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Abstract

Background: Gene set testing has become an important analysis technique in high throughput microarray and next
generation sequencing studies for uncovering patterns of differential expression of various biological processes. Often,
the large number of gene sets that are tested simultaneously require some sort of multiplicity correction to account
for the multiplicity effect. This work provides a substantial computational improvement to an existing familywise error
rate controlling multiplicity approach (the Focus Level method) for gene set testing in high throughput microarray
and next generation sequencing studies using Gene Ontology graphs, which we call the Short Focus Level.

Results: The Short Focus Level procedure, which performs a shortcut of the full Focus Level procedure, is achieved
by extending the reach of graphical weighted Bonferroni testing to closed testing situations where restricted
hypotheses are present, such as in the Gene Ontology graphs. The Short Focus Level multiplicity adjustment can
perform the full top-down approach of the original Focus Level procedure, overcoming a significant disadvantage of
the otherwise powerful Focus Level multiplicity adjustment. The computational and power differences of the Short
Focus Level procedure as compared to the original Focus Level procedure are demonstrated both through simulation
and using real data.

Conclusions: The Short Focus Level procedure shows a significant increase in computation speed over the original
Focus Level procedure (as much as ∼15,000 times faster). The Short Focus Level should be used in place of the Focus
Level procedure whenever the logical assumptions of the Gene Ontology graph structure are appropriate for the
study objectives and when either no a priori focus level of interest can be specified or the focus level is selected at a
higher level of the graph, where the Focus Level procedure is computationally intractable.
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Background
Microarray technology and next generation sequencing
have played an important role in discovering important
associations between gene expression patterns and phe-
notype [1]. Such gene expression technologies have been
instrumental in discoveries ranging from the retarding
of aging in mice brought about by caloric restrictions in
diet [2] to the identification of various types of diffuse
large B-cell lymphoma in humans [3]; from characterizing
the transcriptomes of in vitromaturated porcine embryos
[4] to uncovering the underlying genes and pathways
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involved in Alzheimer’s disease [5]. While both microar-
ray and next generation sequencing technologies allow
researchers to study the differential expression of genes
across conditions or treatments, each has their advantages
and disadvantages [1]. However, in either case, the result-
ing increase in genetic knowledge has allowed researchers
to group genes with common function into gene sets and
test these gene sets for differential expression [6,7].
One rich source of gene set knowledge is found in

the Gene Ontology database [8]. The Gene Ontology
(GO) provides a controlled vocabulary that is not spe-
cific to any particular species. This vocabulary is divided
into three general ontologies, Molecular Function (MF),
Cellular Component (CC), and Biological Process (BP).
Individual GO Terms form the basis of these vocabular-
ies and are structured through parent child relationships

© 2014 Saunders et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication
waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise
stated.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/77520508?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto: john.r.stevens@usu.edu
http://creativecommons.org/licenses/by/4.0
http://creativecommons.org/publicdomain/zero/1.0/


Saunders et al. BMC Bioinformatics 2014, 15:349 Page 2 of 16
http://www.biomedcentral.com/1471-2105/15/349

with more general terms as parents and more specific
terms as children. Each GO Term typically contains a def-
inition of its biological process (molecular function or
cellular component) and other annotation as well as a
mapping of all known gene products involved in its speci-
fied process (function or component). For convenience in
presentation, the remainder of this work will focus on the
biological process ontology.
Gene set testing allows for the quantification of the sig-

nificance of activity level differences between treatment
groups for specific biological processes of interest. For
example, a recent study on human longevity compared
the gene expression profiles corresponding to 1,808 differ-
ent biological processes for nonagenarians and a control
group to identify 73 biological processes associated with
longevity [9]. When there are relatively few gene sets (bio-
logical processes) of a priori interest (1,808 in [9]), the
impact of the multiplicity correction for the tests of differ-
ential expression (or differential activity) of the gene sets
can be greatly lessened as compared to individually testing
all member genes (45,164 in [9]), improving the power of
the test. Even when no a priori gene set of interest can be
specified, it can still be highly beneficial to test all known
gene sets from a biological process database for differen-
tial expression, as the number of gene sets is still typically
magnitudes smaller than the corresponding number of
individual genes [6,10].
Manymethods of gene set testing have been proposed in

the literature as reviewed in [11]. These can essentially be
divided into two classes of gene set testing, often referred
to as competitive tests and self contained tests. The com-
petitive tests compare the expression profiles of the genes
in the set to those not in the set. The self contained tests
focus only on those genes within the set and compares
them to some fixed standard. While the first are more
popular [7,12], the second have been shown to be more
powerful [11,13]. Further, the null hypothesis associated
with the self contained tests,

Hself
0 : no genes in the gene set are differentially

expressed,

has been shown to be the more logical generalization of
single gene testing (with other advantages that will be
explained later on) as compared to the competitive test
null hypothesis

Hcomp
0 : the genes in the gene set are at most as often

differentially expressed as the genes in the complement
of the gene set.

While gene set testing methods are varied in their
approach, they are alike in that they test each GO term,
i.e. gene set, individually. Thus, when more than one
GO term is tested simultaneously (typically hundreds or

thousands are tested simultaneously) some sort of mul-
tiplicity adjustment is necessary to preserve control over
either the familywise error rate (FWER) or the false dis-
covery rate (FDR) or a derivative of these error rates. The
FDR is typically the error rate of choice in exploratory
studies where follow up confirmatory studies are then
conducted [14]. On the other hand, the FWER is typ-
ically the suggested error rate for confirmatory studies
[15]. We also suggest that the FWER is highly appropriate
for exploratory gene set studies as, in our experience, it is
seldommore results that are desired, but themost promis-
ing real significances that are sought. The FWER offers the
best error rate control for such conclusions [15].
The Focus Level method is a powerful method of mul-

tiplicity adjustment for self contained gene set testing,
which takes into account the structure of the GO graph
while controlling (strongly) the FWER [10]. This approach
is more powerful than standard FWER controlling meth-
ods such as the Bonferroni and uniformly more power-
ful Bonferroni-Holm [16] procedures for multiple testing
with GO graphs [10]. However, it is important to note that
this increase in power comes at the cost of requiring the
logical structure of the GO graph to become part of the
multiplicity adjustment.
The Focus Level method allows the researcher to select

the level of the GO graph in which they are most inter-
ested. This is called the focus level. The procedure then
applies a top-down and bottom-up approach from the
specified focus level. First, the terms in the focus level are
tested using the Bonferroni-Holm adjustment [16]. Then,
in the bottom-up approach, any term above the focus level
is declared significant when any of its offspring in the
focus level have been declared significant. This inheri-
tance of P-values is accomplished through the assumption
that a parent term must be differentially expressed if any
of its children terms are differentially expressed, a logical
assumption for the GO graph structure [10]. In the top-
down procedure, significance of the children of the focus
level terms is decided through an application of the closed
testing procedure of [17].
While the Focus Level method is a powerful approach

