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a b s t r a c t

The objective of this research study was to evaluate the consequences of climate change on shifts in
distributions of plant species and the vulnerability of the species in Peninsular Thailand. A sub-scene of
the predicted climate in the year 2100, under the B2a scenario of the Hadley Centre Coupled Model,
version 3 (HadCM3), was extracted and calibrated with topographic variables. A machine learning
algorithm based on the maximum entropy theory (Maxent) was employed to generate ecological niche
models of 66 forest plant species from 22 families. The results of the study showed that altitude was
a significant factor for calibrating all 19 bioclimatic variables. According to the global climate data, the
temperature in Peninsular Thailand will increase from 26.6 �C in 2008 to 28.7 �C in 2100, while the
annual precipitation will decrease from 2253 mm to 2075 mm during the same period. Currently, nine
species have suitable distribution ranges in more than 15% of the region, 20 species have suitable
ecological niches in less than 10% while the ecological niches of many Dipterocarpus species cover less
than 1% of the region. The number of trees gaining or losing climatically suitable areas is quite similar.
However, 10 species have a turnover rate greater than 30% of the current distribution range and the
status of several species will in 2100 be listed as threatened. Species hotspots are mainly located in large,
intact protected forest complexes. However, several landscape indices indicated that the integrity of
species hotspots in 2100 will deteriorate significantly due to the predicted climate change.

� 2011 Published by Elsevier Ltd.

Introduction

Thailand has a species-rich and complex biodiversity that differs
in various parts of the country (Wikramanayake et al., 2002). The
Kingdomharboursoneof the25global biodiversityhotspots (Myers,
Mittermeier, Mittermeier, & Kent, 2000), supporting approximately
7e10% of the world’s plant, bird, mammal, reptile, and amphibian
species (ONEP, 2006). Biodiversity provides both direct and indirect
benefits to people, especially the rural poor (Millennium
Assessment, 2005). In addition, it has been considered an impor-
tant resource base for socio-economic development in Thailand
(National Economic and Social Development Board, 2007). Unfor-
tunately, the biodiversity of Thailand is under severe threat, espe-
cially from deforestation (Stibig et al., 2007). The results from the
monitoring in the last four decades show that the rate is considered
to be one of the fastest rates of deforestation in the tropics
(Middleton, 2003). Besides deforestation, climate change has also
become a global threat to biodiversity. Changes in climate have the
potential to affect both the geographic location of ecological systems

and the mix of species that they contain (Secretariat of the
Convention on Biological Diversity, 2003).

In recent years, a number of GIS-based modeling methods of
species distributions have been developed for assessing the potential
impacts of climate change, especially when detailed information
about the natural history of the species is lacking (Anderson, Laverde,
&Peterson,2002;Peralvo, 2004). Species-distributionmodels (SDMs)
are based on the assumption that the relationship between a given
pattern of interest (e.g. species abundance or presence/absence) and
a setof factors assumed to control it canbequantified (Anderson, Lew,
& Peterson, 2003; Anderson & Martinez-Meyer, 2004; Guisan &
Zimmermann, 2000; Raxworthy et al., 2003; ). Therefore, this met-
hodology allows us to predict the potential distribution of a species
even for areas that suffer from incomplete and biased samplings, or
for areas where no collections have been made (Araujo & Guisan,
2006; Elith et al., 2006).

Miles, Grainger, and Phillips (2004) used spatial distribution
models to predict current and future species distributions in the
Amazonia. The results indicated that up to 43% of a sample of species
in the region could become non-viable by 2095. In addition, appro-
ximately 59% of plant and 37% of bird species in the NorthernTropical
Andes will become extinct or classified as critically endangered
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species by the year 2080 as a result of the A2 climate change scenario
(Cuest-Comocho, Ganzenmuller, Peralvo, Novoa, & Riofrio, 2006).
Habitats ofmany specieswill move poleward or upward. The climatic
zones suitable for temperate and boreal plant species may be dis-
placed 200e1200 km poleward. Parolo and Rossi (2008) compared
historical records (1954e1958)with results from recent plant surveys
(2003e2005) from alpine to aquatic ecosystems in the Rhaetian Alps,
northern Italyand reportedan increase inspecies richness from153to
166 species in higher altitudes. In addition, Trivedi, Morecroft, Berry,
and Dawson (2008) indicated that Arctic-alpine communities in
protected areas could undergo substantial species turnover, even
under the lower climate change scenario for the 2080s.

