma, d2 = 0, and turns out to be precisely the Jacobi identity.
Therefore, the Maurer-Cartan equations together with their integrability conditions are completely equivalent
to the Lie algebra of G.

Let ξa (where a = 1, . . . , k) be the subset of one-forms dual to the generators of the subgroup, H. Let
the remaining independent forms be labeled χα. Then the ξa give a connection on the fibers while the χα

span the co-tangent spaces to M
(n)
0 . We denote the manifold with connection by M(n)

0 =
(

M
(n)
0 , ξA

)

.

2.2. Cartan generalization

For a gravity theory, we require in general a curved geometry, M(n). To achieve this, the quotient method
allows us to generalize both the connection and the manifold. Since the principal fiber bundle from
the quotient is a local direct product, this is not changed if we allow a generalization of the manifold,

M
(n)
0 → M (n). We will not consider such topological issues here. Generalizing the connection is more

subtle. If we change ξA = (ξa,χα) to a new connection ξA → ωA, ξa → ωa,χα → ωα arbitrarily, the
Maurer-Cartan equation is altered to

dωA = −1

2
cABCω

B ∧ ωC +Ω
A
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where Ω
A is a 2-form determined by the choice of the new connection. We need restrictions on Ω

A so that
it represents curvature of the geometry M(n) =

(

M (n),ωA
)

and not of the full bundle B. We restrict Ω
A

by requiring it to be independent of lifting, i.e., horizontality of the curvature.
To define horizontality, recall that the integral of the connection around a closed curve in the bundle is

given by the integral of ΩA over any surface bounded by the curve. We require this integral to be independent
of lifting, i.e., horizontal. It is easy to show that this means that the two-form basis for the curvatures Ω

A

cannot include any of the one-forms, ωa, that span the fiber group, H. With the horizontality condition,
the curvatures take the simpler form

Ω
A =

1

2
ΩA

αβω
α ∧ ωβ

More general curvatures than this will destroy the homogeneity of the fibers, so we would no longer have a
principal H-bundle.

In addition to horizontality, we require integrability. Again using the Poincaré lemma, d2ωA ≡ 0, we
always find a term 1

2c
A
B[Cc

B
DE]ω

C ∧ ωD ∧ ωE which vanishes by the Jacobi identity, cA
B[Cc

B
DE] ≡ 0, while

the remaining terms give the general form of the Bianchi identities,

dΩ
A + cABCω

B ∧Ω
C = 0

2.3. Example: Pseudo-Riemannian manifolds

To see how this works in a familiar example, consider the construction of the pseudo-Riemannian spacetimes
used in general relativity, for which we take the quotient of the 10-dim Poincaré group by its 6-dim Lorentz
subgroup. The result is a principal Lorentz bundle over R4. Writing the one-forms dual to the Lorentz (Ma

b)
and translation (Pa) generators as ξab and ωa, respectively, the ten Maurer-Cartan equations are

dξab = ξcb ∧ ξac

dωa = ωb ∧ ξab

Notice that the first describes a pure gauge spin connection, dξab = −Λ̄c
bdΛ

a
c where Λa

c is a local Lorentz
transformation. Therefore, there exists a local Lorentz gauge such that ξab = 0. The second equation then
shows the existence of an exact orthonormal frame, which tells us that the space is Minkowski.

Now generalize the geometry,
(

M4
0 , ξ

A
)

→
(

M4,ωA
)

where M4
0 = R4 and we denote the new connection

forms by ωA =
(

ωa
b, e

b
)

. In the structure equations, this leads to the presence of ten curvature 2-forms,

dωa
b = ωc

b ∧ ωa
c +R

a
b

de
a = e

b ∧ ωa
b +T

a

Since the ωa
b span the Lorentz subgroup, horizontality is accomplished by restricting the curvatures to

R
a
b =

1

2
Ra

bcde
c ∧ e

d

T
a =

1

2
T a

bce
b ∧ e

c

that is, there are no terms such as, for example, 1
2R

a c
b deω

d
c ∧ e

e or 1
2T

a c e
b d ωb

c ∧ ωd
e. Finally, integrability is

guaranteed by the pair of Bianchi identities,

dR
a
b +R

c
b ∧ ωa

c −R
a
c ∧ ωc

b = 0

dT
a +T

b ∧ ωa
b + e

b ∧R
a
b = 0

By looking at the transformation of Ra
b and T

a under local Lorentz transformations, we find that despite
originating as components of a single Poincaré-valued curvature, they are independent Lorentz tensors. The
translations of the Poincaré symmetry were broken when we curved the base manifold (see [5,11,12], but note
that Kibble effectively uses a 14-dimensional bundle, whereas ours and related approaches require only 10-
dim). We recognize R

a
b and T

a as the Riemann curvature and the torsion two-forms, respectively. Since the
torsion is an independent tensor under the fiber group, it is consistent to consider the subclass of Riemannian
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geometries, Ta = 0. Alternatively (see Sec. 4 below), vanishing torsion follows from the Einstein-Hilbert
action.

With vanishing torsion, the quotient method has resulted in the usual solder form, e
a, and related

metric-compatible spin connection, ωa
b,

de
a − e

b ∧ ωa
b = 0,

the expression for the Riemannian curvature in terms of these,

R
a
b = dωa

b − ωc
b ∧ ωa

c,

and the first and second Bianchi identities,

e
b ∧R

a
b = 0

DR
a
b = 0.

This is a complete description of the class of Riemannian geometries.
Many further examples were explored by Ivanov and Niederle [14, 15].

3. Quotients of the conformal group

3.1. General properties of the conformal group

Physically, we are interested in measurements of relative magnitudes, so the relevant group is the conformal
group, C, of compactified Rn. The one-point compactification at infinity allows a global definition of inversion,
with translations of the point at infinity defining the special conformal transformation. Then C has a real
linear representation in n + 2 dimensions, Vn+2 (alternatively we could choose the complex representation

C2[(n+2)/2]

for Spin (p+ 1, q + 1)). The isotropy subgroup of Rn is the rotations, SO (p, q), together with
dilatations. We call this subgroup the homogeneous Weyl group, W and require our fibers to contain it.
There are then only three allowed subgroups: W itself; the inhomogeneous Weyl group, IW , found by
appending the translations; and W together with special conformal transformations, isomorphic to IW .
The quotient of the conformal group by either inhomogeneous Weyl group, called the auxiliary gauging,
leads most naturally to Weyl gravity [for a review, see [18]]. We concern ourselves with the only other
meaningful conformal quotient, the biconformal gauging: the principal W-bundle formed by the quotient of
the conformal group by its Weyl subgroup. To help clarify the method and our model, it is useful to consider
both these gaugings.

All parts of this construction work for any (p, q) with n = p + q. The conformal group is then
SO (p+ 1, q + 1) (or Spin (p+ 1, q + 1) for the twistor representation). The Maurer-Cartan structure

equations are immediate. In addition to the n(n−1)
2 generatorsMα

β of SO (p, q) and n translational generators
Pα, there are n generators of translations of a point at infinity (“special conformal transformations”) Kα,
and a single dilatational generator D. Dual to these, we have the connections ξαβ ,χ

α,πα,δ, respectively.
Substituting the structure constants into the Maurer-Cartan dual form of the Lie algebra, eq.(1) gives

dξαβ = ξ
µ
β ∧ ξαµ + 2∆αµ

νβπµ ∧ χν (2)

dχα = χβ ∧ ξαβ + δ ∧ χα (3)

dπα = ξβα ∧ πβ − δ ∧ πα (4)

dδ = χα ∧ πα (5)

where ∆αµ
νβ ≡ 1

2

(

δαν δ
µ
β − δαµδνβ

)

antisymmetrizes with respect to the original (p, q) metric, δµν =

diag (1, . . . , 1,−1, . . . ,−1). These equations, which are the same regardless of the gauging chosen, describe
the Cartan connection on the conformal group manifold. Before proceeding to the quotients, we note that
the conformal group has a nondegenerate Killing form,

KAB ≡ tr (GAGB) = cCADcDBC =









∆ac
db

0 δab
δab 0

1
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This provides a metric on the conformal Lie algebra. As we show below, when restricted to M0, it may or
may not remain nondegenerate, depending on the quotient.

Finally, we note that the conformal group is invariant under inversion. Within the Lie algebra,
this manifests itself as the interchange between the translations and special conformal transformations
Pα ↔ δαβK

β along with the interchange of conformal weights, D → −D. The corresponding transformation
of the connection forms, is easily seen to leave eqs.(2)-(5) invariant. In the biconformal gauging, below, we
show that this symmetry leads to a Kähler structure.

3.2. Curved generalizations

In this sub-Section and Section 4 we will complete the development of the curved auxiliary and biconformal
geometries and show how one can easily construct actions with the curvatures. In this sub-Section, we
construct the two possible fiber bundles, C/H where W ⊆ H. For each, we carry out the generalization of
the manifold and connection. The results in this sub-Section depend only on whether the local symmetry is
H = IW or H = W . In Section 5 and Section 6 we will return to the un-curved case to present a number
of new calculations characterizing the homogenous space formed from the biconformal gauging.

