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The effects of nonlinearity on the power spectrum of jet noise can be directly compared with those of atmospheric 
absorption and geometric spreading through an ensemble-averaged, frequency-domain version of the generalized Burgers 
equation (GBE) [B. O. Reichman et al., J. Acoust. Soc. Am. 136, 2102 (2014)]. The rate of change in the sound pressure 
level due to the nonlinearity, in decibels per jet nozzle diameter, is calculated using a dimensionless form of the 
quadspectrum of the pressure and the squared-pressure waveforms. In this paper, this formulation is applied in detail to 
atmospheric propagation of a spherically spreading, initial sinusoid and unheated model-scale supersonic (Mach 2.0) jet 
data. The rate of change in level due to nonlinearity is calculated and compared with estimated effects due to absorption 
and geometric spreading. Comparing these losses with the change predicted due to nonlinearity shows that absorption and 
nonlinearity are of similar magnitude in the geometric far field, where shocks are present, which causes the high-frequency 
spectral shape to remain unchanged. Nonlinear effects are compared for engine conditions of Mach 0.85 and Mach 1.8 as 
well. Both the Mach-1.8 and Mach-2.0 data exhibit nonlinear trends that slow the decay of the waveform compared to 
absorption and spreading alone. 

I. INTRODUCTION 
Characterizing nonlinearity in jet noise has 

traditionally involved comparison of the power spectral 
density (PSD) along propagation radials. This approach 
not only necessitates several microphones placed far 
apart relative to the jet diameter, but the comparison 
naturally incorporates other effects that influence PSD 
evolution. Such effects include atmospheric absorption 
and geometric spreading from a directional, extended 
source, and in an outdoor measurement also ground 
reflections and wind and temperature gradients. These 
factors make it difficult to isolate nonlinear effects on 
PSD evolution. Other nonlinearity analysis techniques 
have been previously explored,1-3 but this paper focuses 
on the use of a quadspectral nonlinearity indicator to 
determine the presence and importance of nonlinearity 
with a measurement at a single location. 

Morfey and Howell4 introduced the dimensionless 
nonlinearity indicator known as “𝑄/𝑆,” based on the 
ensemble-averaged, frequency-domain version of the 
generalized Burgers equation for spherical spreading, 

absorption, and nonlinearity and defined as 
where 𝑄$$% is the quadspectral density between the 

pressure and squared pressure waveforms, 𝑆$$  is the 

pressure autospectral density, 𝑝'()  is the root-mean-
square pressure, and ℱ  denotes a Fourier transform. 
Although Morfey and Howell and others have used 𝑄/𝑆 
and related indicators to demonstrate the presence of 
nonlinear propagation effects, a quantitative expression 
involving 𝑄/𝑆 has been recently found5 for the change 
in sound pressure level spectrum, 𝐿$, with distance, 𝑟, 

that may be written as 
In Eq. (2), 10 log23 𝑒 ≈ 4.34; 𝑚 = 0, 0.5, or 1 

for planar, cylindrical, or spherical waves, respectively; 
𝛼  is the linear absorption coefficient; 𝛽  is the 
coefficient of nonlinearity; 𝜌3 is the equilibrium density 
of air; 𝑐3  is the speed of sound; and 𝜈A , 𝜈B , and 𝜈C 
represent the frequency-dependent spatial rate of 
changes in 𝐿$  due to spreading, absorption, and 
nonlinearity, respectively. 

 Other analyses of jet noise have used 𝑄/𝑆 to show 
the presence of nonlinearity,3, 6, 7 but have not been 
extended to the quantitative expression in Eq. (2), which 
has only treated analytical plane-wave cases.5 This 
paper first presents a quantitative analysis of an initial 
sinusoid numerically propagated with spherical 
spreading and atmospheric absorption using a numerical 
implementation of the GBE.8 Analysis of noise from an 
anechoic, laboratory scale, ideally expanded, Mach-2.0 
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unheated jet is also presented. Both analyses show that 
𝜈C  is largest in the near-field region, then becomes 
comparable to absorption and spreading in the far field. 