The Fourth Assessment Report of the Intergovernmental Panel
on Climate Change (IPCC) indicated that the mean temperature in
Thailand will raise by 2.0e5.5 �C by 2100 under the regionally-
oriented economic development scenario of the Hadley Centre
Coupled Model, version 3 (HadCM3 A2) (IPCC, 2007). Boonpragob
and Santisirisomboon (1996) predicted that the temperature in
Thailandwill increase by 1.5e2.0 �C and annual rainfall in the south
will increase by 40% by 2100. These changes would cause effects on
Thai forests. The area of the subtropical life zone would decline
from about 50% to 12e20% of the total cover, whereas the tropical
life zone would expand its cover from 45% to 80%.

Trisurat, Alkemade, and Arets (2009) used a species distribution
model and fine resolution (1 km) climate data to generate ecolog-
ical niches of forest plant species in northern Thailand. The results
showed high turnover rates, especially for evergreen tree species.
The assemblages of evergreen species or species richness are likely
to shift toward the north, where lower temperatures are antici-
pated for year 2050. In contrast, the deciduous species will expand
their distribution ranges. A similar study was conducted by
Zonneveld, Van, Koskela, Vinceti, and Jarvis (2009) to estimate the
potential occurrence of Pinus kesiya Royle ex Gordon and Pinus
merkusii Jungh. & De Vriese in Southeast Asia. The results revealed
that lowland P. merkusii stands in Cambodia and Thailand are
expected to be threatenedmostly by climate alterations. This is due
to maximum temperatures in the warmest month in 2050 pre-
dicted to be above 36 �Cwill increase beyond the tolerance range of
P. merkusii and will kill adult trees of this species (Hijmans et al.,
2005) and work against recruitment success at the stand and
site scales, but not at the regional scale (Zimmer & Baker, 2008).

Peninsular Thailand covers a major floristic and climatic tran-
sition zone with both wet tropical rainforests as well as seasonal
evergreen tropical forests of the Indo-Sundaic region. However,
studies of effects of climate change on the geographical species’
distribution at present and in the future are lacking. Baltzer, Davies,
Nursupardi, Abul Rahman, and La Frankie (2007) and Baltzer,
Gregoire, Bunyavejchewin, Noor and Davies (2008) investigated
the mechanisms constraining local and regional tree species
distributions in the KangerePattani Line in the Indo-Malay region.
The results showed that inherent differences in physiological traits
were contributing to drought tolerance and are associated with
differences in tropical tree species distributions in relation to
rainfall seasonality. These results strongly implicate climate as
a determinant of tree species distributions around the Kan-
gerePattani Line. Hence, the objective of this research study is to
evaluate the consequences of climate change on species shifts in
distributions, and species vulnerability in the Peninsular Thailand.

Methods

Study area

Peninsularor SouthernThailand is situatedbetween5�370 - 11�420

North latitudes and 98� 220 - 102� 050 East longitudes. It covers 14

provinces and encompasses an area of approximately 70,700 km2 or
14%of the country’s land area (Fig.1). Currently, protected areas cover
approximately 14.8% of the region. Peninsular Thailand varies in
width fromroughly 50e22km, and amountainousbackbone runs its
full range oriented northesouth. The average annual temperature is
26.6 �C.Annualprecipitation isover2000mmformostof theareaand
exceeds 3000mm in some parts. Rainfall increases southward as the
length of the dry season and themagnitude of pre-monsoon drought
stress declines. The southernmountain ranges receive rain fromboth
the northeast and southwest monsoons.

According to World Wild Fund for Nature (2008), Peninsular
Thailand encompasses the southern portion of the Tenasser-
imeSouth Thailand semi-evergreen rain forests eco-region. It is
mainly influenced byMalaysian flora in the south and Burmese flora
in the northernpart (Raes &VanWelzen, 2009). Santisuk et al. (1991)
classified forest types in the Peninsular Thailand into 2 categories, i.e.
Peninsular Wet Seasonal Evergreen Forest and Malayan Mixed
Dipterocarp Forest. Peninsular Wet Seasonal Evergreen Forest
encompasses Chumpon Province to the north boundary of the Kan-
garePattani Line,while theMalayanMixedDipterocarp Forest covers
parts of the KangarePattani Line. Tropical rainforest trees in the
familyDipterocarpaceaedominate forests throughout the peninsular
region but species change both with elevation and latitude.

Forest cover in Peninsular Thailand declined from 42% in 1961
(Charuphat, 2000) to 30% in 2008 (Land Development Department,
2008), which was the second highest deforestation rate after
northern Thailand. The main threat is encroachment for rubber and
oil palm plantations.