The first sub-Section below describes the auxiliary gauging, given by the quotient of the conformal group
by the inhomogeneous Weyl group, IW .

Since IW is a parabolic subgroup of the conformal group, the resulting quotient can be considered a
tractor space, for which there are numerous results [29]. Tractor calculus is a version of the auxiliary gauging
where the original conformal group is tensored with R(p+1,q+1). This allows for a linear representation
of the conformal group with (n+ 2)-dimensional tensorial (physical) entities called tractors. This linear
representation, first introduced by Dirac [30], makes a number of calculations much easier and also allows for
straightforward building of tensors of any rank. The main physical differences stem from the use of Dirac’s
action, usually encoded as the scale tractor squared in the n + 2-dimensional linear representation, instead
of the Weyl action we introduce in Sec 4.

In sub-Section 3.2.2 below, we quotient by the homogeneous Weyl group, giving the biconformal gauging.
This is not a parabolic quotient and therefore represents a less conventional option which turns out to have
a number of rich structures not present in the auxiliary gauging. The biconformal gauging will occupy our
attention for the bulk of our subsequent discussion.

3.2.1. The auxiliary gauging: H = IW Given the quotient C/IW , the one-forms
(

ξαβ ,πµ, δ
)

span the
IW-fibers, with βα spanning the co-tangent space of the remaining n independent directions. This means

that M(n)
0 has the same dimension, n, as the original space. Generalizing the connection, we replace

(

ξαβ,χ
α,πα, δ

)

→
(

ωα
β, e

α,ωα,ω
)

and the Cartan equations now give the Cartan curvatures in terms of

the new connection forms,

dωα
β = ω

µ
β ∧ωα

µ + 2∆αµ
νβωµ ∧ ων +Ω

α
β (6)

de
α = e

β ∧ ωα
β + ω ∧ e

α +T
α (7)

dωα = ωβ
α ∧ ωβ − ω ∧ ωα + Sα (8)

dω = ωα ∧ ωα +Ω (9)

Up to local gauge transformations, the curvatures depend only on the n non-vertical forms, e
α, so the

curvatures are similar to what we find in an n-dim Riemannian geometry. For example, the SO (p, q) piece
of the curvature takes the form Ω

α
β = 1

2Ω
α
βµνe

α ∧ e
β. The coefficients have the same number of degrees of

freedom as the Riemannian curvature of an n-dim Weyl geometry.
Finally, each of the curvatures has a corresponding Bianchi identity, to guarantee integrability of the

modified structure equations,

0 = DΩ
α
β + 2∆αµ

νβ (Ωµ ∧ ων − ωµ ∧Ω
ν) (10)

0 = DT
α − e

β ∧Ω
α
β +Ω ∧ e

α (11)

0 = DSα +Ω
α
β ∧ ωβ − ωα ∧Ω (12)

7



0 = DΩ+T
α ∧ ωα − ωα ∧ Sα (13)

where D is the Weyl covariant derivative,

DΩ
α
β = dΩ

α
β +Ω

µ
β ∧ωα

µ −Ω
α
µ ∧ ω

µ
β

DT
α = dT

α +T
β ∧ ωα

β − ω ∧T
α

DSα = dSα − ωβ
α ∧ Sβ + Sα ∧ ω

DΩ = dΩ

Equations eq.(6-9) give the curvature two-forms in terms of the connection forms. We have therefore
constructed an n-dim geometry based on the conformal group with local IW symmetry.

We note no additional special properties of these geometries from the group structure. In particular,
the restriction (in square brackets, [ ], below) of the Killing metric, KAB, to M(n) vanishes identically,









∆ac
db

[0] δab
δab 0

1









∣

∣

∣

∣

∣

∣

∣

∣

M(n)

=
(

0
)

n×n
,

so there is no induced metric on the spacetime manifold. We may add the usual metric by hand, of course,
but our goal here is to find those properties which are intrinsic to the underlying group structures.

3.2.2. The biconformal gauging: H = W We next consider the biconformal gauging, first considered by
Ivanov and Niederle [15], given by the quotient of the conformal group by its Weyl subgroup. The resulting
geometry has been shown to contain the structures of general relativity [20, 21].

Given the quotient C/W , the one-forms
(

ξαβ , δ
)

span the W-fibers, with (χα,πα) spanning the remaining

2n independent directions. This means that M(2n)
0 has twice the dimension of the original compactified R(n).

Generalizing, we replace
(

ξαβ,χ
α,πα, δ

)

→
(

ωα
β ,ω

α,ωα,D
)

and the modified structure equations appear

identical to eqs.(6-9). However, the curvatures now depend on the 2n non-vertical forms, (ωα,ωα), so there
are far more components than for an n-dim Riemannian geometry. For example,

Ω
α
β =

1

2
Ωα

βµνω
µ ∧ ων +Ωα µ

β νωµ ∧ ων +
1

2
Ωα µν

β ωµ ∧ ων

The coefficients of the pure terms, Ωα
βµν and Ωα µν

β each have the same number of degrees of freedom as the

Riemannian curvature of an n-dim Weyl geometry, while the cross-term coefficients Ωα µ
β ν have more, being

asymmetric on the final two indices.
For our purpose, it is important to notice that the spin connection, ξαβ , is antisymmetric with respect

to the original (p, q) metric, δαβ , in the sense that

ξαβ = −δαµδβνξ
ν
µ

It is crucial to note that ωα
β retains this property, ωα

β = −δαµδβνω
ν
µ. This expresses metric compatibility

with the SO (p, q)-covariant derivative, since it implies

Dδαβ ≡ dδαβ − δµβω
µ
α − δαµω

µ
β = 0

Therefore, the curved generalization has a connection which is compatible with a locally (p, q)-metric. This
relationship is general. If καβ is any metric, its compatible spin connection will satisfy ωα

β = −καµκβνω
ν
µ.

Since we also have local scale symmetry, the full covariant derivative we use will also include a Weyl vector
term.

The Bianchi identities, written as 2-forms, also appear the same as eqs.(10-13), but expand into more
components.

In the conformal group, translations and special conformal transformations are related by inversion.
Indeed, a special conformal tranformation is a translation centered at the point at infinity instead of
the origin. Because the biconformal gauging maintains the symmetry between translations and special
conformal transformations, it is useful to name the corresponding connection forms and curvatures to reflect
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this. Therefore, the biconformal basis will be described as the solder form and the co-solder form, and the
corresponding curvatures as the torsion and co-torsion. Thus, when we speak of “torsion-free biconformal
space” we do not imply that the co-torsion (Cartan curvature of the co-solder form) vanishes. In phase space
interpretations, the solder form is taken to span the cotangent spaces of the spacetime manifold, while the
co-solder form is taken to span the cotangent spaces of the momentum space. The opposite convention is
equally valid.

Unlike other quotient manifolds arising in conformal gaugings, the biconformal quotient manifold
posesses natural invariant structures. The first is the restriction of the Killing metric, which is now non-
degenerate,









∆ac
db

[

0 δab
δab 0

]

1









∣

∣

∣

∣

∣

∣

∣

∣

M(2n)

=

(

0 δab
δab 0

)

2n×2n

,

and this gives an inner product for the basis,
[ 〈

ωα,ωβ
〉

〈ωα,ωβ〉
〈

ωα,ω
β
〉

〈ωα,ωβ〉

]

≡
[

0 δαβ
δβα 0

]

(14)

This metric remains unchanged by the generalization to curved base manifolds.
The second natural invariant property is the generic presence of a symplectic form. The original fiber

bundle always has this, because the structure equation, eq.(5), shows that χα ∧ πα is exact hence closed,
d
2ω = 0, while it is clear that the two-form product is non-degenerate because (χα,πα) together span

M(2n)
0 . Moreover, the symplectic form is canonical,

[Ω]AB =

[

0 δβα
−δαβ 0

]

so that χα and πα are canonically conjugate. The symplectic form persists for the 2-form, ωα ∧ωα +Ω, as
long as it is non-degenerate, so curved biconformal spaces are generically symplectic.

Next, we consider the effect of inversion symmetry. As a

(

1
1

)

tensor, the basis interchange takes the

form

IABχ
B =

(

0 δαν

δβµ 0

)(

χµ

πν

)

=

(

δανπν

δβµχ
µ

)

In order to interchange conformal weights, IAB must anticommute with the conformal weight operator, which
is given by

WA
Bχ

B =

(

δαµ 0
0 −δνβ

)(

χµ

πν

)

=

(

+χα

−πβ

)

This is the case: we easily check that {I,W}AB = IACW
C
B + WA

CI
C
B = 0. The commutator gives a new

object,

JA
B ≡ [I,W ]

A
B =

(

0 −δαβ

δαβ 0

)

Squaring, JA
CJ

C
B = −δAB, we see that JA

B provides an almost complex structure. That the almost complex
structure is integrable follows immediately in this (global) basis by the obvious vanishing of the Nijenhuis
tensor,

NA
BC = JD

C∂DJA
B − JD

C∂DJA
B − JA

D

(

∂CJ
D
B − ∂BJ

D
C

)

= 0

Next, using the symplectic form to define the compatible metric

g (u, v) ≡ Ω (u, Jv)

9



we find that in this basis g =

(

δαβ 0
0 δαβ

)

, and we check the remaining compatibility conditions of the

triple (g, J,Ω),

ω (u, v) = g (Ju, v)

J (u) = (φg)
−1

(φω (u))

where φω and φg are defined by

φω (u) = ω (u, ·)
φg (u) = g (u, ·)

These are easily checked to be satisified, showing that that M(2n)
0 is a Kähler manifold. Notice, however,

that the metric of the Kähler manifold is not the restricted Killing metric which we use in the following
considerations.