II. SINUSOID PROPAGATION ANALYSIS 
To create a simulation similar to the model-scale jet 

experiment, a sinusoidal waveform was propagated 
numerically using the GBE. Unlike the jet noise case, 
which exhibits range and frequency-dependent 
geometric spreading, spherical spreading is assumed at 
all distances. The distance is scaled with respect to a jet 
nozzle diameter (Dj), equal to 3.5 cm. The atmospheric 
conditions were taken to be the same as in the 
experiment, with temperature at 22.9°C, atmospheric 
pressure at 96.8 kPa, and relative humidity at 53%. The 
fundamental frequency of the wave was 4 kHz with 
amplitude of 22 kPa at 1 Dj, so as to approximate the 
rms amplitude of the jet data at 10 Dj. For accuracy in 
the calculations, a sampling frequency of 88 MHz was 
used with 216 total samples. Figure 1 (a) compares the 
nonlinearly propagated wave with the linear 
approximation (spreading and atmospheric absorption). 
Relative to linear propagation, significant wave 

steepening has occurred along with a slight decrease in 
the peak-to-peak pressure. Figure 1 (b) shows the 
evolution of the harmonics in the waveform. Note the 
delayed onset of higher harmonics, with each harmonic 
reaching its maximum amplitude at successively larger 
distances from the source. 

The calculations of 𝜈Z, 𝜈B, and 𝜈C in Eq. (2) were 
carried out using the distance, frequency, assumed 
atmospheric conditions, and propagated waveform. The 
terms, along with their sum, are shown in Fig. 2 as a 
function of distance for the fundamental, second 
harmonic, and tenth harmonic. These two harmonics 
have frequencies similar to those analyzed in the jet 
noise case. In Fig. 2, a solid black line shows the sum of 
𝜈Z , 𝜈B , and 𝜈C , and the red circles represent the 

 
 

 
 
FIG 1. (a) Comparison of nonlinearly propagated wave at 75 
Dj and the corresponding linear approximation. (b) Spectral 
amplitude of six harmonics. Each harmonic peaks at a 
successively larger distance from the source. 
 

 

 
 

 
 

 
 

FIG 2. Comparison of 𝜈 values for the (a) fundamental, (b) 
second harmonic, and (c) tenth harmonic of the nonlinearly 
propagated waveform. Close to the source, harmonic strength 
is dominated by nonlinearity. Geometric spreading becomes 
the dominant effect at larger distances. For the tenth harmonic 
in (c), all three effects are of similar magnitude in the far field. 



 

numerically calculated derivative from the curves in Fig. 
1 (b). The percent error between the two is less than 1% 
for all values shown. Very close to the source, 𝜈C  is 
positive for all harmonics as they are first generated 
nonlinearly. However, nonlinear losses at the shock and 
energy transfer to even higher frequencies causes 𝜈C to 
eventually go negative for some of the harmonics, as 
seen in Fig. 2 (b). For the tenth harmonic, 𝜈C decreases 
but remains positive away from the source. As pointed 
out by Blackstock,9 the harmonic amplitudes in a 
nonlinear wave undergoing unsteepening in the “old age” 
region decay more slowly than a linearly propagating 
wave. For a plane wave experiencing atmospheric 
absorption and nonlinear effects (no spreading), this 
decay proceeds as 𝑒[\B] instead of 𝑒[\%B], where 𝛼 is 
the linear absorption coefficient and 𝑛 is the harmonic 
number. Because the nonlinear decay for a wave of this 
type would be slower than that from absorption alone, 
𝜈C would be positive in the far field. 

A spherically spreading wave, however, decays as 
𝑟[\𝑒[\B_  instead of 𝑟[2𝑒[\%B_ , which Blackstock 
points out to be a weaker decay than without 
nonlinearity.9 The difference in decay rates is given by 
𝜈C, which should therefore be positive in the far field to 
give a slower decay. In Fig. 2 (a), 𝜈C remains negative 
because energy is continually removed from the 
fundamental to nonlinearly generate the higher 
harmonics. Figure 2 (b) has 𝜈C  also negative for a 
similar reason: energy is removed from this harmonic to 
generate higher frequency content. However, 
approaching 70 Dj the value of 𝜈C  appears to be 
increasing and becoming positive, rather than 
asymptotically converging to zero as in 2 (a). This is 
confirmed in Fig. 2 (c), where 𝜈C  converges to a 
positive number in the far field. This indicates a slower 
decay than that expected from spreading and absorption 
alone. 