Data on land use, socio-economic and biophysical factors

A set of environmental variables that may directly or indirectly
affect the patterns of tree distributionwere created. These variables
included biotic and physical factors. Remaining forest cover (biotic
factor) was extracted from a 1:50,000 land use map of 2008 (Land
Development Department, 2008). It should be noted that the scope
of this study covers only terrestrial ecosystems, thus mangrove
forests and wetlands are not included. In addition, we treated
environmental variables as stable, except climatic variables because
our research study emphasized the consequences of future climate
change on plant distributions.

The physical factors were made up of four topographic inputs
(altitude, slope, aspect and proximity to stream), as well as soil
texture, and bio-climate variables (http://cres.anu.edu.au/outputs/
anuclim/doc/bioclim.html) Contour lines (20-m intervals) were
digitized from topographic maps at a scale of 1:50,000 (Royal Thai
Survey Department, 1992). Then, digital elevation models of alti-
tude, aspect and slope were interpolated from contour lines. In
addition, a soil map at scale 1:100,000 was obtained from the Land
Development Department.

The present (year 2000) and future world climate dataset pre-
dicted for 2100 and generated by the HadCM3 B2a climate change
scenario (local sustainability and social equity) was obtained from
the TYN SC 2.0 dataset (Mitchell, Carter, Jones, Hulme, & New,
2004). The original monthly temperature and rainfall values of
TYN SC 2.0 climate datasets generated at a spatial resolution of 0.5�

(approximately 45 km) were converted to Raster ASCII grids (*.asc).
Then, the coarse resolution climatic variables were re-sampled to
a resolution of 1 km using the interpolation method (Theobald,
2005). The 1-km resolution was chosen as an appropriate size for
regional assessment and an intermediate point between the high
resolution of digital elevation model (DEM) generated from the 20-
m interval contour line, and the coarse resolution of the climatic
variables. In addition, the world climate data of year 2000 were
calibrated with local climate data recorded from weather stations
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across the Peninsular using linearmultiple regressions and latitude,
longitude and DEM as independent variables to reduce statistical
error (Hutchinson, 1995). In addition, the Pearson’s correlation
coefficient was employed to evaluate correlation between local
climate data and calibrated climate data. Later, the 12 calibrated
monthly temperature and rainfall grids were used to generate 19
biological climate variables (bio-climate) in order to create more
biologically meaningful variables. The bio-climate variables repre-
sent annual trends, seasonality and extreme or limiting environ-
mental factors.

Species distribution modeling

The processes for mapping forest tree distributions in the
peninsular region include three main steps: (1) collection of tree
occurrences; (2) selection of candidate species; and (3) generation
of species distribution models.

Collection of tree presence data
We collected tree presence points from the Forest Herbarium of

the Department of National Park, Wildlife and Plant Conservation,

Fig. 1. Location of the study area in Thailand.
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as well as from the on-going Forest Resource Inventory Project and
the Project on Preparatory Studies to Install a Continuous Moni-
toring System for the Sustainable Management of Thailand’s Forest
Resources (RFD/ITTO, 2002). Both projects established a uniform
fixed grid of 10 � 10 km and 20 � 20 km, respectively over the
entire country for measuring trees and their environments. In the
Peninsular Thailand, there are 260 plots and 160 plots located in
forest areas. However, 25 plots are located in the three most
southern provinces, Pattana, Yala and Narathiwat provinces, which
all have security problems. The measurements were therefore not
conducted there, but the extent of the study area in species
modeling also covers these three provinces.

Selection of species
Firstly we used, for selection of candidate tree species for

modeling, three criteria developed by the Asia Pacific Forest
Genetic Resources Programme (APFORGEN) to select vascular plant
priorities for genetic resources conservation and management
(Sumantakul, 2004), i.e. (1) commercial importance and demand
for plantation to maintain ecosystem functions and services; (2)
level of within-species variation, and (3) level of threat or risk of
extinction. Secondly, only tree species with a minimum quantity of
20 records were chosen to be sufficient for generating species
distribution models and testing the accuracy in the next steps.
Thirdly, the representatives of tropical hardwood trees in the
Peninsular wet seasonal evergreen forest and Malayan mixed
Dipterocarp forest were selected.