Finally, a surprising result emerges if we require M(2n)
0 to match our usual expectations for a relativistic

phase space. To make the connection to phase space clear, the precise requirements were studied in [28],
where it was shown that the flat biconformal gauging of SO (p, q) in any dimension n = p + q will have
Lagrangian submanifolds that are orthogonal with respect to the 2n-dim biconformal (Killing) metric and
have non-degenerate n-dim restrictions of the metric only if the original space is Euclidean or signature zero
(

p ∈
{

0, n2 , n
})

, and then the signature of the submanifolds is severely limited (p → p± 1), leading in the
two Euclidean cases to Lorentzian configuration space, and hence the origin of time. For the case of flat,
8-dim biconformal space [28] proves the following theorem:

Flat 8-dim biconformal space is a metric phase space with Lagrangian submanifolds that are orthogonal
with respect to the 2n-dim biconformal (Killing) metric and have non-degenerate n-dim metric restrictions
of the biconformal metric if and only if the initial 4-dim space we gauge is Euclidean or signature zero. In
either of these cases the resulting configuration sub-manifold is necessarily Lorentzian [28].

Thus, it is possible to impose the conditions necessary to make biconformal space a metric phase space
only in a restricted subclass of cases, and the configuration space metric must be Lorentzian. In [28], it was
found that with a suitable choice of gauge, the metric may be written in coordinates yα as

hαβ =
1

(y2)2
(

2yαyβ − y2δαβ
)

(15)

where the signature changing character of the metric is easily seen.
In the metric above, eq.(15), yα = Wα is the Weyl vector of the space. This points to another unique

characteristic of flat biconformal space. The structures of the conformal group, treated as described above,
give rise to a natural direction of time, given by the gauge field of dilatations. The situation is reminiscent
of previous studies. In 1979, Stelle and West introduced a special vector field to choose the local symmetry
of the MacDowell-Mansouri theory. The vector breaks the de Sitter symmetry, eliminating the need for
the Wigner-Inönu contraction. Recently, Westman and Zlosnik [31] have looked in depth at both the de
Sitter and anti-de Sitter cases using a class of actions which extend that of Stelle and West by including
derivative terms for the vector field and therefore lead to dynamical symmetry breaking. In [32, 33] and
Einstein-Aether theory [34], there is also a special vector field introduced into the action by hand that can
make the Lorentzian metric Euclidean. These approaches are distinct from that of the biconformal approach,
where the vector necessary for specifying the timelike direction occurs naturally from the underlying group
structure. We will have more to say about this below, where we show explicitly that the Euclidean gauge
theory necessarily posesses a special vector, v = ω − 1

2ηabdη
bc. This vector gives the time direction on

two Lagrangian submanifolds, making them necessarily Lorentzian. The full manifold retains its original
symmetry.

4. A brief note on gravitation

Notice that our development to this point was based solely on group quotients and generalization of the
resulting principal fiber bundle. We have arrived at the form of the curvatures in terms of the Cartan
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connection, and Bianchi identities required for integrability, thereby describing certain classes of geometry.
Within the biconformal quotient, the demand for orthogonal Lagrangian submanifolds with non-degenerate
n-dim restrictions of the Killing metric leads to the selection of certain Lorentzian submanifolds. Though
our present concern has to do with the geometric background rather than with gravitational theories on
those backgrounds, for completeness we briefly digress to specify the action functionals for gravity. The
main results of the current study, taken up again in the final three Sections, concern only the homogeneous

space, M(2n)
0 .

We are guided in the choice of action functionals by the example of general relativity. Given the
Riemannin geometries of Section 2.3, we may write the Einstein-Hilbert action and proceed. More
systematically, however, we may write the most general, even-parity action linear in the curvature and
torsion. This still turns out to be the Einstein-Hilbert action, and, as noted above, one of the classical field
equations under a full variation of the connection

(

δeb, δωa
b

)

, implies vanishing torsion. The latter, more
robust approach is what we follow for conformal gravity theories.

It is generally of interest to build the simplest class of actions possible, and we use the following criteria:

(i) The pure-gravity action should be built from the available curvature tensor(s) and other tensors which
occur in the geometric construction.

(ii) The action should be of lowest possible order ≥ 1 in the curvatures.

(iii) The action should be of even parity.

These are of sufficient generality not to bias our choice. It may also be a reasonable assumption to set certain
tensor fields, for example, the spacetime torsion to zero. This can significantly change the available tensors,
allowing a wider range of action functionals.

Notice that if we perform an infinitesmal conformal transformation to the curvatures,
(

Ω
α
β ,Ω

α,Ωβ ,Ω
)

,
they all mix with one another, since the conformal curvature is really a single Lie-algebra-valued two form.
However, the generalization to a curved manifold breaks the non-vertical symmetries, allowing these different
components to become independent tensors under the remaining Weyl group. Thus, to find the available
tensors, we apply an infinitesmal transformation of the fiber symmetry. Tensors are those objects which
transform linearly and homogeneously under these transformations.

4.1. The auxiliary gauging and Weyl gravity

The generalization of the auxiliary quotient, C/IW , breaks translational symmetry, and a local
transformation of the connection components immediately shows that the solder form, eα, becomes a tensor.
Correspondingly, the torsion, Tα, no longer mixes with the other curvature components. This suggests the
possibility of a teleparallel theory based on the torsion, but this would involve little of the conformal structure.
Instead we choose to set T

α = 0 as an additional condition on our model. This gives us Riemannian or
Weyl geometries instead of Cartan geometries and is therefore more in line with the requirements of general
relativity.

When the torsion is maintained at zero, both the rotational curvature, Ω
α
β , and the dilatational

curvature, Ω, become tensorial. Because the n-dim volume form has conformal weight n there is no curvature-
linear action. Together with the orthonormal metric and the Levi-Civita tensor, we build the most general
even parity curvature-quadratic action,

S =

ˆ

(

αΩα
β ∧ ∗

Ω
β
α + βΩ ∧ ∗

Ω

)

This was partially studied in the 1970s with an eye to supersymmetry [7–10, 35], where the β = 0 case is
shown to lead to Weyl gravity. Indeed, assuming a suitable metric dependence of the remaining connection

components,
(

ωα
β, fα,ω

)

, metric variation leads to the fourth-order Bach equation [27]. However, it

has recently been shown that varying all connection forms independently leads to scale-invariant general
relativity [18].

In dimensions higher than four, our criteria lead to still higher order actions. Alternatively, curvature-
linear actions can be written in any dimension by introducing a suitable power of a scalar field [30,36]. This
latter reference, [36], gives the φ2R action often used in tractor studies.
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4.2. Gravity in the biconformal gauging

The biconformal gauging, based on C/W , also has tensorial basis forms (ωα,ωα). Moreover, each of the
component curvatures,

(

Ω
α
β,Ω

α,Ωβ ,Ω
)

, becomes an independent tensor under the Weyl group.

In the biconformal case, the volume form eρσ...λ αβ...νω
α ∧ωβ ∧ . . . ∧ων ∧ωρ ∧ωσ ∧ . . . ∧ωλ has zero

conformal weight. Since both Ω
α
β and Ω also have zero conformal weight, there exists a curvature-linear

action in any dimension [20]. The most general linear case is

S =

ˆ

(

αΩα
β + βΩδαβ + γωα ∧ ωβ

)

∧ eβρ...σ αµ...νω
µ ∧ . . . ∧ ων ∧ ωρ ∧ . . . ∧ ωσ

Notice that we now have three important properties of biconformal gravity that arise because of the doubled
dimension: (1) the non-degenerate conformal Killing metric induces a non-degenerate metric on the manifold,
(2) the dilatational structure equation generically gives a symplectic form, and (3) there exists a Weyl
symmetric action functional linear in the curvature, valid in any dimension.

There are a number of known results following from the linear action. In [20] torsion-constrained
solutions are found which are consistent with scale-invariant general relativity. Subsequent work along the
same lines shows that the torsion-free solutions are determined by the spacetime solder form, and reduce
to describe spaces conformal to Ricci-flat spacetimes on the corresponding spacetime submanifold [37]. A
supersymmetric version is presented in [38], and studies of Hamiltonian dynamics [39, 40] and quantum
dynamics [41] support the idea that the models describe some type of relativistic phase space determined by
the configuration space solution.