to adjusting for multiplicity, it quickly becomes computa-
tionally infeasible when the selected focus level contains
a large number of offspring in the GO graph [10]. This
computational limitation makes it essentially impossible
to perform the full top-down approach, a rather signifi-
cant disadvantage [18]. Using the full top-down approach
provides researchers the default focus level of the root
node (GO:0008150 in the context of the BP GO ontol-
ogy) whenever they have no a priori interest in a given
focus level, a common scenario, see for example [18].
This also allows adjusted P-values to be considered apart
from their context in the GO graph which is advantageous
to reporting on single significant gene sets of interest.
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Discussions of the significant findings of the Focus Level
method are currently restricted to their context within the
GO graph [10].
This work proposes an improvement to the top-down

portion of the Focus Level method [10] which we call the
Short Focus Level as it performs a shortcut of the full
Focus Level method. This is accomplished using a novel
application of the general graphical Bonferroni adjust-
ment for multiple testing as proposed by [19], which is a
generalization of closed testing based onweighted Bonfer-
roni tests [20]. The Short Focus Level procedure shows a
significant improvement in computational speed (asmuch
as ∼ 15,000 times faster) while maintaining similar power
to that of the original Focus Level procedure and even
showing a gain in power over the original Focus Level
procedure for certain scenarios while experiencing a loss
in power for others. Most importantly, the computational
improvements are such that the full top-downmethod can
now be performed on a standard operating system within
just a few minutes. The R code [21] for the Short Focus
Level procedure is included in the mvGST package [22,23];
see also Additional files 1 and 2.

Methods
The Focus Level procedure [10] adjusts for multiple gene
set tests using the structure of the directed acyclic graphs
of the Gene Ontology (GO). Two basic assumptions
underly the method.

A1. A non-differentially expressed parent gene set
implies the children gene sets are also
non-differentially expressed.

A2. If the children gene sets form a partition of the
parent gene set and are all non-differentially
expressed, then the parent gene set is also
non-differentially expressed.

These assumptions ensure coherence of the resulting
significant subgraph and facilitate interpretations [10].
Note that these assumptions are necessary if the objec-
tive is to control the FWER within the structure of the
GO graph. If preserving the graph structure in the multi-
plicity correction is not of interest to the researcher, then
the FWER (or even the false discovery rate) could be con-
trolled by the standard Holm’s correction [16] (or any false

discovery rate controlling method which allows for arbi-
trary dependence structures), however such an approach
will result in a loss of coherence for the significant sub-
graph.
Assumptions A1 and A2 require that the null hypothe-

sis for each gene set is that no genes in the gene set are
differentially expressed. The alternative in each case being
that at least one gene in the set is differentially expressed.
Thus, only self contained gene set testing methods (which
utilize this hypothesis framework) can be used to test the
gene sets of the GO graph if the Focus Level method of
multiplicity adjustment is used. This excludes gene set
enrichment methods such as those proposed in [12] but
supports very well the Global Test of [6], P-value combi-
nation methods such as Fisher’s and Stouffer’s methods
[13,24], as well as Global Ancova [25], PLAGE [26], and
SAM-GS [27].
As prescribed by [10] there are two requirements in

the selection of the focus level. These requirements are
labeled “FL1” and “FL2” here for later reference in subsec-
tion “The Short focus level procedure”.

FL1. No offspring of a focus level term be contained in
the focus level.

FL2. All remaining terms are either ancestors or
offspring of the focus level terms.

Figure 1 demonstrates on a simplified toyGO graph how
the focus level (filled nodes) could be chosen. The full
bottom-up approach (panel (a) of Figure 1) selects all GO
Terms corresponding to terminal nodes as the focus level,
in this example, nodes C, D, and E. The full top-down
approach (panel (c) of Figure 1) selects the root node, A
in this case, as the focus level. Finally, in a typical GO
graph there are many (hundreds or thousands) of options
for focus levels contained somewhere in the middle of the
GO graph. In the simplified example graphs of Figure 1
the most logical intermediate focus level is demonstrated
with nodes B and F (panel (b)). It would also be possi-
ble to use nodes C, D and F as the focus level but such
choices in actual GO graphs do not provide a consistent
level of specificity in the graph and would not be as logi-
cal a choice. Choosing nodes C, D, E, and F as the focus
level would not be allowed as E is a child of F , violating
the requirement that the focus level must not contain any

a b c

Figure 1 Three possible focus levels (filled nodes) for a simplified example toy GO graph. (a) Full bottom-up approach. (b) Intermediate
focus level. (c) Full top-down approach.
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offspring of another focus level term (E is an offspring
term of F). Choosing only node B as the focus level would
also not be allowed as node F is neither an ancestor or
offspring term of B, violating the second requirement.
The top-down portion of the Focus Level procedure of

[10], which applies the closed testing approach of [17],
requires closing the GO graph under all unions from the
focus level down. This is done by treating each focus level
term, along with all of its offspring terms, as separate
graphs which are each closed under all possible unions. As
these separate closed graphs will share common elements,
the full closed graph G̃ is obtained by unioning each of the
separately closed graphs into a single graph which is also
unioned to all ancestor terms of the focus level.
To demonstrate, consider the closures of each of the

example GO graphs from Figure 1 as shown in Figure 2.
In each case, the nodes above the focus level remain
unchanged, while the creation of several sets not present
in the original example GO graph (depicted with rounded
rectangles) are required in order to close the graph under
all possible unions from the focus level down. Since the
closing of the graph is only required from the selected
focus level down, it is clear from Figure 2 that the more
offspring terms the focus level contains, the greater the
number of sets that must be created to close the graph.
Closing the graph can quickly become computationally
infeasible in practice. Importantly, performing the full
top-down approach as in panel (c) of Figure 2 is rarely
possible in real applications due to the computational
burden.
To partially amend the computational difficulties of the

Focus Level method, [10] implement a more efficient
method of computing the closed graph using what they
term “atom sets”. These atom sets form a core collection of
gene sets which form a basis for all gene sets in the graph.
All other gene sets in the graph (as well as its closure) can
be created through unions of the atom sets. This ensures
the size of the closed graph is 2k − 1, where k is the num-
ber of atom sets, which is often smaller (and never larger)
than the size of the original closed graph. Further, [10]

recommend selecting the focus level so that no more than
9-12 atom sets are required to recreate the offspring of any
single focus level term. They also suggest computing only
the smallest few adjusted P-values to save computation
time in place of computing all adjusted P-values.
This work offers an alternative solution to improve on

the computational speed of the top-down portion of the
Focus Level method through an application of the general
graphical Bonferroni adjustment of [19]. This allows for a
short-cut of lengthm in place of the currently applied full
closed testing approach of [17]. In the following section,
we summarize the general graphical Bonferroni adjust-
ment approach and show how we tailor the method for a
powerful application to the top-downportion of the Focus
Level method.