Generation of species distribution models
The species distribution maps were developed using a niche-

based model or the maximum entropy method (Maxent) (Peterson
et al., 2001). The models operate by establishing a relationship
between a known range of a species and the climatic variables
within this range. Then, the models use this relationship to iden-
tify other regions where the species may inhabit under climate
change at present and in the future. The advantages of Maxent
include the following: (1) it requires only presence data and
environmental information and still performs best with limited
records (Wisz et al., 2008), (2) it can utilize both continuous and
categorical variables, and (3) efficient deterministic algorithms
have been developed that are guaranteed to converge to the
optimal probability distribution (Phillips, Anderson, & Schapire,
2006).

We ran Maxent using a convergence threshold of 10 with 1000
iterations as an upper limit for each run. For each species, occur-
rence data were divided into two datasets. Seventy-five percent of
the sample point data was used to generate species distribution
models, while the remaining 25% was kept as independent data to
test the accuracy of each model. In addition, the area under the
curve (AUC) of a receiver operating characteristic (ROC) curve was
used to assess the accuracy of each model (Hosmer & Lewshow,
2000).

The outputs of the Maxent model were the continuous prob-
ability of the occurrence between the range of 0.0e1.0, where
higher values mean better suitability and vice versa. We trans-
formed the predicted values into a binary prediction. The logistic
threshold at maximum training sensitivity plus specificity was
use for binary classification. This threshold value was proven as
one of promising approaches for predicting species distributions
(Cuest-Comocho et al., 2006; Liu, Berry, Dawson, & Pearson,
2005). If the probability value was equal or greater than this
threshold value, it was classified as presence, otherwise absence.
Then, the potential presence was masked by the remaining forest
cover derived from the 2008 land use map (Land Development
Department, 2008).

Assessment of impacts of climate change

We assessed the impacts of climate change both on the spatial
patterns of individual species and on the species richness distri-
bution changes. For each species the assessment was done in terms
of the percentage of species gain (new arrival) and species loss (no
longer exists in the future) under predicted climate change. In
addition, the calculation of species turnover ratewasmodified from
the b diversity metrics proposed by Cuest-Comocho et al. (2006) as
shown below:

T ¼ 100�
� ðGþ LÞ
ðSRþ GÞ

�

Where, T¼ species turnover rate; G¼ species gain; L¼ species loss,
and SR ¼ current species distribution. A turnover rate of 0 indicates
that the species assemblage does not change, whereas a turnover
rate of 100 indicates that they are completely different from
previous conditions.

In addition, we superimposed the distribution maps of all 66
species to obtain a species richness map. The accumulated species
occurrences were classified into 5 classes: very low (1e12 species),
low (13e24 species), moderate (25e36 species), high (37e48
species), and very high (�49 species). Plant hotspots or priority
areas for conservation were determined by combining high
and very high classes. We assessed landscape patterns of plant hot
spots in terms of the total area, number of patches and total core
area (1-km radius from edge). The FRAGSTATS 3.0 software
(Mcgarigal & Marks, 1995) was used to assess landscape structure
and fragmentation indices of species richness classes, such as total
area, number of patches, mean patch size, total core area and mean
core area. These indices also imply climate change impacts on
biodiversity.

Results

Species occurrence observations

Based on the forest inventory projects and the specimens from
the Forest Herbarium there were all together 5048 occurrence
records of 733 species from90 families and 323 genera. Considering
the proposed criteria, we selected 66 tree species from20 families to
develop species distribution models. The five dominant families
were Annonaceae, Euphobiaceae, Dipterocarpaceae, Meliaceae and
Myrtaceae. Besides the above dominant families, the remaining
familieswereAnacardiaceae, Anonaceae, Apocynaceae, Bombaceae,
Burseraceae, Ebenaceae, Fabaceae, Guttiferacae, Memecylaceae,
Moraceae, Rhizopheraceae, Sapindaceae, Sapotaceae, Tiliaceae and
Xanthophylilaceae.

Calibrated global climate data

The results of the regression models indicated that altitude,
slope and aspect were significant factors for calibrating world
climate data to local conditions (Table 1). In contrast, latitude and
longitude were not significant factors. This may be due to the
length of Peninsular Thailand, and its quite narrow width (Tang-
tham Personal communication). Altitudewas a significant factor for
all bioclimatic variables, except minimum temperature of coldest
month. Slope is significant for calibrating mean diurnal range,
isothermality, temperature seasonality, maximum annual range
andminimum temperature of coldest month. Besides mean diurnal
range and temperature annual range, aspect was significant for
many precipitation variables (e.g. annual precipitation, precipita-
tion of driest month, and precipitation of wettest quarter). This is
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because the western part of Peninsular Thailand receives more
rainfall than the eastern part due tomonsoon andmountain effects.