5. Homogeneous biconformal space in a conformally orthonormal, symplectic basis

The central goal of the remainder of this manuscript is to examine properties of the homogeneous manifold,

M(2n)
0 , which become evident in a conformally orthonormal basis, that is, a basis which is orthonormal up

to an overall conformal factor. Generically, the properties we discuss will be inherited by the related gravity
theories as well.

As noted above, biconformal space is immediately seen to possess several structures not seen in other
gravitational gauge theories: a non-degenerate restriction of the Killing metric‡, a symplectic form, and
Kähler structure. In addition, the signature theorem in [28] shows that if the original space has signature
±n or zero, the imposition of involution conditions leads to orthogonal Lagrangian submanifolds that have
non-degenerate n-dim restrictions of the Killing metric. Further, constraining the momentum space to be as
flat as permitted requires the restricted metrics to be Lorentzian. We strengthen these results in this Section
and the next. Concerning ourselves only with elements of the geometry of the Euclidean (s = ±n) cases (as
opposed to the additional restrictions of the field equations, involution conditions or other constraints), we
show the presence of exactly such Lorentzian signature Lagrangian submanifolds without further assumptions.

We go on to study the transformation of the spin connection when we transform the basis of an 8-
dim biconformal space to one adapted to the Lagrangian submanifolds. We show that in addition to the
Lorentzian metric, a Lorentzian connection emerges on the configuration and momentum spaces and there
are two new tensor fields. Finally, we examine the curvature of these Lorentzian connections and find both
a cosmological constant and cosmological “dust”. While it is premature to make quantitative predictions,
these new geometric features provide novel candidates for dark energy and dark matter.

5.1. The biconformal quotient

We start with the biconformal gauging of Section 3, specialized to the case of compactified, Euclidean R4 in
a conformally orthonormal, symplectic basis. The Maurer-Cartan structure equations are

dωα
β = ω

µ
β ∧ωα

µ + 2∆αµ
νβωµ ∧ ων (16)

dωα = ωβ ∧ ωα
β + ω ∧ ωα (17)

‡ There are non-degenerate restrictions in anti-de Sitter and de Sitter gravitational gauge theories.
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dωα = ωβ
α ∧ ωβ + ωα ∧ ω (18)

dω = ωα ∧ ωα (19)

where the connection one-forms represent SO (4) rotations, translations, special conformal transformations

and dilatations respectively. The projection operator ∆αµ
γβ ≡ 1

2

(

δαγ δ
µ
β − δαµδγβ

)

in eq.(16) gives that part

of any
(

1
1

)

-tensor antisymmetric with respect to the original Euclidean metric, δαβ . As discussed in Section
3.2.2, this group has a non-degenerate, 15-dim Killing metric. We stress that the structure equations
and Killing metric – and hence their restrictions to the quotient manifold – are intrinsic to the conformal
symmetry.

The gauging begins with the quotient of this conformal group, SO (5, 1), by its Weyl subgroup, spanned
by the connection forms ωα

β (here dual to SO(4) generators) and ω. The co-tangent space of the quotient
manifold is then spanned by the solder form, ωα, and the co-solder form, ωα, and the full conformal
group becomes a principal fiber bundle with local Weyl symmetry over this 8-dim quotient manifold. The
independence of ωα and ωα in the biconformal gauging makes the 2-form ωα ∧ ωα non-degenerate, and
eq.(19) immediately shows that ωα ∧ ωα is a symplectic form. The basis (ωα,ωα) is canonical.

The involution evident in eq.(17) shows that the solder forms, ωα, span a submanifold, and from the
simultaneous vanishing of the symplectic form this submanifold is Lagrangian. Similarly, eq.(18) shows that
the ωβ span a Lagrangian submanifold. However, notice that neither of these submanifolds, spanned by
either ωα or ωα alone, has an induced metric, since by eq.14,

〈

ωα,ωβ
〉

= 〈ωα,ωβ〉 = 0. The orthonormal
basis will make the Killing metric block diagonal, guaranteeing that its restriction to the configuration and
momentum submanifolds have well-defined, non-degenerate metrics.

It was shown in [28] this it is consistent (for signatures ±n, 0 only) to impose involution conditions and
momentum flatness in this rotated basis in such a way that the new basis still gives Lagrangian submanifolds.
Moreover, the restriction of the Killing metric to these new submanifolds is necessarily Lorentzian. In what
follows, we do not need the assumptions of momentum flatness or involution, and work only with intrinsic

properties of M(2n)
0 . This Section describes the new basis and resulting connection, while the next establishes

that for initial Euclidean signature, the principal results of [28] follow necessarily. Our results show that the
timelike directions in these models arise from intrinsically conformal structures.

We now change to a new canonical basis, adapted to the Lagrangian submanifolds.

5.2. The conformally-orthonormal Lagrangian basis

In [28] the (ωα,ωα) basis is rotated so that the metric, hAB becomes block diagonal
[

0 δαβ
δαβ 0

]

⇒ [hAB] =

[

hab 0
0 −hab

]

while the symplectic form remains canonical. This makes the Lagrangian submanifolds orthogonal with
a non-degenerate restriction to the metric. Here we use the same basis change, but in addition define
coefficients, h α

a to relate the orthogonal metric to one conformally orthonormal on the submanifolds,

ηab = h α
a hαβh

β
b , where ηab is conformal to diag (±1,±1,±1,±1). From [28] we know that hab is necessarily

Lorentzian, hab = ηab = e2φdiag (−1, 1, 1, 1) = e2φη0ab and we give a more general proof below. Notice that
the definition of ηab includes an unknown conformal factor. The required change of basis is then

e
a = h a

α

(

ωα +
1

2
hαβωβ

)

(20)

fa = h α
a

(

1

2
ωα − hαβω

β

)

(21)

with inverse basis change

ωα =
1

2
h α
a

(

e
a − ηabfb

)

(22)

ωα = h a
α

(

fa + ηabe
b
)

(23)
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Using (14), the Killing metric is easily checked to be
[ 〈

e
a, eb

〉

〈ea, fb〉
〈

fa, e
b
〉

〈fa, fb〉

]

=

[

h a
α h

b
β h

(αβ) 0

0 −h α
a h β

b h(αβ)

]

=

[

e−2φηab0 0
0 −e2φη0ab

]

where hαβ = h(αβ), and hαβhβγ = δαγ .
The new basis is also canonical, as we see by transforming the dilatation equation, eq.(19), to find

dω = e
a
fa. We refer to the fa = 0 and e

a = 0 submanifolds as the configuration and momentum submanifolds
respectively.

5.3. Properties of the structure equations in the new basis

We now explore the properties of the biconformal system in this adapted basis. Rewriting the remaining
structure equations, eqs.(16, 17, 18), in terms of ea and fa, we show some striking cancelations that lead to
the emergence of a connection compatible with the Lorentzian metric, and two new tensors.

We begin with the exterior derivative of eq.(20), using structure equations eq.(17) and eq.(18), and then
using the basis change equations eqs.(22, 23). Because eqs.(22, 23) involve the sum and difference of ea and
fb, separating by these new basis forms leads to a separation of symmetries. This leads to a cumbersome
expansion, which reduces considerably and in significant ways, to

de
a = e

b ∧Θad
cb τ

c
d − ηbcfc ∧ Ξae

dbτ
d
e +

1

2
ηbcdη

ab ∧ e
c +

1

2
dηab ∧ fb + 2ηabfb ∧ ω (24)

where we define projections Θac
db ≡ 1

2 (δ
a
dδ

c
b − ηacηbd) and Ξad

cb ≡ 1
2

(

δac δ
d
b + ηadηcb

)

that separate symmetries
with respect to the new metric ηab rather than δαβ. These give the antisymmetric and symmetric parts,
respectively, of a

(

1
1

)

-tensor with respect to the new orthonormal metric, ηab. Notice that these projections
are independent of the conformal factor on ηab.

The significance of the reduction lies in how the symmetries separate between the different subspaces.
Just as the curvatures split into three parts, eq.(24) and each of the remaining structure equations splits
into three parts. Expanding these independent parts separately allows us to see the Riemannian structure
of the configuration and momentum spaces. It is useful to first define

τ a
b ≡ αa

b + βa
b (25)

where αa
b ≡ Θad

cb τ
c
d and βa

b ≡ Ξad
cb τ

c
d. Then, to facilitate the split into e

a ∧ e
b, ea ∧ fb and fa ∧ fb parts, we

partition the spin connection and Weyl vector by submanifold, defining

αa
b ≡ σa

b + γa
b = σa

bce
c + γa c

b fc (26)

βa
b ≡ µa

b + ρa
b = µa

bce
c + ρa c

b fc (27)

ω ≡ Wae
a +W a

fa (28)

We also split the exterior derivative, d = d(x) + d(y), where coordinates xα and yα are used on the
e
a = e a

α dxα and fa = f α
a dyα submanifolds, respectively. Using these, we expand each of the structure

equations into three W-invariant parts. The complete set (with curvatures included for completeness) is
given in Appendix 1.