The graphical Bonferroni adjustment
A powerful and versatile graphical generalization of
weighted Bonferroni based closed testing [17] which pro-
vides strong control of the familywise error rate (FWER)
at a specified level α was proposed in [19]. Their approach
represents all m hypotheses of interest, H1, . . . ,Hm as
nodes in a directed graph. Each node can be thought
of here as a gene set, with a corresponding hypothesis
Hi testing for differential expression. Node i, represent-
ing hypothesis Hi, is allocated a local threshold αi for all
i = 1, . . . ,m. Nodes are joined by edges with weights gij
dictating the proportion of the local threshold αi that is
allocated to all connected hypotheses (nodes) Hj in the
case that hypothesis Hi is rejected. The structure of the
graph as well as the size of the local thresholds αi and
edge weights gij is dependent on the objectives of the
study. The versatility of the method is in the generality
of the regularity conditions and updating algorithm for
the directed graph. The regularity conditions require the
following [19]:

R1. The local thresholds α1, . . . , αm satisfy
∑m

i=1 αi ≤ α.
R2. The edge weights satisfy 0 ≤ gij ≤ 1, gii = 0, and∑m

k=1 gik ≤ 1 for all i, j = 1, . . . ,m.

a b c

Figure 2 Closures of the GO graphs from Figure 1 where the filled nodes represent the different choices of the focus level. (a) Full
bottom-up approach. (b) Intermediate focus level. (c) Full top-down approach.
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The updating algorithm defines a sequentially rejective
test procedure and is given as follows [19]. Note that pi
represents the observed P-value for the test of hypothe-
sis Hi.

Algorithm 1
0. Set I = {1, . . . ,m}.
1. Let j = argmini∈I pi/αi,
2. If pj ≤ αj , reject Hj; otherwise stop.
3. Update the graph:

I → I \ {j}
αl →

{
αl + αjgjl, l ∈ I
0 otherwise

glk →
{ glk+gljgjk

1−gljgjl , l, k ∈ I, l �= k
0 otherwise

4. If |I| ≥ 1, go to step 1; otherwise stop.

The proof that Algorithm 1 defines a sequentially rejec-
tive closed testing procedure which strongly controls the
FWER at level α is found in the Appendix of [19], and
depends directly on Theorem 1 from [20]. Both [28] and
[29] claim that Theorem 1 from [20] cannot be directly
applied to the hypotheses of the GO graph as the hypothe-
ses are nested, creating logical restrictions. In their own
words, [28] claim that “the shortcut procedure of [20]
cannot be applied to restricted hypotheses”. Similarly,
[29] state, “these methods [19] cannot make use of log-
ical relationships between hypotheses and, as such, do
not incorporate graph-based methods which exploit such
relationships, such as [the Focus Level procedure] of [10]”.
However, in the followingwe present a restricted hypothe-
ses example where themethods of [19] can be applied. The
following section sets forward some important notation
and vocabulary and then demonstrates that while these
claims are technically true, the methods of [19] can be
applied to the Focus Level method if one of the assump-
tions underlying Theorem 1 of [20] is slightly relaxed. We
prove this with Theorem 1.

Restricted hypotheses example
Let H1, . . . ,Hm denote m hypotheses of interest and call
these the elementary hypotheses. Let I denote a non-
empty index set such that I ⊆ {1, . . . ,m} and denote an
intersection hypothesis by HI where HI = ∩i∈IHi. The
closed test procedure [17] utilizes the intersection closed
set of hypothesesH = {HI : I ⊆ {1, . . . ,m}, I �= ∅}. In the
case that the hypotheses are unrestricted, |H| = 2m − 1
and Algorithm 1 of [19] is proven to hold. On the other
hand, the hypotheses are restricted if for index sets I and
J it is true that I �= J and HI = HJ so that |H| < 2m − 1. In
this case, Algorithm 1 cannot currently be applied [28,29].

As the hypotheses corresponding to any GO graph are
always restricted, themethods of [19] cannot be applied to
the GO graph under the current framework. However, the
following closed test example from [28] can be extended
to demonstrate how Algorithm 1 can be applied to the
case of restricted hypotheses. This example sets the stage
for Theorem 1, where we relax the assumptions of [20]
to formally establish how the methods of [19] can indeed
be applied to restricted hypotheses, and hence, the GO
graph.
Consider the partially nested elementary hypothesesH1,

H2, H3, and H4 defined as follows for the parameters θ1
and θ2 where δ1, δ2 > 0.

H1 :θ1 ≤ −δ1, H2 :θ1 ≤ 0, H3 :θ2 ≤ −δ2, H4 :θ2 ≤ 0
(1)

The full closure family of hypothesesH of these four ele-
mentary hypotheses would contain 24 − 1 = 15 distinct
intersection hypotheses if they were unrestricted. How-
ever, the restrictions stemming from the partial nesting
of H1 with H2 (H1 ⊂ H2) and H3 with H4 (H3 ⊂ H4)
reduce the final closure to just eight distinct intersection
hypotheses. For example, H12 = H1 ∩ H2 = H1 and
H34 = H3 ∩ H4 = H3. Computing all intersections and
retaining only the disctinct intersection hypotheses shows

H = {H1,H2,H3,H4,H13,H14,H23,H24} . (2)

Each of the null parameter spaces corresponding to the
hypotheses in H are graphically depicted in panel (a) of
Figure 3.
A closed test approach toH is given in [28] which begins

with the raw p-values p1, p2, p3, and p4 obtained from
testing the original elementary hypotheses H1,H2,H3,
and H4, each with α-level tests, respectively. To define
the closed test approach, they compute the closed test
p-values pHi for each hypotheses Hi in H by the fol-
lowing rules. First, pH1 = p1 and pH3 = p3. Second,
pH2 = max{p1, p2} and pH4 = max{p3, p4}. Finally, pHij =
min{1, 2pHi , 2pHj}, i = 1, 2 and j = 3, 4. The closed
test procedure [17] is then applied to H as depicted in
panel (b) of Figure 3 using the closed test p-values pHi as
explained in the following paragraph.
The closed test procedure only tests a hypothesis Hi ∈

H if all hypotheses implying Hi are first rejected. For
example, H1 can only be tested by the closed test pro-
cedure if H13 and H14 are first rejected, see panel (b) of
Figure 3. In other words, the hypothesis corresponding to
a child node is only tested if its parent node hypothesis
is first rejected [28] state that, “this closed test proce-
dure controls the familywise error rate strongly at level α
and reflects the logical constraints among the elementary
hypotheses”. We show that this closed test approach for
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a b

Figure 3 Visualization of elementary hypotheses and their closure. (a) Graphical demonstration of the elementary hypothesesH1, . . . ,H4
and distinct intersection hypotheses. The null parameter space is shaded in gray for each hypothesis. Redundant intersection hypotheses are
written in parentheses. (b) The closed test approach given the structure of the hypotheses. Testing begins with H13, the full intersection hypothesis,
and terminates at or before testing H2 and H4.