The results of the calibration indicate that mean temperature in
Peninsular Thailand under the B2 scenario will increase from
26.6 �C at present to 28.7 �C in 2100. In addition, the maximum
temperature of warmest month, minimum temperature of coldest
month, and mean temperature of warmest quarter will increase
approximately 1.5e2 �C. Meanwhile, annual rainfall will slightly
decrease from 2253 mm in 2000 to 2075 mm in 2100. However,
precipitation of wettest month and precipitation of wettest quarter
are likely to increase, but precipitation in the driest month, driest
quarter and warmest quarter will decrease. These phenomena
imply high rainfall intensity in rainy season and severe drought in
summer.

Species distribution models

All environmental factors were correlated with the occurrence
of the selected tree species. However, the relationships and
contributions of climate and environmental factors varied from
species to species. For instance, slope, aspect, altitude, soil and
isothermality, temperature annual range, precipitation of driest
month and precipitation of warmest quarter were significant for
more than 40 of the selected species. Meanwhile, annual mean
temperature and mean temperature of coldest quarter were
significant for 10 and 11 species, respectively. Among 19 bioclimatic
variables three temperature variables (isothermality, mean
temperature range, and mean temperature of the warmest
quarter), and three precipitation variables (annual precipitation,
precipitation of driest period and precipitation of the coldest
quarter) were considerable contributors to tree distributions in
Peninsular Thailand. In contrast, maximum temperature of the
warmest period, mean temperature of the coldest quarter and
precipitation seasonality were low contributors.

The performances of the ecological niche models were
surprisingly good (AUC ranged from 0.85e0.97). The best predictive
models were found for Polyalthia hypoleuca (AUC¼ 0.97). The levels
of accuracy for plants derived from the testing data varied relatively
behind the training data (ranging from 0.81 to 0.92). The
disagreement may have occurred because there were fewer points
for plant species. Nevertheless, the ecological niche models were
considered to be excellent in discriminating between predicted
presence and predicted absence (Hosmer & Lewshow, 2000).

Spatial distribution pattern and change

The results of species distribution models indicated that
currently nine species have suitable distribution ranges of more
than 15% of the region. These species are Bouea oppositifolia (Roxb.),
Parashorea stellata Kurz, Diospyros buxifolia (Blume), Parkia speciosa
Hassk., Lansium domesticum Correa, Instia palembanica Mig.,
Nephelium cuspidatum Blume, Schima wallichii (DC.) and Microcos
paniculata L. The largest extent of occurrence is predicted for
M. paniculata, which covers approximately 21% of the peninsular
region or 69% of the remaining forest area (Fig. 2). In addition, 20
species have suitable ecological niches of less than 10% of the
region. The ecological niches of five out of a total of 14Dipterocarpus
species (Dipterocarpus alatus Roxb. Ex G. Don, Dipterocarpus char-
taceus Symington, Dipterocarpus dyeri Pierre, Dipterocarpus gracilis
Blume, and Dipterocarpus grandiflorus (Blanco) cover 5% or less).

Thirty-one tree species will lose suitable ecological niches and
35 tree species will gain more suitable niches under the predicted
climate conditions. Meanwhile, for most tree species the total
extent of occurrence at present and in the future are not substan-
tially different, except for D. gracilis, D. grandiflorus, Parkia timoriana
Merr., and I. palembanica,which have greater than 20% difference of
suitable niches. The predicted impacts are more severe for the first
two Dipterocarpus species because their current suitable niches
cover less than 1% of the region.

The spatial patterns of species distribution before and after
climate change are significantly different for all species due to the
variation in species-specific responses. The average turnover rate of
all tree species is approximately 21%. Major shifts in distribution are
predicted for 12 species that have turnover rates greater than 30%
(Table 2). For instance, Anisoptera costata Korth. is expected to gain
46% new area, but it would lose approximately 52% of its existing
distribution range. In addition, D. alatus is expected under the B2
2100 climate scenario to gain new suitable habitats of approxi-
mately 19%, but lose 47% of its current distribution range.

Effects on plant hotspots

The total area of hotspots will decrease from 8.4% in 2008 to 8.1%
in 2100 (Fig. 3). Approximately 74 and 75% of the total predicted
tree habitat was in protected area system, and the remaining areas
were located in buffer zones or remnant forests. In addition, the
results of FRAGSTATS revealed that the number of hotspot patches

Table 1
Multiple linear regression equations to calibrate global bioclimatic variables to local condition and coefficient of determination (R2).

