OPAL CubeSatellite Flight and Line of Sight Integration Modeling
Kenneth Zia and Ludger Scherliess
USU Department of Physics
Utah State University, Logan, UT 84332-4414
Phone: (435) 797-2857, E-mail:kennethzia@gmail.com

Mission Overview

Optical Profiling of the Atmospheric Limb (OPAL) 3U (10X10X30cm) CubeSat measuring Thermosphere temperatures [1]. OPAL will observe the temperature from $90-140 \mathrm{~km}$ altitude through observing day-time emissions of O_{2} A-band ($\sim 760 \mathrm{~nm}$) emissions.

Plot of temperature vs. altitude with
labeled atmospheric layers [2]

View of the tangential nature of the line of sight.

2-D map of the OPAL model with Yellow representing sunlit regions, and red in the umbra regions

Flight Modeling

Using Matlab and Analysis Graphics Inc (AGI) Systems Took Kit (STK), we mode the OPAL position and velocity. The expected launch for OPAL is mid-2017 from the International Space Station (ISS), and is thus modeled with an orbit $\sim 400 \mathrm{~km}$ altitude. The OPAL instrument's field of view (FOV): width 11 deg height 2.5 deg

Shows a cross section of the field of view of the OPAL imager through the 9 entrance slits that are the apertures of the imager [1].

Line of Sight

OPAL measures the light emissions along its line of sight (LOS), therefore modeling of LOS is important.
-Express position (R) and velocity (V) of OPAL cubesat in Cartesian coordinates.
-Calculate a vector K perpendicular to both R and V (i.e. take cross product of R and V).
-Use the Rodrigues' Rotation Formula to obtain a vector in the line of sight.
-Step along the look direction in 1 km steps.

$\mathbf{v}_{\text {rot }}$	$=\mathbf{v}_{x \text { rot }}+\mathbf{v}_{\tilde{\sim} \text { rot }}$
	$=\mathbf{v}_{x \text { rot }}+\mathbf{v}_{\tilde{\sim}}$
	$=(\mathbf{v}-(\mathbf{k} \cdot \mathbf{v}) \mathbf{k}) \cos \theta+(\mathbf{k} \times \mathbf{v}) \sin \theta+(\mathbf{k} \cdot \mathbf{v}) \mathbf{k}$
	$=\mathbf{v} \cos \theta+(\mathbf{k} \times \mathbf{v}) \sin \theta+\mathbf{k}(\mathbf{k} \cdot \mathbf{v})(1-\cos \theta)$,

Derivation of the Rodrigues' Rotation Formula. (with k being the vector perpendicular to $\mathrm{v}(\mathrm{rot})$ and theta as the angle rotated through).

Having the proper LOS gives the above graph Having the proper LOS gives the above graph
of altitude as you move along the LOS. This of altitude as you move along the LOS.
minimum should be the 90 km for OPAL minimum measured altitude.

Visual interpretation of the use of the
Rodrigues' rotation formula With $Z=V$, $\mathrm{X}=\mathrm{K}$, and $\mathrm{Y}=\mathrm{R}$ (as described in the bullets).

Model of OPAL orbit (blue) with the FOV (yellow).

References and Acknowledgements

[1] Sullivan, Stephanie. Optical Sensors for Mapping Temperature and Winds in the Thermosphere from a Cubesat Platform. Thesis. Utah State University, 2013. 2]National Earth Science Teachers Association. (2012) Windows to the universe Online]. Available:
[3] Chu, XZ, ZB Yu, CS Gardner, C Chen and WC Fong, (2011), Lidar observations of jeutral Fe layers and fast gravity waves in the thergosphere ($110-155 \mathrm{~km}$) at McMurdo (77.8 degrees S, 166.7 degrees E), Antarctica Geophys. Res. Lett., 38 , issn $094-8276$, ids: 864TA, doi: 10.102921 GL 50016 , Published 15-Dec 2011 nd A. W. Stephan (2012), Observations of molecular oxygen Atmospheric Save emission in the thermosphere using the near infrared spectrometer on the ISS/RAIDS experiment, J. Geophys. Res., 117, A04315, doi:10.1029/2011JA016838. [5] Burke, W. J., C. S. Lin, M. P. Hagan, C. Y. Huang, D. R. Weimer, J. O. Wise, L. C , me global thermosphere: A drivendissipative thermospheric system, J. Geophys. Res., 114, A06306,
doi:10.1029/2008JA013848.
[6] Belongie, Serge. "Rodrigues‘ Rotation Formula. "From MathworldA Wolfram Web Resource, createdby Eric W.
.
Members involved are: a student team at Utah State University, University of Maryland Eastern Shore and Dixie State University, supported by professional scientists and he OPAL mission.