these restricted hypotheses can be performed using the
directed graph of Figure 4 and Algorithm 1 from [19].
Consider the sequential rejection procedure resulting

from the application of Algorithm 1 [19] to the directed
graph shown in Figure 4. Initial local thresholds of α/2

Figure 4 Graphical Bonferroni adjustment approach for the
partially nested elementary hypothesesH1, . . . ,H4 which
performs the closed test described in [28] when Algorithm 1 is
applied to the graph.

are assigned to H1 and H3 and local thresholds of zero
assigned to H2 and H4 as depicted in Figure 4. The
weighted edges provide for the reallocation of the local
thresholds in the case of rejection of either H1 or H3. If
neither H1 nor H3 can be rejected at the α/2-level, then
the testing is stoppedwith no rejections. This corresponds
to the first step of the closed test procedure described pre-
viously, as proposed in [28]. As can be seen in panel (b)
of Figure 3, the closed test requires the rejection of the
intersection hypothesisH13 before any other rejection can
occur. This requires that the previously defined closed test
p-value pH13 = min{2pH1 , 2pH3} satisfy pH13 < α. Since
pH1 and pH3 were defined to be p1 and p3 respectively for
this particular example, it follows that pH13 < α implies
2min{p1, p3} < α, witnessing that the methods agree on
their starting analysis using only the values of p1 and p3.
The flow chart in Figure 5 further demonstrates that the
two approaches agree for all possible test scenarios and
hence, that the shortcut of [19] can successfully be applied
to this example of restricted hypotheses.

Definitions and preliminaries to Theorem 1
A deeper inspection of Figure 5 will reveal the reason
why the shortcut from [19] can be applied to the exam-
ple of restricted hypotheses of the previous section. To
explain how, we must first define two terms, consonance
and natural consonance.
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Figure 5 Flow chart demonstration of the equivalence of the graphical shortcut tailored from the methods of [19] to that of the full
closed test procedure proposed in [28] within the context of the previously established restricted hypotheses example. At each step in the
chart, the left graph represents the full closed test approach, while the right graph depicts the graphical shortcut.

The traditional definition of consonance [30] relies on
the idea of maximal hypotheses. It states that consonance
is the property of certain closed tests where rejection of

an intersection hypothesis HI ∈ H implies rejection of a
maximal hypothesis H ∈ H. Here, a maximal hypothesis
H ∈ H is such that there is no H ′ ∈ H with H ′ ⊃ H .



Saunders et al. BMC Bioinformatics 2014, 15:349 Page 8 of 16
http://www.biomedcentral.com/1471-2105/15/349

(When the closed test corresponding to the hypotheses in
H is depicted graphically, as in panel (b) of Figure 3, in can
be seen that maximal hypotheses correspond to the leaf
nodes of the graph. Further, in context of the GO graph,
maximal hypotheses correspond to the leaf nodes of the
graph, while the minimal hypothesis corresponds to the
root node of the graph). From the example of the previous
section, it can be seen that only H2 and H4 are maxi-
mal. Thus, the closed test of the example is not consonant
in the traditional sense as rejection of the intersection
hypothesis H13 does not imply the rejection of either of
the maximal hypothesesH2 or H4.
Natural consonance is a similar, but slightly more

relaxed property than consonance, and differs in that it
implies the rejection of only an elementary hypothesis
(not necessarily a leaf node in the closure graph) when-
ever any other hypothesis HI ∈ H is first rejected. This
relaxed definition is more recent and is due to [28]. Impor-
tantly, it is easier for a closed test to satisfy the property
of natural consonance than that of consonance. The claims
of both [28] and [29] that Algorithm 1 [19] is not applica-
ble to restricted hypotheses rest on the subtle difficulty of
how consonance is defined. Note (v) following Theorem
2 of [28] claims that “consonance with respect to the ele-
mentary hypotheses [natural consonance] always implies
the existence of a nested shortcut of size m”, where m is
the number of elementary hypotheses. The natural conso-
nance of the closed test allows for the shortcut from [19]
to be applied to the restricted hypothesis example of the
previous section, as explained in the following paragraph.
Examining the flow chart of Figure 5 will reveal that the

closed test procedure proposed by [28] has this property
of consonance with respect to the elementary hypotheses
H1, H2, H3, and H4, i.e., the closed test for this example is
naturally consonant. This follows from the fact that rejec-
tion of the intersection hypothesis H13 implies rejection
of either of the hypothesesH1 or H3 which are two of the
original four elementary hypotheses. Note as before that
rejection of H13 requires that either 2p1 < α or 2p3 < α

by the definition of pH13 . If say 2p1 < α, then H13 is
rejected. Further, since 2p1 < α, H14 is also rejected as
pH14 = min{1, 2pH1 , 2pH4} = min{2p1, 2pH4} < α. Most
importantly, 2p1 < α provides forH1 to be rejected, as the
closed test p-value pH1 requires only p1 < α which is cer-
tainly satisfied if 2p1 < α. Hence, in this case, the rejection
of the intersection hypothesisH13 implied rejection of the
elementary hypothesisH1. A similar scenario holds for the
elementary hypothesis H3 if 2p3 < α instead of (or as
well as) 2p1 < α. Finally, rejection of H24 similarly implies
rejection of either H2 or H4. Thus, the closed test proce-
dure for these restricted hypotheses admits the shortcut
of [19] because of the consonance of the closed test with
respect to the elementary hypotheses, i.e. the closed test
is naturally consonant.

We now extend Theorem1 of [20] to restricted hypothe-
ses, and thereby verify the appropriateness of the graphi-
cal shortcut of [19] for restricted hypotheses. To this end,
let m elementary hypotheses H1, . . . ,Hm of interest be
given and denote by H their closure under intersection.
For the purposes of Theorem 1,H can be either restricted
or unrestricted. Let αi(I) denote the local significance lev-
els for an intersection hypothesisHI ∈ Hwhere

∑
i∈I αi ≤

α for all non-empty I ⊆ {1, . . . ,m}.

Theorem 1. (Extension of Theorem 1 from [20] to
restricted hypotheses.) If for ∅ �= I, J ⊆ {1, . . . ,m} with
∅ �= HI ⊂ HJ it holds that αi(I) ≤ αi(J), then the
closed test for H based on local Bonferroni tests is natu-
rally consonant and a shortcut equivalent to the following
procedure is possible (adapted from [19]).

0. SetM = {1, . . . ,m}.
1. Set I equal to the smallest subset ofM such that

HI = HM.
2. Reject Hj if there exists j ∈ I such that pj ≤ αj(I). If

no such j exists, then stop.
3. SetM → M \ j.
4. If |M| ≥ 1 return to Step 1. Otherwise, stop.