The simplifying features and notable properties include:

(i) The new connection: The first thing that is evident is that all occurences of the spin connection ωα
β

may be written in terms of the combination

τ a
b ≡ h a

αω
α
βh

β
b − h α

b dh a
α (29)

which, as we show below, transforms as a Lorentz spin connection. Although the basis change is not a
gauge transformation, the change in the connection has a similar inhomogeneous form. Because h a

α is
a change of basis rather than local SO (n) or local Lorentz, the inhomogeneous term has no particular
symmetry property, so τ a

b will have both symmetric and antisymmetric parts.
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(ii) Separation of symmetric and antisymmetric parts: Notice in eq.(24) how the antisymmetric part of
the new connection, αa

b, is associated with e
b, while the symmetric part, βa

b pairs with fc. This
surprising correspondence puts the symmetric part into the cross-terms while leaving the connection of
the configuration submanifold metric compatible, up to the conformal factor.

(iii) Cancellation of the submanifold Weyl vector: The Weyl vector terms cancel on the configuration
submanifold, while the fa terms add. The expansion of the dfa structure equation shows that the
Weyl vector also drops out of the momentum submanifold equations. Nonetheless, these submanifold
equations are scale invariant because of the residual metric derivative. Recognizing the combination of
dh terms that arises as dηab, and recalling that ηab = e2φη0ab, we have − 1

2dη
acηcb = δabdφ. When the

metric is rescaled, this term changes with the same inhomogeneous term as the Weyl vector.

(iv) Covariant derivative and a second Weyl-type connection: It is natural to define the τ b
c-covariant

derivative of the metric. Since ηcbαa
c + ηacαb

c = 0, it depends only on βa
c and the Weyl vector,

Dηab ≡ dηab + ηcbτ a
c + ηacτ b

c − 2ωηae (30)

= dηab + 2ηcbβa
c − 2ωηab (31)

This derivative allows us to express the structure of the biconformal space in terms of the Lorentzian
properties.

When all of the identifications and definitions are included, and carrying out similar calculations for the
remaining structure equations, the full set becomes

dτ a
b = τ c

b ∧ τ a
c +∆ae

dbηece
c ∧ e

d −∆ac
ebη

ed
fc ∧ fd + 2∆ae

fbΞ
fc
defc ∧ e

d (32)

de
a = e

c ∧αa
c +

1

2
ηcbdη

ac ∧ e
b +

1

2
Dηab ∧ fb (33)

dfa = αb
a ∧ fb +

1

2
ηbcdηab ∧ fc −

1

2
Dηab ∧ e

b (34)

dω = e
a ∧ fa (35)

with the complete W-invariant separation in Appendix 1.

5.4. Gauge transformations and new tensors

The biconformal bundle now allows local Lorentz transformations and local dilatations on M(2n)
0 . Under

local Lorentz transformations, Λa
c, the connection τ a

b changes with an inhomogeneous term of the form
Λ̄c

bdΛ
a
c. Since this term lies in the Lie algebra of the Lorentz group, it is antisymmetric with respect to

ηab, Θ
ac
db

(

Λ̄e
cdΛ

d
e

)

= Λ̄e
bdΛ

a
eand therefore only changes the corresponding Θac

db-antisymmetric part of the
connection, with the symmetric part transforming homogeneously:

α̃a
b = Λa

cα
c
dΛ̄

d
b − Λ̄c

bdΛ
a
c

β̃
a

b = Λa
cβ

c
dΛ̄

d
b

Having no inhomogeneous term, βa
b is a Lorentz tensor. This new tensor field βa

b necessarily includes
degrees of freedom from the original connection that cannot be present in αa

b, the total equaling the degrees
of freedom present in τ a

b. As there is no obvious constraint on the connection αa
b, we expect βa

b to be
highly constrained. Clearly, αc

d transforms as a Lorentzian spin connection, and the addition of the tensor
βa

b preserves this property, so τ a
b is a local Lorentz connection.

Transformation of the connection under dilatations reveals another new tensor. The Weyl vector
transforms inhomogeneously in the usual way, ω̃ = ω + df , but, as noted above, the expression 1

2ηcbdη
ac

also transforms,

1

2
η̃cbdη̃

ac = δabdφ̃ = δab (dφ− df)

so that the combination

v = ω + dφ
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is scale invariant. Notice the presence of two distinct scalars here. Obviously, given 1
2η

ac
dηcb = δabdφ we

can choose a gauge function, f1 = −φ, such that 1
2η

ac
dηcb = 0. We also have, dω = 0, on the configuration

submanifold, so that ω = df2, for some scalar f2 and this might be gauged to zero instead. But while one
or the other of ω or dφ can be gauged to zero, their sum is gauge invariant. As we show below, it is the
resulting vector v which determines the timelike directions.

Recall that certain involution relationships must be satisfied to ensure that spacetime and momentum
space are each submanifolds. The involution conditions in homogeneous biconformal space are

0 = µa
b ∧ e

b − v(x) ∧ e
a (36)

0 = ρb
a ∧ fb − u(y) ∧ fa (37)

where v ≡ v(x) + u(y) ≡ vae
a + ua

fa. These were imposed as constraints in [28], but are shown below to
hold automatically in Euclidean cases.

6. Riemannian spacetime in Euclidean biconformal space

The principal result of [28] was to show that the flat biconformal space M(2n)
0 arising from any SO (p, q)

symmetric biconformal gauging can be identified with a metric phase space only when the initial n-space is
of signature ±n or zero. To make the identification, involution of the Lagrangian submanifolds was imposed,
and it was assumed that the momentum space is conformally flat. With these assumptions the Lagrangian
configuration and momentum submanifolds of the signature ±n cases are necessarily Lorentzian.

Here we substantially strengthen this result, by considering only the Euclidean case. We are able to
show that further assumptions are unnecessary. The gauging always leads to Lorentzian configuration and
momentum submanifolds, the involution conditions are automatically satisfied by the structure equations,
and both the configuration and momentum spaces are conformally flat. We make no assumptions beyond
the choice of the quotient C/W and the structures that follow from these groups.

Because this result shows the development of the Lorentzian metric on the Lagrangian submanifolds,
we give details of the calculation.

6.1. Solution of the structure equations

A complete solution of the structure equations in the original basis, eqs.(16-19) is given in [21] and derived
in [20], with a concise derivation presented in [39]. By choosing the gauge and coordinates (wα, sβ)
appropriately, where Greek indices now refer to coordinates and will do so for the remainder of this
manuscript+, the solution may be given the form,

ωα
β = 2∆αµ

νβ sµdw
ν (38)

ωα = dwα (39)

ωα = dsα −
(

sαsβ − 1

2
s2δαβ

)

dwβ (40)

ω = − sαdw
α (41)

as is easily checked by direct substitution. Our first goal is to express this solution in the adapted basis and
find the resulting metric.

From the original form of the Killing metric, eq.(14), we find
[ 〈

dwα,dwβ
〉

〈dwα,dsβ〉
〈

dsα,dw
β
〉

〈dsα,dsβ〉

]

=

[

0 δαβ
δβα −kαβ

]

where we define kαβ ≡ s2δαβ − 2sαsβ . This shows that dwα and dsα do not span orthogonal subspaces. We
want to find the most general set of orthogonal Lagrangian submanifolds, and the restriction of the Killing
metric to them.

+ The connection forms could be written with distinct indices, for example as ωa
= δa

α
dwα, but this is unnecessarily

cumbersome.
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Suppose we find linear combinations of the orginal basis κβ ,λα that make the metric block diagonal,
with λα = 0 and κβ = 0 giving Lagrangian submanifolds. Then any further transformation,

κ̃α = Aα
βκ

β

λ̃α = Bβ
αλβ

leaves these submanifolds unchanged and is therefore equivalent. Now suppose one of the linear combinations
is

λ̃α = αAβ
αdsβ + βC̃αµdw

µ

= Aβ
α (αdsβ + βCβµdw

µ)

where C = A−1C̃ and the constants are required to keep the transformation nondegenerate. Then
λα = αdsα + βCαβdw

β spans the same subspace. A similar argument holds for κ̃β , so if we can find a
basis at all, there is also one of the form

λα = αdsα + βCαβdw
β

κα = µdwα + νBαβ
dsβ

Now check the symplectic condition,

καλα = (µβCαµ)dw
α
dwµ + αµ

(

δβµ − νβCαµB
αβ

)

dwµ
dsβ +

(

ναBαβ
)

dsβdsα

To have καλα = dwα
dsα, Bαβ and Cαβ must be symmetric and

B = Bt =
αµ− 1

νβ
C−1 ≡ αβC̄

Replacing Bαβ in the basis, we look at orthogonality of the inner product, requiring