Bioclimatic variable Description Multiple linear regression* R2

Bio1 Annual mean temperature Bio1_th ¼ 70.025 � 0.012Alt þ 0.005Asp þ 0.743Bio1 0.841
Bio2 Mean diurnal range Bio2_th ¼ �32.196 � 0.008Alt � 0.017Asp � 1.559Slp þ 1.317Bio2 0.555
Bio3 Isothermality (Bio2/Bio7 � 100) Bio3_th ¼ �1.416 þ 0.014Alt � 1.526Slp þ 0.986 0.303
Bio4 Temperature seasonality Bio4_th ¼ 726.103 þ 0.631Alt � 6.882Slp þ 0.665Bio4 0.926
Bio5 Max. Temperature of warmest month Bio5_th ¼ 21.365 � 0.014Alt þ 0.951Bio5 0.689
Bio6 Min. temperature of coldest month Bio6_th ¼ 65.598 � 4.868Slp þ 0.635Bio6 0.244
Bio7 Temperature annual range (Bio5 e Bio6) Bio7_th ¼ -13.813 þ 0.013Alt � 0.025Asp � 2.803Slp þ 1.050Bio7 0.745
Bio8 Mean temperature of wettest quarter Bio8_th ¼ 134.989 � 0.019Alt þ 0.483Bio8 0.773
Bio9 Mean temperature of driest quarter Bio9Th ¼ 86.465 � 0.041Alt þ 0.687Bio9 0.890
Bio10 Mean temperature of warmest quarter Bio10th ¼ 66.634 � 0.010Alt þ 0.784Bio10 0.763
Bio11 Mean temperature of coldest quarter Bio11_th ¼ 85.255 � 0.040Alt þ 0.683Bio11 0.935
Bio12 Annual precipitation Bio12_th ¼ �114.137 þ 0.280Alt � 0.502Asp þ 1.090Bio12 0.888
Bio13 Precipitation of wettest month Bio13_th ¼ �60.975 � 0.106Alt þ 1.195Bio13 0.865
Bio14 Precipitation of driest month Bio14_th ¼ �1.248 � 0.001Alt þ 0.001Asp þ 1.072Bio14 0.862
Bio15 Precipitation seasonality Bio15_th ¼ 5.965 � 0.015Asp þ 0.927Bio15 0.729
Bio16 Precipitation of wettest quarter Bio16_th ¼ �113.376 þ 0.161Alt � 0.300Asp þ 1.143Bio16 0.897
Bio17 Precipitation of driest quarter Bio17_th ¼ �5.306 þ 0.016Alt þ 1.047Bio17 0.915
Bio18 Precipitation of warmest quarter Bio18_th ¼ 114.362 þ 0.124Alt þ 0.620Bio18 0.425
Bio19 Precipitation of coldest quarter Bio19_th ¼ 142.809 � 0.399Alt þ 0.642Bio19 0.272

Notes: Bio1_th ¼ calibrated annual mean temperature (Bio1) to local condition; Alt ¼ altitude; Asp ¼ aspect; Slp ¼ slope.
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will decrease from 633 in 2008 to 577 in 2100. The number of
hotspot patches corresponds to the mean patch size index, which
shows that the mean patch size of hotspots will decrease from
2223 ha in year 2008 to 1483 ha for the predicted climate in 2100.
In addition, in the next century the accumulated core areas will
substantially decline, approximately 54% for very high richness
class and 33% for high richness class. Small, fragmented tree rich-
ness patches surrounded by agricultural land uses can be consid-
ered as degraded or cool spots (Myers et al., 2000).

Discussion

Downscaling climate data

Our study shows that topographic factors are useful for cali-
brating coarse global climate data to a fine scale in order to fit local
conditions. The calibrated climate data show that the mean
temperature will increase approximately 2 �C, which is similar to
the prediction of Boonpragob and Santisirisomboon (1996). The
annual rainfall will slightly decrease in 2100, which is opposite to
the findings of Boonpragob and Santisirisomboon (1996). This may
be because the previous study simply used a coarse resolution of

climate data (45 km2) and did not calibrate to local conditions.
Nevertheless, it is essential to consider other methods to see
whether the finer-scale calibration can be improved enough to be
used in species modeling at local and regional scales. For example,
the thin plate smoothing splines using ANUSPLIN-licensed software
might be a promising option (Hutchinson, 1995). Previous research
indicates that this commercial software can yield higher accuracy
than normal statistical regression methods (Hutchinson, 2000).