Proof. First, note that in the case of unrestricted
hypotheses, natural consonance and consonance are iden-
tical [28] so that the proof is already demonstrated in
Theorem 1 of [20]. Consider then the case of restricted
hypotheses in the sense that for ∅ �= I, J ⊆ {1, . . . ,m}with
I �= J it is true that ∅ �= HI = HJ so that |H| < 2m − 1.
Then, for I, J with ∅ �= HI ⊂ HJ it follows from αi(I) ≤
αi(J) that pj ≤ αj(I) implies pj ≤ αj(J). Thus, rejection
of HI implies rejection of some elementary hypothesisHj,
witnessing that the closed test for H is indeed naturally
consonant.

Discussion of Theorem 1
Some comments are in order regarding Theorem 1. First,
while an intersection hypothesis HI may not be unique
in H, it must not be empty for the nested shortcut of
length m to exist. Second, the only difference between
the proof here and the proof for unrestricted hypotheses
[20] is in the definition of consonance. Here we follow the
suggestion in [28] and allow natural consonance, which
can be seen as a loosening of the requirements of con-
sonance to include all elementary hypotheses instead of
just all maximal hypotheses. The important distinction is
that for unrestricted hypotheses, all elementary hypothe-
ses are maximal. The same is not necessarily true for
restricted hypotheses. Third, as in the previous restricted
hypotheses example, restricted hypotheses are often the
result of nested elementary hypotheses. This is certainly
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the case for the hypotheses attached to the gene sets of the
GO graphs. Fourth, the main importance of the extended
Theorem 1 rests with its assurance that a naturally conso-
nant closed test based on weighted Bonferroni tests exists
so long as the monotonicity condition αi(I) ≤ αi(J) is
satisfied for all ∅ �= Hi ⊂ HJ in H. Fifth, Theorem 1
does not specify that any graph with local thresholds of
α = (α1, . . . , αm) and edge weights G = {g}ij, denoted by
(α,G), can combine with Algorithm 1 and lead to a conso-
nant closed test. It simply specifies the conditions under
which a consonant closed test based on local Bonferroni
tests can be formed.
One important rule on the graph (α,G) when the

hypotheses are restricted is that the local threshold αi for
an elementary hypothesis Hi must remain zero until all
elementary hypothesesHj with Hj ⊂ Hi are first rejected.
This property can be seen to hold for the graph of Figure 4.
However, if the graph in Figure 4 allowed for any of H1’s
threshold to be passed toH4 or similarly, if H3 allowed for
anything to be passed toH2, this property would no longer
hold. So, while Theorem 1 assures that a consonant closed
test exists when local Bonferroni tests are used for the
testing of eachH ∈ H, not just any graph (α,G) will result
in that consonant closed test. In the following section we
demonstrate how a graph (α,G) can be applied to the GO
graph such that a consonant closed test based on weighted
Bonferroni tests is achieved through the application of
Algorithm 1.
That Algorithm 1, when applied to a graph (α,G), pre-

serves the monotonic property that αj(I) ≤ αj(J) for I, J
such thatHI ⊂ HJ can be seen by noting that Algorithm 1
only provides for the local thresholds αi to remain the
same size or increase. Never does it allow for them to
become smaller. Further, at any point in the iterative
process, the local thresholds αi define the weighted Bon-
ferroni test thresholdsαj(I) for the intersection hypothesis
I corresponding to the intersection of the elementary
hypotheses with non-zero thresholds (see for example
Figure 5). Hence, as HJ will be tested only after HI is first
rejected whenever HI ⊂ HJ , it follows that Algorithm 1
will provide αj(I) ≤ αj(J).

The Short focus level procedure
We obtain the Short Focus Level procedure by modify-
ing the top-down portion of the Focus Level method. This
is done by tailoring the general graphical shortcut [19]
to a GO graph as follows. Label the m hypotheses cor-
responding to the test of significance for each GO term
(gene set) as H1, . . . ,Hm starting with the root node and
proceeding in an organized manner through each level of
the GO graph, ending with the terminal nodes. (The pre-
cise ordering is not important.) Let F ⊂ M = {1, . . . ,m}
denote the index set of the nodes corresponding to the
pre-selected focus level of the GO graph. For allmF nodes
in the focus level, assign local significance levels of αi =
α/mF to each hypothesis Hi with i ∈ F . Assign initial
local significance levels of 0 to all children nodes of the
focus level. Note that nodes above the focus level will
still be tested using the bottom-up approach of the Focus
Level method and are not considered when applying the
top-down portion of the method.
Using the structure of the GO graph, assign to each edge

from parent node i to child node j a weight of gij = 1/mi,
where mi denotes the number of children nodes of node
i. After all edge weights have been assigned for the edges
defined by the GO graph, all terminal nodes are individ-
ually joined with mF new edges to each of the mF focus
level nodes. These new edges are given weights of 1/mF .
(In the case that a terminal node is also a focus level node,
then edges are made only to all other focus level nodes
with weight 1/(mF − 1)).
At this point, a modified form of Algorithm 1 of [19] is

applied to the resulting directed graph to obtain the final
set of significant hypotheses. The modifications ensure
that no child node is tested before all parent nodes
are first found significant, maintaining the strong con-
trol of the FWER under the restricted hypotheses of the
GO graph as well as maintaining Property FL2 of the
basic assumptions (or requirements) underlying the Focus
Level method (see “Methods” section above). Figure 6
demonstrates the application of the described graphical
Bonferroni adjustment to the top-down portion of the
Example GO graphs of Figure 1. Comparing Figure 2 to

Figure 6 The suggested shortcut to the top-down portion of the Focus Level method exploits the natural consonance of the weighted
Bonferroni tests applied to the GO graph to avoid closing the graph under all unions as in the original top-down approach.
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Figure 6 provides a heuristic understanding of how the
new top-down approach is computationally faster than
the original closure approach because no new nodes need
to be created.
An algorithm which implements the Short Focus Level

procedure is detailed in Algorithm 2. Here,H denotes the
index set of testable hypotheses (nodes) and w = {wi}i∈H
the corresponding set of weights such that α/wi provides
the local thresholds αi for each hypothesis Hi indexed by
i ∈ H. As described previously, F ⊂ {1, . . . ,m} denotes
the index set of all pre-selected focus level nodes. The
notation Ci denotes the index set of children nodes of
the parent hypothesis Hi. Similarly, the notations Pi and
Ai denote the parents and all ancestors, respectively, of
the node corresponding to the hypothesis Hi. Finally, we
use R and S to denote the index sets of the current and
cumulative rejected hypotheses, respectively.

Algorithm 2: Detailing the newly proposed Short
Focus Level procedure
0. SetH = F and wi = mF for each i ∈ H.
1. Add i ∈ H to R if pi < α/wi.
If R �= ∅, perform Steps 2–4. Otherwise, STOP.