0 = 〈κα,λβ〉

=

〈

µdwα +
αµ− 1

β
C̄αµ

dsµ, αdsβ + βCβνdw
ν

〉

= (2αµ− 1) δαβ − 1

β
α (αµ− 1) C̄αµkµβ

with solution Cαβ = α(αµ−1)
β(2αµ−1)kαβ . Therefore, the basis

λα = αdsα +
α (αµ− 1)

(2αµ− 1)
kαβdw

β

κα = µdwα +
2αµ− 1

α
kαβdsβ

satisfies the required properties and is equivalent to any other which does.
The metric restrictions to the submanifolds are now immediate from the inner products:

〈

κα,κβ
〉

=
2αµ− 1

α2
kαβ

〈λα,λβ〉 = − α2

2αµ− 1
kαβ

This shows that the metric on the Lagrangian submanifolds is proportional to kαβ , and we normalize the

proportionality to 1 by choosing µ = 1+kα2

2α and β ≡ kα, where k = ±1. This puts the basis in the form

κα =
k

2β

((

kβ2 + 1
)

dwα + 2kβ2kαβdsβ
)

λα =
1

2β

(

2kβ2
dsα +

(

kβ2 − 1
)

kαβdw
β
)

Now that we have established the metric

kαβ = s2
(

δαβ − 2

s2
sαsβ

)
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where δαβ is the Euclidean metric and s2 = δαβsαsβ > 0, and have found one basis for the submanifolds, we

may form an orthonormal basis for each, setting ηab = h α
a h β

b kαβ .

e
a =

k

2β
h a
α

((

1 + kβ2
)

dwα + 2kβ2kαβdsβ
)

(42)

fa =
1

2β
h α
a

(

2kβ2
dsα −

(

1− kβ2
)

kαβdw
β
)

(43)

We see from the form kαβ = s2
(

δαβ − 2
s2
sαsβ

)

that at any point s0α, a rotation that takes 1√
sw

s0α to a

fixed direction n̂ will take kαβ to s2diag (−1, 1, . . . , 1) so the orthonormal metric ηab is Lorentzian. This is
one of our central results. Since eqs.(38-41) provide an exact, general solution to the structure equations,
the induced configuration and momentum spaces of Euclidean biconformal spaces are always Lorentzian,
without restrictions.

We now find the connections forms in the orthogonal basis and check the involution conditions required
to guarantee that the configuration and momentum subspaces are Lagrangian submanifolds.

6.2. The connection in the adapted solution basis

We have defined τ a
b in eq. (29) with antisymmetric and symmetric parts αa

b and βa
b, subdivided between

the e
a and fa subspaces, eq(26, 27). All quantities may be written in terms of the new basis. We will make

use of sa ≡ h α
a sα and δab ≡ h α

a h β
b δαβ . In terms of these, the orthonormal metric is ηab = s2

(

δab − 2
s2
sasb

)

,
where s2 ≡ δabsasb > 0. Solving for δab, we find δab =

1
s2
ηab+

2
s2
sasb. Similar relations hold for the inverses,

ηab, δab, see Appendix 2. In addition, we may invert the basis change to write the coordinate differentials,

dwβ = kβh β
a

(

e
a − kηabfb

)

dsα =
1

2β
h a
α

((

1− kβ2
)

ηabe
b + k

(

1 + kβ2
)

fa

)

The known solution for the spin connection and Weyl form, eqs.(38,41) immediately become

ωa
b = 2∆ac

dbsckβ
(

e
d − kηdefe

)

(44)

ω = − kβsae
a + βηabsafb (45)

where we easily expand the projection ∆ac
db in terms of the new metric. Substituting this expansion to find

τ a
b, results in

τ a
b = β (2Θac

dbsc + 2ηaeηbdse + 2ηaesesbsd)
(

ked − ηdgfg
)

− h α
b dh a

α

The antisymmetric part is then αa
b ≡ Θad

cb τ
c
d = −Θad

cb h
α
d dh c

α with the remaining terms cancelling identically.
Furthermore, as described above, h c

α is a purely sα-dependent rotation at each point. Therefore the remaining
h α
d dh c

α term will lie totally in the subspace spanned by dsα, giving the parts of αa
b as

σa
b = − 1− kβ2

2β
Θad

cb

(

h α
b

∂

∂sβ
h a
α

)

h c
β ηcde

d (46)

γa
b = − k + β2

2β
Θad

cb

(

h α
b

∂

∂sβ
h a
α

)

h c
β fc (47)

Recall that the value of k or β in these expressions is essentially a gauge choice and should be physically
irrelavant. If we choose β2 = 1, we get either σa

b = 0 or γa
b = 0, depending on the sign of k.

Continuing, we are particularly interested in the symmetric pieces of the connection since they constitute
a new feature of the theory. Applying the symmetric projection to τ a

b, we expand

βa
b ≡ Ξad

cb τ
c
d

Using Ξcd
ab

(

h µ
d dh a

µ

)

= 1
2h

c
αh

β
b kαµdkµβ (see Appendix 3) to express the derivative term in terms of va, we

find the independent parts

µa
b =

(

−kβδab sc + βγ+
(

δab sc + δac sb + ηadηbcsd + 2ηadsbscsd
))

e
c

ρa
b =

(

βδab η
cdsd + kβγ−

(

δab η
cdsd + δcbη

adsd + ηacsb + 2ηadηcesbsdse
))

fc
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where γ± ≡ 1
2β

(

1± kβ2
)

. Written in this form, the tensor character of µa
b and ρa

b is not evident, but since

we have chosen ηab orthonormal (referred to later as the orthonormal gauge), φ = 0, and v = ω + dφ = ω

we have v(e) + u(f) = −kβsae
a + βηabsafb so that we may equally well write

µa
b =

(

δab vc − kγ+

(

δab vc + δac vb + ηadηbcvd +
2

β2
ηadvbvcvd

))

e
c (48)

ρa
b =

(

δab u
c + kγ−

(

δabu
c + δcbu

a + ηacηbdu
d +

2

β2
ηbdu

aucud

))

fc (49)

which are manifestly tensorial.
The involution conditions, eqs.(36-37), are easily seen to be satisfied identically by eqs.(48, 49).

Therefore, the fa = 0 and e
a = 0 subspaces are Lagrangian submanifolds spanned respectively by e

a and fa.
There exist coordinates such that these basis forms may be written

e
a = e a

µ dxµ (50)

fa = f µ
a dyµ (51)

To find such submanifold coordinates, the useful thing to note is that d
(

sα
s2

)

= δανk
µν
dsµ so that the basis

may be written as

e
a = h a

αd

(

kγ+w
α + βδαβ

(sα
s2

))

≡ h a
αdx

α

fa =
(

h α
a kαβδ

βµ
)

d

(

kβ
(sµ
s2

)

− γ−δµνw
ν
)

≡ f µ
a dyµ

with xα = kγ+w
α + βδαβ

(

sα
s2

)

and yµ = kβ
( sµ
s2

)

− γ−δµνw
ν . This confirms the involution.

7. Curvature of the submanifolds

The nature of the configuration or momentum submanifold may be determined by restricting the structure
equations by fa = 0 or e

a = 0, respectively. To aid in the interpretation of the resulting submanifold
structure equations, we define the curvature of the antisymmetric connection αa

b

R
a
b ≡ dαa

b −αc
b ∧αa

c (52)

=
1

2
Ra

bcde
c ∧ e

d +Ra c
b dfc ∧ e

d +
1

2
Ra cd

b fc ∧ fd (53)

While all components of the overall Cartan curvature, Ω
A = (Ωa

b ,T
a,Sa,Ω) are zero on M(2n)

0 , the
curvature, Ra

b, and in particular the curvatures 1
2R

a
bcde

c ∧e
d and 1

2R
a cd
b fc ∧ fd on the submanifolds, may or

may not be. Here we examine this question, using the structure equations to find the Riemannian curvature
of the connections, σa

b and γa
b , of the Lorentzian submanifolds.