Species distribution model

The distributional data for most species in Thailand are incom-
plete. Previous collections are often mostly based on accessibility to
the areas, leading to biased samplings (Parnell et al., 2003), while
the cultivated lowlands are largely ignored (Parnell et al., 2003;
Santisuk et al., 1991). In this study, we used the Maxent model to
predict the climate niches for plants under current and predicted
climate conditions across the Peninsular Thailand. The MAXENT
was chosen because it requires only presence data and has been
proven to perform better than other presence-only species distri-
butionmodels (Peterson, Papes, & Eaton, 2007; Phillips et al., 2006).
However, we were able to predict only 66 species of the total 733

Table 2
Percentages of suitable niches, species gained and species lost for selected tree species with a turnover rate greater than 30% in the Peninsular Thailand for year 2008 and 2100.

Family Scientific name 2008 2100 2008e2100 (%)

þ/� Gain Loss Turnover

Dipterocarpaceae Anisoptera costata Korth. 10.34 9.70 �9.51 45.65 51.82 66.92
Dipterocarpaceae Dipterocarpus alatus Roxb. Ex G. Don 0.18 0.13 �18.75 19.20 47.20 55.70
Dipterocarpaceae Dipterocarpus chartaceus Symington 0.49 0.19 0.00 1.16 62.50 62.93
Dipterocarpaceae Dipterocarpus costatus C.F. Gaertn. 6.37 6.10 2.69 23.80 28.12 41.94
Dipterocarpaceae Dipterocarpus dyeri Pierre 4.40 4.32 0.23 24.01 25.65 40.05
Dipterocarpaceae Dipterocarpus grandiflorus Blanco 5.07 2.41 �51.70 0.31 52.74 52.89
Euphorbiaceae Croton spp. 12.66 10.40 �14.54 8.25 26.14 31.77
Fabaceae Parkia timoriana Merr. 3.14 4.24 38.56 42.01 6.87 34.41
Guttiferae Calophyllum calaba L. 4.70 4.90 �3.35 26.80 22.54 38.91
Moraceae Ficus racemosa L. 4.87 5.54 12.83 28.24 14.49 33.32
Moraceae Ficus retusa L. var. retusa 8.97 12.60 �6.87 43.59 3.07 32.50
Myrtaceae Syzygium spp. 6.83 6.54 6.86 15.53 19.76 30.54

Fig. 2. a) Probability distributions of M. paniculata L. b) potential presence derived from ecological niche model; and c) remaining area after masked by forest cover in 2008.
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species. This was due to the limited number of occurrence records
for the remaining species and occurrence data gathered from
a uniform fixed grid (RFD/ITTO, 2002) that likely ignored the
remnant forest patches in between. These problems can be reduced
in the future by conducting more field surveys outside existing
areas or by gathering data from all available sources, i.e. herbarium
collections, taxonomic literature, ecological communities and
selected databases, in particular from, two specialized search
engines, The Species Analyst (http://speciesanalyst.net) and REMIB
(www.conabio.gob.mx/remib/remib.html).

In this study, we emphasized the consequences of future climate
change on plant distributions, therefore other environmental
variables were treated as stable. However, climate change is only
one of many stressors to biodiversity, and climate change has
a much lower impact compared to the other driving stressors
(Alkemade et al., 2009; Trisurat, Alkemade, & Verburg, 2010;
Verboom, Alkamade, Klijn, Metzger, & Reijnen, 2007). However it
will be a more important driver in the 21st century (Leadley et al.,
2010). Based on meta-analyses of peer-reviewed literature, Alke-
made et al (2009) and Millennium Assessment (2005) indicated
that leading anthropogenic pressures on biodiversity at regional
and global levels are land use change, fragmentation, over-
exploitation, infrastructure development, nutrient loading and
climate change. Future researchers should elaborate on the inter-
actions between deforestation and climate change on species
extinctions and to define the critical tipping points that could lead
to large, rapid and potentially irreversible changes. These studies
are lacking for tropical rainforests in Southeast Asia (Leadley et al.,
2010).