2. UpdateH and w:
i. Set H = H \ R.
ii. for i ∈ R,

add Ci toH and set wj = wj + wi · |Ci| for
all j ∈ Ci.

iii. for all i ∈ H with (Pi ∩ H) non-empty,
remove i fromH and add wi · |Pi ∩ H| to
wj for all j ∈ (Pi ∩ H).

3. Add R and ∪i∈RAi to S.
4. Set R = ∅, return to Step 1.

The final set of rejected hypotheses will be contained in S.

Results and discussion
A natural question at this point concerns the advantages
and disadvantages of changing the top-down portion of
the Focus Level procedure from the original closed test
approach as in [10] to the graphical shortcut of [19] as pro-
posed for the Short Focus Level. If the local tests for each
intersection hypothesis were originally performed with
weighted Bonferroni tests, then the difference between
themethods would be that the first performed the full clo-
sure test requiring the testing of somewhere on the order
of 2m−1 intersection hypotheses, while the second, which
applies a shortcut, would test no more than m hypothe-
ses with no reduction in the power of the tests. When
using the Global Test for each intersection hypothesis as
suggested by [10], the answer to the differences in com-
putation time and power is not as clear. The following
simulations demonstrate that neither method is uniformly
more powerful than the other, with each having the advan-
tage for certain scenarios. However, as these simulations
demonstrate, the newly proposed Short Focus Level pro-
cedure is uniformly (and exponentially) computationally
faster than the Focus Level method which will hopefully
better enable its use by practitioners.

Simulation 1
The following simulation based on the toy GO graph
depicted in Figure 7 panel (b) demonstrates the advan-
tages and disadvantages of moving to the newly proposed
graphical shortcut of [19] in the top-down portion of the
Focus Level procedure. The simulation was performed
with the phenotype Y as a dichotomous class variable
(say, treatment and control) and the data X representing
an RNA-Seq counts matrix with rows as genes (m) and
columns as samples (n). The number of samples belong-
ing to the treatment group was simulated according to a
binomial(n, 0.5) distribution, where n is the total number
of samples, with the added rule that at least two samples
were in each group. This allowed for unbalanced data,

a b c

Figure 7 A toy GO graph example illustrating the difference between the current Focus Level method and the proposed Short Focus
Level method. (a) The full closure of the example toy GO graph depicted in panel (b) that is currently utilized by the Focus Level method. (c) The
graph (α,G) corresponding to the example toy GO graph depicted in panel (b) that is utilized by the proposed Short Focus Level procedure.
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with the tendency towards fairly balanced designs. Sepa-
rate simulations for sample sizes of n = 5, 20, and 100
were performed.
The structure of gene assignments to the sets A, B, C,

D, E, and F of Figure 4, as well as the total number of
genes assigned, was allowed to vary in each simulation
according to certain parameters. Genes were first assigned
to the leaf node gene sets C, D, and E. This was accom-
plished by randomly selecting both the number of distinct
sets in each of these sets (anywhere from 1 to a maximum
specified size of either 10 or 40) as well as the number of
genes shared by all possible combinations of the leaf node
gene sets. Common genes between all or many gene sets
was discouraged with small probabilities of occurrence,
while common genes between a few gene sets was allowed
to occur more frequently. Following the assignments of
genes to leaf nodes, parent nodes were randomly assigned
new genes (anywhere from 1 to the maximum specified
size) as well as all genes contained by their children nodes.
The result was a nested graph with at least some over-
lap common to many gene sets, as is the case within GO
Graphs.
The data counts matrix X was simulated using an actual

RNA-Seq data set as a sampling distribution for the per-
gene means in the control group. Specifically, the counts
kij for all samples j assigned to the control group were
generated from a NB(μi,μi + μ2

i /d) distribution, where
the means μi were randomly sampled from the per-gene
means of the control group from the actual RNA-Seq data
set. The scaling parameter d was set at 10 for all sim-
ulations. Leaf node gene sets (any of nodes C, D, or E
in Figure 4) were then selected at random to be signifi-
cant. Each gene mapping to the selected significant leaf
nodes was assigned a treatment mean of μ̂i = 2βiμi where
μi denotes the mean sampled from the actual RNA-Seq
data for gene i and βi was an effect size obtained from a
Poisson(λ) distribution with the parameter λ set to one
of 0, 1, 2, or 3. Thus, not all genes in the significant

gene sets necessarily had non-zero effect sizes. The actual
counts kij for all samples j assigned to the treatment group
were obtained from a NB(μ̂i, μ̂i + μ̂2

i /d) distribution
where, as with the control group, d = 10 was constant
across all simulations. (See [13] for a similar simulation
approach where single gene sets were the object of interest
as opposed to an entire GO graphs as in this simulation).
The averaged results of Simulation 1 are presented in

Table 1. This example shows greater power for the cur-
rent implementation of the Focus Level procedure where
the Globaltest [6] is used to test all intersection hypothe-
ses and all elementary hypotheses. The greatest power
differences of the two methods appear for small sample
sizes, n = 5 in this simulation, and for nodes with rela-
tively few child nodes. The power of the two methods is
comparable otherwise. Importantly, the computation time
for the Short Focus Level procedure is significantly faster,
even for this extremely small toy GO graph whose clo-
sure contains just 14 nodes. Interestingly, the Focus Level
procedure as it is currently implemented seems to oper-
ate best, computationally speaking, when the sample size
is moderate, n = 20 in this simulation.

Simulation 2
A second simulation study using the toy GO graph of
Figure 8 was also used to compare power and computa-
tion time of the original Focus Level method to the Short
Focus Level. The closure of the toy GO graph in Figure 8
is more complex than that of the previous simulation,
containing 574 nodes as compared to the 14 of Figure 7,
panel (a). This simulation considered the continuous phe-
notype Y ∼ N(0, 1) and its correlation with simulated
gene expression values X. For this simulation m = 100
genes were partitioned to the 14 GO IDs of Figure 8 as
specified in Table 2. Expression values Xij for each sam-
ple i = 1, . . . , n and gene j = 1, . . . ,m were generated
as N(0,1) variates. GO IDs 6, 7, and 13 were designated
as significant by adding rY, r ∈[ 0, 1], to the expression

Table 1 Summary of results for Simulation 1

Mean
Node computation

n Method A B F C D E time (sec)

5 FL 0.447 0.428 0.132 0.142 0.135 0.130 0.426134

SFL 0.447 0.366 0.120 0.092 0.083 0.122 0.001778

20 FL 0.574 0.567 0.180 0.186 0.192 0.179 0.102097

SFL 0.574 0.552 0.178 0.184 0.188 0.179 0.001789

100 FL 0.642 0.635 0.202 0.220 0.207 0.201 0.355848

SFL 0.642 0.623 0.201 0.217 0.204 0.201 0.001793

Power calculations were averaged over all levels of the effect size λ and both sizes ofm, the maximum leaf node gene set size, for each level of the sample size n.
FL: Focus Level.
SFL: Short Focus Level.
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Figure 8 Structure of the toy GO graph used in Simulation 2.
Shaded nodes correspond to those GO IDs which were simulated to
be significantly associated with the phenotype Y.

