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Dispersion energy is calculated in the systems H 20-HOH, H 20-HF, H3N-HF, and HF-HF as a 
function of the intermolecular separation using a variety of methods. Meller-Plesset perturbation 
theory to second and third orders is applied in conjunction with polarized basis sets of 6-311 0** 
type and with an extended basis set including a second set of polarization functions (DZ + 2P). 
These results are compared to a multipole expansion of the dispersion energy, based on the 
UnsOld approximation, carried out to the inverse tenth power of the intermolecular distance. 
Pairwise evaluation is also carried out using both atom-atom and bond-bond formulations. The 
MP3/6-3110** results are in generally excellent accord with the leading R -6 term of the 
multipole expansion. This expansion, if carried out to the R -10 term, reproduces extremely well 
previously reported dispersion energies calculated via variation-perturbation theory. Little 
damping of the expansion is required for intermolecular distances equal to or greater than the 
equilibrium separation. Although the asymptotic behavior of the MP2 dispersion energy is 
somewhat different than that of the other methods, augmentation of the basis set by a second 
diffuse set of d functions leads to quite good agreement in the vicinity of the minima. Both the 
atom-atom and bond-bond parametrization schemes are in good qualitative agreement with the 
other methods tested. All approaches produce similar dependence ofthe dispersion energy upon 
the angular orientation between the two molecules involved in the H bond. 

A basic understanding of the forces between molecules 
is a central goal of chemical physics. Accurate intermolecu­
lar potentials are crucial to understanding of dynamic phe­
nomena like scattering, relaxation, lattice dynamics, energy 
transfer processes, I etc. They are also a vital ingredient in 
studies of the structure of liquids and solutions. 2 In recent 
years, considerable progress has been achieved in the calcu­
lation of interaction energies of closed-shell systems at the 
SCF level. Development of numerical methods along with 
high-speed computers has made it possible to perform ab 
initio SCF calculations even for systems containing a rela­
tively large number of electrons. 3 However, it is now clearly 
recognized that intermolecular potentials based on the one­
electron approximation are generally insufficient for high­
quality studies. For example, Hartree-Fock (HF) potentials 
fail to indicate van der Waals minima for rare gas atom inter­
actions.4 These minima are predicted only when dispersion 
forces are directly included in the calculations via considera­
tion of electron correlation. In addition to a general deepen­
ing of the interaction potential in the vicinity of the mini­
mum, dispersion forces have also been demonstrated to alter 
the anisotropy of the interaction.5 

The various methods for calculating the correlation 
contribution to the interaction energy-the dispersion ener­
gy-generally fall into one of two categories. The supermo­
lecule approach may be used to calculate the dispersion ener­
gy indirectly via CI, MCSCF, etc. treatments or it may be 
evaluated directly with perturbational methods where the 
interaction operator is considered the perturbation. 
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A recently developed indirect method which shows 
great potential consists of application of many-body Ray­
leigh-Schrodinger perturbation theory (MB-RSPT) with 
Meller-Plesset partitioning of the Hamiltonian.6

•
7 This 

method represents a significant step forward since it is more 
efficient and less time consuming that the technique of con­
figuration interaction truncated after double substitutions. S 

A second advantage of the Meller-Plesset method is its size 
consistency.7 Recent calculations have demonstrated that 
this method is applicable to van der Waals interactions9

•
10 as 

well as to donor-acceptor complexes ll and to strong H­
bonded systems. 12 However, one shortcoming of the ap­
proach is that the size of the system is severely limited in the 
number of electrons which may be treated. 

Significant progress has been made as well in methods 
of direct evaluation of the dispersion energy based on pertur­
bation (or variation-perturbation) theory. 13,14 However, the 
complexity of the calculations increases dramatically when 
the influence of intrasystem correlation is taken into ac­
count. IS Therefore accurate calculations with this approach 
are also limited to systems containing small numbers of elec­
trons. 

An alternative and much more efficient means of calcu­
lation of dispersion energy arises from the use of the muIti­
pole expansion of the interaction operator and replacement 
of the sum-over-states evaluation of transition moments by 
the UnsOld approximation. 16 The procedure proposed by 
Mulder et al. 17 leads to an expression for the dispersion ener­
gy in the expanded form 

Emu1' _ _ C6 _.s.. _ C IO _ 
D - R 6 R 8 RIO"" (1) 

where C6 , Cs, C IO' ... are the dispersion coefficients and R is 
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the distance between subsystems. These coefficients have 
been evaluated in application to ethylene l ? and simple hy­
drides of first-row atoms. IS The usefulness of the procedure 
is exemplified by its successful application to systems con­
taining more than 80 electrons and its potential use with 
much larger systems. 19 The method does suffer from a num­
ber of drawbacks such as its failure to provide a strict upper 
bound to the interaction energy and the fact that the expan­
sion (1) is not required to converge in the region of the van 
der Waals minimum. 