III. JET NOISE ANALYSIS 
Laboratory-scale jet noise data were collected in an 

anechoic chamber on an ideally expanded, Mach-2.0, 
unheated jet of nozzle diameter 3.5 cm. Waveforms, 
sampled at 192 kHz, were acquired between 10-75 jet 
nozzle diameters (Dj) and 80° and 150° (relative to 
upstream axis) with a 3.18 mm and 6.35 mm 
microphone array whose origin was located 4 Dj 
downstream of the nozzle exit. This origin is upstream 
from the expected overall noise source region,10 but 
facility configuration constraints required this 
positioning. Figure 3 (a) shows the measured power 
spectral densities (PSD) along 145°, which is the 
maximum far-field radiation angle. A shift in peak 
frequency is observed along the radial from 10 to 60 Dj, 
due to those microphones being in the geometric near 
field of a source with frequency-dependent source 

location, directivity, and spreading rate. It is important 
to note that this downward shift in peak frequency is not 
related to nonlinear effects (see discussion regarding Fig. 
4 of Ref. 11). For example, low-frequency noise is 
generated farther downstream from the nozzle than is 
high-frequency noise,10 so their propagation radials are 
different from each other and from the microphone 
array before converging at ~60 Dj. Between 10-20 kHz 
the roll-off changes from ~28 dB/octave at 10 Dj, the 
decay rate for large-scale structure radiation,11 to ~20 
dB/octave, typical of shock-containing noise.12 This 
spectral shape of the high frequencies remains fairly 
constant with distance, indicating that the energy losses 
due to absorption and energy gains due to nonlinearity 
are of similar magnitude; this is shown quantitatively 
below.  

Figure 3 (b) shows 𝜈C  along the same radial. 
Negative and positive values of 𝜈C  indicate loss of 
energy and gain in energy due to nonlinearity, 
respectively. The frequency at which the sign of 𝜈C 
changes from negative to positive tracks the downward 
trend in PSD peak frequency with propagation into the 
far field. This indicates that the spectral peak at a given 
location drives nonlinear energy transfer to higher 

 
 

 
 
FIG 3. (a) Measured spectra along 145°, showing the 
downward frequency shift along the maximum far-field 
radiation angle. (b) Spectral plots for 𝜈C . A corresponding 
frequency shift occurs for where 𝜈C changes sign. 
 



 

frequencies, similar to the sinusoid example shown 
previously. Note that with increased distance from the 
source, the frequency at which 𝜈C  changes from 
negative to positive decreases. This is reminiscent of the 
trend in Fig. 2 (b): approaching the far field in the simple 
sinusoidal case, 𝜈C  tends to a positive value for all 
harmonics but the fundamental. Broadband noise is 
more complicated, but a similar trend is visible in Fig. 3 
(b): with increased distance from the source, more 
frequencies have positive values for 𝜈C . The 
consistently negative values correspond to the spectral 
peaks of the noise causing the nonlinear harmonic 
generation. Perhaps with measurements at increased 
distances from the nozzle, 𝜈C  would transition to 
positive values at even lower frequencies. 

The spatial maps of 𝜈C  in Figs. 4 (a-b), created 
using a linear interpolation of the color scheme, 
quantitatively confirm that nonlinear effects are 
localized at angles near the maximum radiation 
direction, as indicated by prior analyses.6, 13, 14 Along the 
principal radiation lobe, the energy loss rate (~ -0.01 
to -0.05 dB/𝐷a) at 10 kHz and gain rate at 40 kHz (~ 
+0.03 to +0.1 dB/𝐷a) are very similar in magnitude to 
the sinusoid example. Similar to the numerically 

propagated sine wave, nonlinearity is more dominant 
than absorption close to the source, but the two effects 
are close to the same strength in the far field. Absorption 
gives a change of only -0.004 dB/Dj at 10 kHz and -0.05 
dB/Dj at 40 kHz. Once again, the value of 𝜈C  stays 
positive at 40 kHz because the observed decay of a 
spherically spreading nonlinear wave is less than that 
predicted by spreading and absorption alone.  

Figure 4 (b) shows a small negative region around 
the propagation radial at 130°, where energy is still 
being lost at 40 kHz. The peak frequency in this region 
is about twice that of the principle radiation radial, and 
energy is being lost at this frequency to higher harmonic 
generation. Figure 5 shows that 𝜈A, the change due to 
spherical spreading (𝑚 = 1 in Eq. [(2]), is almost an 
order of magnitude stronger than both nonlinearity and 
absorption at all microphones in the tested region.  