7.1. Momentum space curvature

To see that the Lagrangian submanifold equations describe a Riemannian geometry, we set e
a = 0 in the

structure equations, eqs.(32-35) and choose the φ = 0 (orthonormal) gauge (or see Appendix 1, eqs.(1.3a-1.3d,
with the Cartan curvatures set to zero). Then, taking the Θac

db projection, we have

0 =
1

2
Ra cd

b fc ∧ fd − ρc
b ∧ ρa

c +Θac
dbη

ac∆eb
cf fb ∧ fa (54)

0 = d(y)fb − γa
b ∧ fa

These are the structure equations of a Riemannian geometry with additional geometric terms, −ρc
b ∧

ρa
c + Θac

dbη
ac∆eb

cf fb ∧ fa, reflecting the difference between Lorentz curvature and conformal curvature. The
symmetric projection is

D
(y)ρa

b = − kΞac
db∆

df
ecη

eg
ff ∧ fg

d(y)u(f) = 0
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where u(f),γ
a
b and ρa

b are given by eqs.(45,47,49), respectively. Rather than computing Ra cd
b directly from

γa
b, which requires a complicated expression for the local rotation, h a

α , we find it using the rest of eq. (54).
Letting β = eλ so that

k + γ2
− =

{

cosh2 λ k = 1

sinh2 λ k = −1

the curvature is

1

2
Ra cd

b fcfd =

{

cosh2 λΘag
cb

(

ηcf + 2ηcdηfesdse
)

ff ∧ fg k = 1

sinh2 λΘag
cb

(

ηcf + 2ηcdηfesdse
)

ff ∧ fg k = −1

Now consider the symmetric equations. Notice that the Weyl vector has totally decoupled, with its equation
showing that u(f) is closed, a result which also follows from its definition. For the symmetric projection, we

find Ξac
dbη

ac∆eb
cf fbfa ≡ 0. Then, contraction of Daρa c

b with ηadηceu
aue , together with d(y)u(f) = 0 shows

that ua is covariantly constant, Da
(y)u

b = 0.
If we choose k = −1 and λ = 0, the Riemann curvature of the momentum space vanishes. This is

a stronger result than in [28], since there only the Weyl curvature could be set to zero consistently. In
this case, the Lagrangian submanifold becomes a vector space and there is a natural interpretation as the
co-tangent space of the configuration space. However, the orthonormal metric in this case, 〈fa, fb〉 = ηab, has
the opposite sign from the metric of the configuration space,

〈

e
a, eb

〉

= −ηab. This reversal of sign of the
metric together with the the units, suggests that the physical (momentum) tangent space coordinates are
related to the geometrical ones by pα ∼ i~yα. This has been suggested previously [42] and explored in the
context of quantization [41].

Leaving β and k unspecified, we see that in general momentum space has non-vanishing Riemannian
curvature of the connection γa

b, a situation suggested long ago for quantum gravity [43, 44]. We consider
this further in Section 7.3. Whatever the values of β and k, the momentum space is conformally flat. We see
this from the decomposition of Riemannian curvature into the Weyl curvature, Ca

b, and Schouten tensor,
Ra, given by

R
a
b = C

a
b − 2Θae

dbRee
d

The Schouten tensor,Ra ≡ 1
n−2

(

Rab − 1
2(n−1)Rηab

)

e
b is algebraically equivalent to the Ricci tensor,

Rab. It is easy to prove that when the curvature 2-form can be expressed as a projection in the form
R

a
b = −2Θae

dbXee
d, then Xa is the Schouten tensor, and the Weyl curvature vanishes. Vanishing Weyl

curvature implies conformal flatness.

7.2. Spacetime curvature and geometric curvature

The curvature on the configuration space takes the same basic form. Still in the orthonormal gauge, and
separating the symmetric and antisymmetric parts as before, we again find a Riemannian geometry with
additional geometric terms,

0 = R
a
b (σ)− µc

bµ
a
c −Θac

db∆
de
fcηege

g
e
f (55)

0 = d(x)e
a − e

bσa
b (56)

together with

0 = D(x)µ
a
b − Ξac

db∆
de
fcηege

g
e
f

0 = d(x)v

Looking first at all the Θad
cb -antisymmetric terms and substituting in (48) for µa

b, we find that the
Riemannian curvature is

R
a
b =

(

γ2
+ − k

)

Θac
db (ηce + 2scse) e

d
e
e

so the Weyl curvature vanishes and the Schouten tensor is

Ra =
1

2

(

γ2
+ − k

)

(ηab + 2sasb) e
b (57)
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The vanishing Weyl curvature tensor shows that the spacetime is conformally flat. This result is discussed
in detail below.

The equation, d(x)v = 0 shows that v is hypersurface orthogonal. Expanding the remaining equation
with d(x)v = 0, D(x)ηab = 0 and D(x)e

a = 0, contractions involving ηab and va quickly show that

D(x)
a vb = 0

This, combined with D
(y)ua = 0 and ua = −kηabvb shows that the full covariant derivative vanishes,

Davb = 0. The scale vector is therefore a covariantly constant, hypersurface orthogonal, unit timelike Killing
vector of the spacetime submanifold.

7.3. Curvature invariant

Substituting β = eλ as before, the components of the momentum and configuration curvatures become

ηdfηegR
a fg
b =







cosh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)

(ηfc + 2sfsc) k = 1

sinh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)

(ηfc + 2sfsc) k = −1

and

Ra
bde =







sinh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)

(ηfc + 2sfsc) k = 1

cosh2 λ
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)

(ηfc + 2sfsc) k = −1

Subtracting these

ηdfηegR
a fg
b −Ra

bde = k
(

Θac
dbδ

f
e −Θac

ebδ
f
d

)

(ηfc + 2sfsc)

so that the difference of the configuration and momentum curvatures is independent of the linear combination
of basis forms used. This coupling between the momentum and configuration space curvatures adds a sort
of complementarity that goes beyond the suggestion by Born [43, 44] that momentum space might also be
curved. As we continuously vary β2, the curvature moves between momentum and configuration space but
this difference remains unchanged. We may even make one or the other Lagrangian submanifold flat.

For the Einstein tensors,

ηacηbdG
cd
(y) −G

(x)
ab =

1

2
k ((n− 3) ηab + (n− 2) sasb)

7.4. Candidate dark matter

There is a surprising consequence of the tensor µa
b in the Lorentz structure equation. The structure equations

for the configuration Lagrangian submanifold above describe an ordinary curved Lorentzian spacetime with
certain extra terms from the conformal geometry that exist even in the absence of matter. We gain some
insight into the nature of these additional terms from the metric and Einstein tensor. In coordinates, the
metric takes the form

hαβ = s2
(

δαβ − 2

s2
sαsβ

)

which is straightforwardly boosted to s2η0αβ at a point. Since the spacetime is conformally flat, gradients of

the conformal factor must be in the time direction, sα, so we may rescale the time, dt′ =
√
s2dt to put the

line element in the form

ds2 = −dt′2 + s2 (t′)
(

dx2 + dy2 + dz2
)

That is, the vacuum solution is a spatially flat FRW cosmology. Putting the results in terms of the Einstein
tensor and a coordinate basis, we expect an equation of the form G̃αβ = κTmatter

αβ where the Cartan Einstein
tensor is modified to

G̃αβ ≡ Gαβ − 3 (n− 2) s2sαsβ +
3

2
(n− 2) (n− 3) s2hαβ (58)
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where Gαβ is the familiar Einstein tensor. The new geometric terms may be thought of as a combination
of a cosmological constant and a cosmological perfect fluid. With this interpretation, we may write the new
cosmological terms as

κT cosm
αβ = (ρ0 + p0) vαvβ + p0hαβ − Λhαβ

where κT cosm
ab ≡ 3 (n− 2) s2vαvβ − 3

2 (n− 2) (n− 3) s2hαβ . In n = 4-dimensions, 1
2 (ρ0 + p0) = Λ− p0, with

the equation of state and the overall scale undetermined. If we assume an equation of state p0 = wρ0, this
becomes

1

2
(1 + 3w) ρ0 = Λ

This relation alone does not account for the values suggested by the current Planck data: about 0.68 for the
cosmological constant, 0.268 for the density of dark matter, and vanishing pressure, w = 0. However, these
values are based on standard cosmology, while we have not yet included matter terms in eq.(58). Moreover,
the proportions of the three geometric terms in eq.(58) may change when curvature is included. Such a
change is suggested by the form of known solutions in the original basis, where hαβ is augmented by a
Schouten term. If this modification also occurs in the adapted basis, the ratios above will be modified. We
are currently examining such solutions.

8. Discussion

Using the quotient method of gauging, we constructed the class of biconformal geometries . The construction
starts with the conformal group of an SO (p, q)-symmetric pseudo-metric space. The quotient by W (p, q) ≡
SO (p, q) × dilatations gives the homogeneous manifold, M2n

0 . We show that this manifold is metric and
symplectic (as well as Kähler with a different metric). Generalizing the manifold and connection while
maintaining the local W invariance, we display the resulting biconformal spaces, M2n [14, 15, 21].

This class of locally symmetric manifolds becomes a model for gravity when we recall the most general
curvature-linear action [20].

It is shown in [28] that M(2n)
0 (p, q) in any dimension n = p+ q will have Lagrangian submanifolds that

are orthogonal with respect to the 2n-dim biconformal (Killing) metric and have non-degenerate n-dim metric
restrictions on those submanifolds only if the original space is Euclidean or signature zero

(

p ∈
{

0, n
2 , n

})

,
and then the signature of the submanifolds is severely limited (p → p± 1). This leads in the two Euclidean
cases to Lorenztian configuration space, and hence the origin of time [28]. For the case of flat, 8-dim
biconformal space the Lagrangian submanifolds are necessarily Lorentzian.

Our investigation explores properties of the homogeneous manifold, M2n
0 (n, 0). Starting with Euclidean

symmetry, SO (n), we clarify the emergence of Lorentzian signature Lagrangian submanifolds. We extend
the results of [28], eliminating all but the group-theoretic assumptions. By writing the structure equations
in an adapted basis, we reveal new features of these geometries. We summarize our new findings below.