values of the corresponding genes (i.e., the columns of X
corresponding to genes in GO IDs 6, 7, and 13). Thus, by
inherentance, GO IDs 1, 2, 3, 4, 10, and 11 were also signif-
icantly associated with the phenotype Y. Values of r close
to 1 provided a strong signal and greater power for detec-
tion while r near zero resulted in a very weak signal and
correspondingly very low power for detection. Goeman’s
Globaltest [6] was used to test each GO ID for associa-
tion with the phenotypic variable Y. Given that Simulation
1 suggested that the current Focus Level procedure per-
forms best at a moderate sample size, n = 20 was used for
this simulation.
Power and computation time were averaged over 1,000

simulations. Results are presented in Table 3 for the most
interesting case of r = 0.5. They show the Short Focus
Level method having greater power at every GO ID. The
computational speed advantage of the improvement is
also manifest, showing nearly a 15,000 fold increase in
speed over the current Focus Level procedure. This sec-
ond simulation emphasizes the fact that neither approach
to the Focus Level procedure is uniformly more power-
ful than the other. While it is clear that each has the
advantage in certain scenarios, at least theoretically, more
work needs to be completed to determine exactly where
each is most appropriate. Practically speaking however,
the computational advantage and similar statistical power
(on average) of the Short Focus Level should solicit its use
except perhaps for choices of the focus level near the leaf

nodes of the graph where the current Focus Level method
is computationally tractable.

Key difference between focus level and short focus level
methods
The Focus Level (FL) and Short Focus Level (SFL) meth-
ods are the same in the bottom-up approach. They differ
in the top-down approach. Both are similar in the top-
down approach in that they apply the closed testing strat-
egy to the GO graph (from the focus level down to the
leaf nodes) by closing the graph under all unions of gene
IDs corresponding to the GO IDs (i.e., intersections of the
hypotheses corresponding to the testing of each GO ID).
The FL method uses the Global Test to test each inter-
section hypothesis of the closed GO graph[10]. The SFL
method would be a direct shortcut of the FL method if the
FL method instead used a weighted Bonferroni test to test
each intersection hypothesis.
However, it is important to recognize that the FL

method could only perform the full closure test, not the
short-cut that the SFL method performs, even if the FL
method was modified to use the weighted Bonferroni
tests. The FL method is more consistent in applying the
same Global Test to both original GO ID hypotheses as
well as to all intersection hypotheses. However, it is com-
putationally expensive because it performs the full closure
test. The SFL method makes a slight shift in allowing
any test (not just the Global Test) for the elementary
hypotheses (the individual GO ID hypotheses) and then
performing weighted Bonferroni tests for all intersection
hypotheses. This simplification or generalization allows
for the resulting short-cut. Hence, the power comparison
between the FL and SFL methods is not obvious, and the
simulations above show that neither method is uniformly
more powerful than the other.

Real data application 1
A drawback to the otherwise powerful Focus Level
method is the computational burden which prohibits the
full top-down approach from being applied to real data
sets [10].When no a priori focus level exists, as is often the
case [18], the root node of theGO graph is a logical default
choice, but requires the full top-down approach. Under
the newly proposed Short Focus Level method, this is now
a computational possibility. The following application to
RNA-Seq counts data from porcine oocytes demonstrates
the performance of the full top-down approach of the

Table 2 Allocation of simulatedgenes to the GO IDs of the GO graph in Figure 8

GO ID 1 2 3 4 5 6 7

Genes 1-100 1-40 21-60 61-100 1-10 11:20 21:40

GO ID 8 9 10 11 12 13 14

Genes 41-50 51-60 61-80 71-90 81-100 72-79 82-89
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Table 3 Results of the power simulation for the GO graph in Figure 8

GO:01 GO:02 GO:03 GO:04 GO:06 GO:07 GO:10 GO:11 GO:13 Time

FL 0.995 0.968 0.890 0.462 0.512 0.872 0.380 0.399 0.344 3:42:938

SFL 0.995 0.988 0.952 0.543 0.837 0.949 0.489 0.476 0.445 0:00:015

FL: Focus Level.
SFL: Short Focus Level.

Short Focus Level procedure to real data. The Biological
Process (BP) root node was selected as the focus level for
this study due to there being no other focus level of greater
a priori interest.
It is well known that in vivo (naturally) maturated

oocytes show far greater developmental competence than
do thosematured in vitro [31]. Yet, the underlying genetics
are still not well understood. To uncover the genetic dif-
ferences of in vitromatured oocytes as compared to those
matured naturally (in vivo), transcript counts for 4 in vivo
and 4 in vitro maturated porcine oocytes were obtained
using the Illumina RNA-Seq platform [32]. Lanes were
populated as shown in Table 4. These data from the lab
of Dr. Clay Isom of the Utah State University Department
of Animal, Dairy, and Veterinary Sciences are reported on
here with permission. In this oocyte study, all animal pro-
cedures were performed with the strictest adherence to
animal welfare guidelines and with regulatory oversight by
the Institutional Animal Care and Use Committee at Utah
State University.
Individual P-values testing the differential expression

of 12,625 genes were calculated using the DESeq pack-
age of Bioconductor [33,34] with pig mother, as identified
in Table 4, included as a covariate. Specifically, these P-
values were obtained under the null hypotheses that the
per-gene expression strength of the in vivo maturated
oocytes (IVV) is equal to that of the in vitro maturated
oocytes (IVV) when accounting for any pig mother effect.
This was done through the DESeq package [33] which
compares a full model (regressing the RNA-Seq counts on

Table 4 Experimental design for the in vivo (IVV) and in
vitro (IVM) oocyte maturation RNA-seq data

Oocyte no. Embryo type Pig (Mother)

1 IVV 1

2 IVV 2

3* IVV 3

4 IVM 3

5 IVM 1

6 IVM 2

7 IVM 4

8 IVV 3

*Lane 3 contained quality problems and was removed from the analysis.