Data were also collected at Mach 0.85 and Mach 
1.8, and the overall sound pressure levels (OASPL) are 
compared in Fig. 6. A significant increase in level is 
observed between the Mach-0.85 and Mach-1.8 data. 
The levels are similar for the Mach-1.8 and Mach-2.0 
data, but a slight change in directivity is observed. The 
principal radiation lobe at Mach 2.0 is stronger, thicker, 
and projected further away from the jet plume. However, 
Fig. 6 (b) for the Mach-1.8 data shows a secondary 
radiation lobe projecting at about 125°, different from 
the Mach-2.0 data. 

The change in OASPL also reflects a change in the 
nonlinear behavior for these three jet conditions as well. 
Spatial maps of 𝜈C  are shown in Fig. 7 for the three 
conditions. Figure 7 (a) shows almost no nonlinearity 
present in the waveforms, and the spatial plot contains 
only noise. The maps for Figs. 4 (b) and 7 (b) are plotted 
on the same color scale for direct comparison. Both 
plots contain a region of intense nonlinear growth 
within about 30 Dj of the nozzle and along the principal 
radiation lobe, corresponding to shock formation. In 
addition, the value for 𝜈C  remains positive in the far 
field and along the radiation lobes for both engine 
conditions. This indicates a slower decay than predicted 

 

 
 

 
 

FIG 4. Spatial maps of 𝜈C  for (a) 10 kHz and (b) 40 kHz. 
Circles represent 3.18 mm mics and filled diamonds 6.35 mm 
mics. 

 
FIG 5. Spatial map of 𝜈A  (constant with frequency), which 
dominates both nonlinearity and absorption. 



 

by absorption and spreading alone, typical of an 
unsteepening wave in the “old age”.9 A positive 𝜈C 
value is even observed along the secondary radiation 
lobe in the Mach-1.8 data. However, the strength of the 
nonlinearity is overall greater at Mach 2.0. 

IV. CONCLUSION 

The Morfey-Howell4 nonlinearity indicator, 𝑄/𝑆 , 
has been extended to a quantitative comparison of 
nonlinear effects with those of spreading and absorption 
for a spherically spreading, initially sinusoidal case and 
for supersonic model-scale jet noise. The analysis 
shows that nonlinearity is strongest close to the source, 
but approaches similar magnitude as absorption in the 
far field. Prior studies of the jet data have revealed that 
acoustic shocks form with propagation into the far 
field,14 and that the high-frequency spectral energy is 
increasingly due to the shocks.13 This study confirms 
that the unchanging high-frequency spectral roll-off is 

due to comparable magnitudes of the loss due to 
absorption and the gain due to nonlinear generation as 
the shocks propagate. In fact, a positive value for the 
nonlinearity indicator 𝜈C  shows that the overall decay 
of the waveform is less than predicted by absorption and 
spreading alone. 

ACKNOWLEDGMENTS 
This work was supported by the U.S.  Office of 

Naval Research. 
 

1W. J. Baars, C. E. Tinney, M. S. Wochner and M. F. Hamilton, 
"On cumulative nonlinear acoustic waveform distortions from 
high-speed jets," J. Fluid Mech. 749, 331-366 (2014). 
2S. A. McInerny, M. Downing, C. Hobbs, M. James and M. 
Hannon, "Metrics that characterize nonlinearity in jet noise," 
AIP Conf. Proc. 838, 560-563 (2006). 
3S. A. McInerny and S. M. Ölçmen, "High-intensity rocket 
noise: Nonlinear propagation, atmospheric absorption, and 
characterization," J. Acoust. Soc. Am. 117, 578-591 (2005). 
4C. L. Morfey and G. P. Howell, "Nonlinear propagation of 
aircraft noise in the atmosphere," AIAA Journal 19, 986-992 
(1981). 

 
 

 
 

 
 

FIG 6. Overall sound pressure levels (OASPL) for (a) Mach-
0.85, (b) Mach-1.8, and (c) Mach-2.0 data. A substantial 
increase in level is observed from (a) to (b), and a slight 
change in directivity is observed from (b) to (c). 

 

 
 

 
 

FIG 7. Spatial maps of 𝜈C for 40 kHz at (a) Mach 0.85 and (b) 
Mach 1.8. Part (a) exhibits no nonlinearity, with the plot 
containing only noise. Part (b) and Fig. 4 (b) are plotted on the 
same color scale for comparison. 
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