Sensitivity

All tree species showed different responses to predicted climate
change due to their different species-specific requirements or
ecological niches. Our results indicated that Dipterocarpus species
are more vulnerable to future climate change than species in
other families. This is because wet Dipterocarpus species in the
region with a prolonged rainy season are less drought tolerant

than species found in dry monsoonal habitats (Baltzer et al., 2007).
They also have less desiccation tolerant leaves (Baltzer, Davies,
Bunyavejchewin, & Noor, 2008) and wood properties (Baltzer,
Gregoire, Bunyavejchewin, Noor, & Davies, 2009) particularly at
the seedling recruitment stage (Kursar et al., 2009). Wet evergreen
species do not have the adaptive traits to penetrate into drier
forests through seedling recruitment (Comita & Engelbrecht, 2009;
Kursar et al., 2009). Therefore, wet evergreen forests are likely to
retreat wherever rainfall patterns shift at the margins (Malhi et al.,
2009), but more laboratory research are needed to further confirm
this assumption.

Species loss and conservation planning

Our results predicted that 31 tree species will lose suitable
ecological niches in 2100. The magnitude of climate change impact
in Peninsular Thailand is less significant than other regions, such as
northern Thailand (Trisurat et al., 2009), the Northern Tropical
Andes (Cuest-Comocho et al., 2006) and Amazonia (Miles et al.,
2004). Twelve tree species, or nearly 20% of all selected species,
have projected turnover rates greater than 30% of the current
distribution ranges. The problem is more severe for many Dipter-
ocarpus species, which have limited distribution ranges.

It should be noted that this research used the HadCM3 B2a
scenario because it is in line with the government policy on suffi-
ciency economy development (National Economic and Social
Development Board, 2007). However, future development in
Thailand will likely be driven by regional-oriented economic
development (HadCM3 A2 scenario), especially from China.
Therefore, higher emissions of greenhouse gases and raising
temperature could be expected. These future phenomena would
possibly cause more impacts on peninsular Thailand’s biodiversity.

At present most protected areas are located in high altitudes
that are not favorable niches for Dipterocarpus species (Raes & Van
Welzen, 2009; Santisuk et al., 1991; Trisurat, 2007). Furthermore,
lowland forests outside protected areas are vulnerable for defor-
estation due to high demand for rubber and oil palm plantations.
Therefore, future climate change uncertainty and continuation of

Fig. 3. Distributions of tree species richness in the Peninsular Thailand: a) year 2008; b) year 2050; c) year 2100.

Y. Trisurat et al. / Applied Geography 31 (2011) 1106e11141112

http://speciesanalyst.net
http://www.conabio.gob.mx/remib/remib.html


deforestation would diminish biodiversity and increase the risk of
species extinction in Peninsular Thailand far beyond our expecta-
tions derived from this research, particularly for Dipterocarpus
species. These effects can be mitigated by strict law enforcement in
protected areas because approximately 75% of the total predicted
plant habitat was in the protected area system. In addition,
extending existing protected area coverage (14.8% of the region) to
include the areas under deforestation threat and future ecological
niches is needed. These conservation efforts are not only tomitigate
climate change impacts but also to implement gap analysis and the
protected area system plan as mentioned in the 2010 and post 2010
biodiversity targets.

Conclusion

Besides deforestation, global climate change is now becoming
another serious threat to biodiversity because it has the potential to
cause significant impacts on the distribution of species and the
composition of habitats. In this study, we selected 66 tree species as
candidate species to evaluate the impact of climate change on
species distribution in Peninsular Thailand. In addition, we cali-
brated the coarse global climate data for the year 2100 generated by
the HadCM3 B2a scenario to local conditions using topographic
variables. Then, we used the Maxent model to simulate species
distributions.

The results frombioclimatic variables analyses indicate that there
will be higher rainfall intensity in the rainy season and longer
droughts in the dry month(s). In addition, the spatial distribution
models show that, for the total extent of the occurrence of all
selected plant species, there is no significant difference between
current and predicted climate change conditions, except for some
dipterocarp species. However, future climate change can create
significant impacts on shifting distributions of tree species. The
average turnover rate of all tree species is approximately 21% and
major shifts are predicted for 12 species that have turnover rates
greater than 30%from current distribution ranges, particularly
dipterocarp species. Therefore, the effects on wet evergreen species
of limited distributions in the Peninsular Thailand are similar the
monsoonal anda seasonalwet forest inAmazonia but themagnitude
of climate change impact in Peninsular Thailand is less significant.

The hotspots of selected species are predicted to change in 2100.
They will decrease and become fragmented. The total core area and
the mean core area are diminishing as well. It is therefore recom-
mended, in order to mitigate future species loss due to climate
change, to effectively manage protected areas and to extend
existing protected areas to cover the areas under deforestation
threat and future species transformations. This is due to biodiver-
sity not only being an essential component of human development
and security in terms of proving ecosystem services, it is also
important for its own right to exist in the world.
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