both the oocyte type and pig mother by a generalized lin-
ear model) to a reduced model (regressing only on the pig
mother) to determine significance for a given gene.
A gene set analysis using the GO BP ontology was

then performed to characterize differentially expressed
gene products between the two types of oocytes (IVV
and IVM). P-values for each of 5,687 BP GO Terms
containing at least 5 of the 12,625 Entrez IDs from
the single gene (DESeq) analysis were calculated using
Stouffer’s Method [24,35]. The R code [21] for Stouffer’s
Method is included in the mvGST package [22,23]; see
also Additional file 1. Briefly, Stouffer’s method trans-
forms each of the P-values (from the single gene anal-
ysis) corresponding to an individual gene in the gene
set to a standard normal Z-score. A single P-value for
the gene set is then obtained from the mean of the Z-
scores by computing the appropriate tail probability (from
a standard normal distribution) beyond themean Z-score.
Stouffer’s P-value combination method was applied here
as it is more powerful for the consensus alternative than
say Fisher’s P-value combination test [36] or Goeman’s
globaltest [6], see discussions in [24]. Finally, multiplicity
adjusted gene set P-values for each BP term were calcu-
lated using the Short Focus Level procedure, with the root
BP GO term (GO:0008510) as the focus level. This adjust-
ment (the full top-down approach) took just 3 minutes
and 23 seconds of processing time on an Intel Pentium M
1.86 GHz processor with 1 GB of RAM. The current Focus
Level method is computationally intractable for these
data.
Figure 9 reports the significant subgraph [10] obtained

from the Short Focus Level method containing 113 of the
original 5,687 BP terms.While a partial legend is included
in Figure 9, a full legend identifying all 113 significant
BP terms, along with their multiplicity-adjusted P-values
(using the Short Focus Level method at familywise error
rate 0.05) is included as a table in Additional file 3.
Since the full top-down approach was performed, these
GO terms, which are differentially expressed between
the two types of oocytes (IVV and IVM), can be dis-
cussed either individually or within their context of this
significant subgraph. Advantaged by the FWER control
of the Short Focus Level procedure, any subset of the
significant results can also be reported on (while the oth-
ers ignored) with the assurance that the FWER remains
controlled at the specified level for the selected sets.
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Figure 9 Significant results from the gene set testing of porcine oocytes obtained from the Short Focus Level procedure using the full top
down approach.

Possible interpretation discussions of the results include
the significant differential activity (between in vivo and in
vitromaturated oocytes) of biological processes “response
to bacterium” (node 74 in Figure 9), “double-strand break
repair” (node 110), and “ribonucleoside metabolic pro-
cess” (node 93), among others.

Real data application 2
As a second real data demonstration of the Short Focus
Level method, and to further discuss differences between
the Short Focus Level and Focus Level methods, we used
a subset of the famous Golub data set [37], specifically
the 38 training samples publicly available in the R package
golubEsets [38]. Briefly, Affymetrix Hgu6800 chips were
used to profile gene expression in leukemia patients, and
we test for differential biological process activity between
27 patients with acute lymphoblastic leukemia (ALL) and
11 with acute myeloid leukemia (AML). Using the same
Focus Level method demonstration as in the vignette of
the globaltest package [39], we looked only at biological
process “cell cycle” (GO:0007049) and its descendants in
the GO graph, with 249 total nodes.
We also applied the Short Focus Level method to the

same example (using familywise error rate 0.01), and
note that while the Focus Level method (with its default
focus level) takes nearly 4 minutes, the Short Focus Level
method (using the same focus level as selected by the
Focus Level method) takes 1 second. Finally, we applied
the Short Focus Level method using the root node as the
focus level, which also took 1 second. In stark contrast,
the Focus Level method using the root node as the focus

level was deemed computationally intractable, as even a
run time of two weeks was not sufficient to complete it.
Figure 10 compares the resulting adjusted p-values for

each of the 249 biological processes considered. Figure 10a
shows that, when using the same focus level, the Focus
Level (FL) and Short Focus Level (SFL)methods can result
in different (though largely overlapping in this case) sets
of GO terms called significant. This results from the pre-
viously discussed key difference between the FL and SFL
methods, namely that the SFL method allows any test
(not just the Global Test) for the elementary hypothe-
ses (the individual GO ID hypotheses) and then performs
weighted Bonferroni tests for all intersection hypotheses.
As discussed in the original Focus Level paper [10],

different focus levels provide for different power at differ-
ing areas of the GO graph. For this reason, it is difficult
to make definitive comparisons using results from dif-
ferent focus levels. While the stronger agreement seen
between the FL method (with its default focus level) and
SFL method (with the root node focus level) in Figure 10
may seem interesting, the important point is that the FL
method is effectively computationally intractable using
the root node focus level. The decision to use the FL or
SFLmethod should not be based on power considerations,
but rather on computational considerations, especially
when no real reason exists to choose the focus level any-
where other than the root node (which will most often be
the case), in which case the FL method is computationally
intractable. However, the SFL method is computationally
efficient and strongly controls the familywise error rate
within the structure of the GO graph.
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a b

Figure 10 Adjusted p-values for each of the 249 biological processes considered in the Golub example. The Focus Level (FL) method with its
default focus level is compared to the Short Focus Level (SFL) method using (a) the same focus level as the FL method and (b) the root node focus
level (which is computationally intractable for the FL method). Red dashed lines correspond to the familywise error rate of 0.01, and the solid black
line represents the line of equality. All axes are on the log scale.

Conclusions
As pointed out in [10], the GO graphs are structured and
“it is wasteful not tomake use of that structure” in correct-
ing for multiplicity. Further, they stress the importance
of not making any assumptions on the joint distribution
of the test statistics corresponding to each of the gene
sets in the GO graph while correcting for multiplicity.
The Focus Level procedure both avoids any such assump-
tions and capitalizes on the inherent structure of the GO
graph to adjust for the multiple tests performed, resulting
in a powerful approach. Another advantage of the Focus
Level method is the possibility of incorporating biologi-
cal knowledge into the adjustment approach through the
selection of the focus level, where the method has the
greatest power.
This work improves upon the Focus Level procedure

of [10] by altering the top-down portion of the method
to utilize the graphical shortcut of [19] in place of the
full closed testing approach of [17] as originally suggested
by [10]. This was made possible by extending the result
from [20] to restricted hypotheses (Theorem 1) as the
hypotheses corresponding to the GO graph are always
restricted.
The main advantage of the Short Focus Level proce-

dure proposed in this work is the exponential decrease in
computational burden. This provides for the most logical
default choice of the root node of the GO graph as the
focus level when no other a priori choice can be specified.
Another advantage of the improvement is in the ability
to consider the adjusted P-values apart from their con-
text within the significant subgraph of the full GO graph
under the full top-down approach. When the focus level
is selected to be anything other than the root node, indi-
vidual hypotheses must be considered in context of their

position within the significant subgraph. However, this is
not altogether a disadvantage as “the interpretation of an
individual adjusted P-value should depend on the location
in the graph where it occurs” [10].
It is our hope that this shortcut for the Focus Level

procedure, the Short Focus Level, will result inmore wide-
spread use of the method. Still, future work remains to
be done. The simulations performed within this work
demonstrate that each approach appears to be more pow-
erful under different circumstances. Hence, further theo-
retical work is needed to determine the conditions under
which each method is most powerful.

Additional files

Additional file 1: Short focus level and Stouffer’s P-value
combination R code.

Additional file 2: Short focus level R code help file.

Additional file 3: Full legend to Figure 9.
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