A new connection

There is a natural SO (n) Cartan connection on M2n
0 . Rewriting the biconformal structure equations in

an orthogonal, canonically conjugate, conformally orthonormal basis automatically introduces a Lorentzian
connection and decouples the Weyl vector from the submanifolds. This structure emerges directly from the
transformation of the structure equations, as detailed in points 1 through 4 in §5.3.

Specifically, we showed that all occurences of the SO (4) spin connection ωα
β may be written in terms of

the new connection, τ a
b ≡ h a

αω
α
βh

β
b − h α

b dh a
α , which has both symmetric and antisymmetric parts. These

symmetric and antisymmetric parts separate automatically in the structure equations, with only the Lorentz
part of the connection, αa

b = Θac
dbτ

d
c describing the evolution of the configuration submanifold solder form.

The spacetime and momentum space connections are metric compatible, up to a conformal factor.
The Weyl vector terms drop out of the submanifold basis equations. The submanifold equations remain

scale invariant because of the residual metric derivative, 1
2dη

acηcb = δabdφ. When the metric is rescaled, this
term changes with the negative of the inhomogeneous term acquired by the Weyl vector.

Two new tensors
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It is especially striking how the Weyl vector and the symmetric piece of the connection are pushed from
the basis submanifolds into the mixed basis equations. These extra degrees of freedom are embodied in two
new Lorentz tensors.

The factor δabdφ which replaces the Weyl vector in the basis equations allows us to form a scale-invariant
1-form,

v = ω + dφ

It is ultimately this vector which determines the time direction.
We showed that the symmetric part of the spin connection, βa

b, despite being a piece of the connection,
transforms as a tensor. The solution of the structure equations shows that the two tensors, v and βa

b are
related, with βa

b constructed cubically, purely from v and the metric. Although the presence of βa
b changes

the form of the momentum space curvature, we find the same signature changing metric as found in [28].
Rather than imposing vanishing momentum space curvature as in [28], we make use of a complete solution
of the Maurer-Cartan equations to derive the metric. The integrability of the Lagrangian submanifolds, the
Lorentzian metric and connection, and the possibility of a flat momentum space are all now seen as direct
consequences of the structure equations, without assumptions.

Riemannian spacetime and momentum space

The configuration and momentum submanifolds have vanishing dilatational curvature, making them
gauge equivalent to Riemannian geometries. Together with the signature change from the original Euclidean
space to these Lorentzian manifolds, we arrive at a suitable arena for general relativity in which time is
constructed covariantly from a scale-invariant Killing field. This field is provided automatically from the
group structure.

Effective cosmological fluid and cosmological constant

Though we work in the homogeneous space, M2n
0 , so that there are no Cartan curvatures, there is a

net Riemannian curvature remaining on the spacetime submanifold. We show this to describe a conformally
flat spacetime with the deviation from flatness provided by additional geometric terms of the form

G̃αβ ≡ Gαβ − ρ0vαvβ + Λhαβ = 0

that is, a background dust and a cosmological constant. The values ρ0 = 3 (n− 2) s2 and Λ =
3
2 (n− 2) (n− 3) s2 give, in the absence of physical sources, the relation (2 + 3w) ρ0 = Λ for an equation
of state p0 = wρ0. An examination of more realistic cosmological models involving matter fields and curved
biconformal spaces, M2n, is underway.

Appendix 1: Subparts of the structure equations

Here we write the structure equations, including Cartan curvature. We expand the configuration, mixed
and momentum terms separately. Note that the fafb part of the de

a equation and the e
a
e
b part of the dfa

equation are set to zero. These are the involution conditions, which guarantee that the configuration and
momentum subspaces are integrable submanifolds by the Frobenius theorem.

In the conformal-orthonormal basis, we have gabdgbc = e−2φηabd
(

e2φηbc
)

= 2δacdφ. The structure
equations in the conformal-orthonormal basis are

dτ a
b = τ c

bτ
a
c +∆ae

dbηece
c
e
d −∆ac

ebη
ed
fcfd + 2∆ae

fbΞ
fc
defce

d +Ω
a
b

de
a = e

cαa
c +

1

2
ηcbdη

ac
e
b +

1

2
Dηabfb +T

a

dfa = αb
afb +

1

2
ηbcdηabfc −

1

2
Dηabe

b + Sa

dω = e
a
fa +Ω

Then defining

D
(x)µa

b ≡ d
(x)µa

b − µc
bσ

a
c − σc

bµ
a
c

D
(x)ρa

b ≡ d
(x)ρa

b − ρc
bσ

a
c − σc

bρ
a
c

D
(y)µa

b ≡ d
(y)µa

b − µc
bγ

a
c − γc

bµ
a
c

D
(y)ρa

b ≡ d
(y)ρa

b − ρc
bγ

a
c − γc

bρ
a
c
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the separation of the structure equations into independent parts gives:

Configuration space:

1

2
Ωa

bcde
c
e
d = d

(x)σa
b − σc

bσ
a
c +D

(x)µa
b − µc

bµ
a
c − k∆ac

ebηcde
d
e
e (1.1a)

1

2
T a

bce
b
e
c = d(x)e

a − e
bσa

b +
1

2
ηacd(x)ηcbe

b (1.1b)

1

2
Sabce

b
e
c = kηabe

c

(

µb
c − δbcWde

d +
1

2
ηced

(x)ηbe
)

(1.1c)

1

2
Ωabe

a
e
b = d(x) (Wae

a) (1.1d)

Cross-term:

Ωa c
b dfce

d = d
(y)σa

b + d
(x)γa

b − γc
bσ

a
c − σc

bγ
a
c (1.2a)

+D
(x)ρa

b +D
(y)µa

b − ρc
bµ

a
c − µc

bρ
a
c

− 2∆ac
dbΞ

fd
ce ffe

e

T ab
c fbe

c = d
(y)

e
a − e

bγa
b +

1

2
ηacd(y)ηcbe

b (1.2b)

− kηac
(

µb
cfb +Wdfce

d − 1

2
ηbdd(x)ηcdfb

)

S b
a cfbe

c = d
(x)

fa − σb
afb −

1

2
ηcbd(x)ηacfb (1.2c)

+ kηab

(

e
cρb

c +W c
fce

b +
1

2
ηbcd(y)ηcde

d

)

Ωa
bfae

b = d(y) (Wae
a) + d(x) (W

a
fa)− e

a
fa (1.2d)

Momentum space:

1

2
Ωa cd

b fcfd = d
(y)γa

b − γc
bγ

a
c +Dρa

b − ρc
bρ

a
c + k∆ac

ebη
ed
fcfd (1.3a)

1

2
S bc
a fbfc = d

(y)
fa − γb

afb −
1

2
ηcbd(y)ηacfb (1.3b)

1

2
T abc

fbfc = − kηac
(

ρb
cfb −W b

fbfc −
1

2
ηbdd(y)ηcdfb

)

(1.3c)

1

2
Ωbc

fbfc = d
(y) (W a

fa) (1.3d)

Appendix 2: Coordinate to orthonormal basis

The Euclidean and Lorentzian metric components are related in the orthonormal basis by:

ηab = s2
(

δab −
2

s2
sasb

)

ηab =
1

s2

(

δab − 2

s2
δacδbdscsd

)

δab =
1

s2
(ηab + 2sasb)

δab = s2
(

ηab + 2ηacscη
adsd

)

where s2 = δαβsαsβ > 0.
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Appendix 3: Symmetric projection of the derivative of the solder form

For the calculation of the symmetric pieces of the connection, we need to express the symmetric part,
Ξad
cb h

α
d dh c

α , in terms of the metric. Expanding the metric derivatives,

kαµdkµβ = kαµd
(

h a
µ h

b
β ηab

)

= h α
c h µ

d ηcd
(

dh a
µ h

b
β ηab + h a

µ dh
b
β ηab

)

= h α
c h µ

d h b
β η

cdηabdh
a
µ + h α

b dh b
β

= h α
c h b

β η
cdηab

(

h µ
d dh a

µ

)

+ h α
b h c

β

(

h µ
c dh b

µ

)

= 2h α
c h b

βΞ
cd
ab

(

h µ
d dh a

µ

)

so that we can write Ξad
cb

(

h µ
d dh c

µ

)

explicitly,

Ξad
cb

(

h µ
d dh c

µ

)

=
1

2
h a
α h

β
b kαµdkµβ

=
1

2
h a
α h

β
b kαµd

(

s2δµβ − 2sµsβ
)

= h a
α h

β
b

1

s2
(

δαβ δ
νρsρ − δανsβ + δνβδ

αµsµ
)

dsν

=
1

s2
(

δab δ
cdsd − δacsb + δcbδ

adsd
)

h ν
c dsν

= −
(

1− kβ2
)

2β

(

δab η
cdsd + δcbη

adsd + ηacsb + 2ηafηcesbsesf
)

ηcfe
f

− k
(

1 + kβ2
)

2β

(

δab η
cdsd + δcbη

adsd + ηacsb + 2ηafηcesbsesf
)

fc
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