A different class of methods allows a very efficient eva­
luation of dispersion energy by the use of parameters that are 
transferable from one molecule to another. These param­
eters are typically calibrated to reproduce the dispersion en­
ergy in a pairwise form, of either atom-atom or bond-bond 
type. Moreover, this approach does not suffer from size limi­
tations or from convergence problems. The bond-bond ap­
proach takes advantage of the fact that an estimation of the 
C6 dispersion coefficient may be provided by either experi­
mental values of bond polarizabilities20 or theoretical values 
based on a localized orbital description. 21 The alternative 
atom-atom potential parameters, derived on experimental 
bases, have been in use for years to furnish predictions and 
analyses ofthe structures and interactions in molecular crys­
tals. 22 A theoretical set of atom-atom dispersion coefficients 
has recently been proposed by Mulder and Huiszoon23 for 
molecule-molecule interactions as well. This set leads to an 
expression of the dispersion energy in the following form: 

A. 
E~-A= 2:2:-+, 

iEXjEY rij 

(2) 

where X and Yare interacting molecules and r ij are the dis­
tances between atoms i and j. 

The diversity of aforementioned methods leads to a 
number of very interesting and important questions such as 
the following: What are the relative merits of MB-RSPT 
within the supermolecule approach vs direct calculation of 
dispersion forces via variation-perturbation theory? What is 
the range of convergence of the multipole expansion of the 
dispersion energy? It would be useful to determine whether 
some damping procedures can extend this range and how far 
in the expansion it is necessary to go in order to get good 
accuracy. How well do the atom-atom and bond-bond para­
metrization schemes work and is one preferable to the other? 

The work described in this paper was carried out in an 
effort to help provide answers to some of these questions. 
The specific subject of our calculations is a series of hydro­
gen-bonded systems containing HF, OH2, and NH3. We are 
particularly interested in identifying an efficient and reliable 
method of calculating dispersion energy in these types of 
systems with potential application to very large systems. 
Since very little is known thus far about the applicability of 
M011er-Plesset theory to hydrogen-bonded systems, a cen­
tral topic of our study is the use of this approach to calculate 
dispersion energy in these complexes. 

METHODS 

Hartree-Fock calculations were carried out with the 
polarized triple-valence24 6-311 G** basis set as were the 

M0ller-Plesset treatments to second (MP2) and third (MP3) 
orders.? For certain systems, an extended basis set contain­
ing two sets of d functions, denoted DZ + 2P, was also used. 
The MP interaction energies were computed as the differ­
ence in total energy between the complex and the isolated 
monomers. The GAUSSIAN-80 set of computer programs25 

was used to perform the above calculations. The dispersion 
energy was also evaluated by the multipole expansion in Eq. 
(1) using C6, Cs, and C IO coefficients of Mulder et al. IS The 
value of the leading Ctft -6 term in the multipole expansion 
is designated below as M(6) while the cumulative sum to the 
C lOR - 10 term is referred to as M( 10). (R is evaluated as the 
distance between centers of mass in the expansion.) 

An alternative means of calculating the dispersion ener­
gy involves a pairwise sum over interactions between bonds 
on different molecules, making use of experimental bond po­
larizabilities.26 There is some uncertainty, however, in the 
choice of the molecular excitation energy to be used in the 
London formula. For OH2 and NH3, this energy was esti­
mated from experimentally determined values of the C6 coef­
ficients for the homodimers H20-HOH and H3N-HNH22? 
and from the experimental mean polarizabilities. Since the 
C6 coefficient for HF-HF has not been determined to date, 
the assumption was made that the excitation energy is pro­
portional to the ionization energy for the series H3N, H20, 
HF26 leading to a value of 23.0 eV for HF. The dispersion 
energy computed using this bond-bond formulation is ab­
breviated as B-B, the parameters of which are collected in 
Table I. 

Another pairwise formulation of the dispersion energy 
involves summing over pairs of atoms, designated A-A be­
low. TheAij parameters needed for evaluation ofEq. (2) were 
taken from Ref. 23. Whereas the B-B dispersion energy 
serves as an approximation to the R -6 leading term of the 
multipole expansion, theAij parameters have been chosen to 
fit data calculated with the first three terms of Eq. (1). 

The four H -bonded systems studied in this work are 
H20-HOH, H20-HF, H3N-HF, and HF-HF, the geome­
tries of which are illustrated in Figs. 1-5. The relative orien­
tations of the monomers in H20-HOH2S and H3N-HF29 
were taken directly from experiment and contain linear H 
bonds. Geometry optimization at the MP3/6-311 G** level 
was used to determine the relative orientation in H20-HF. 30 
In the above cases, the internal geometries of the individual 
monomers were taken as the experimental structures of the 
isolated molecules. The geometry of the HF-HF dimer is 
that of a previously reported complete optimization (includ­
ing internal HF bond lengths) at the CEPA level. 31 Disper-

TABLE I. Average excitation energies (U) and longitudinal (a L ) and trans­
verse (aT) bond polarizabilities. 

NH3 

U,eVa 15.2 
aLtA.?b 0.50 
aT, A3b 

0.83 

a See the text for definition. 
bFrom Ref. 26. 

H2O HF 

17.7 23.0 
0.58 0.98 
0.79 0.76 
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FIG. 1. Dispersion energy for H20-HOH. For both H 20 units, 
f10H) = 0.957 A, 8 (HOH) = 104.5 '. The complex belongs to the C, point 
group with an angle of 120' between the 0-0 axis and the bisector of the 
left-hand water. 

sion energies for each of the systems were calculated as a 
function of R, the distance between first-row atoms, over a 
range extending from slightly less than the equilibrium se­
paration to 4.0 A. The internal geometries of the monomers 
were held fixed as R was varied as were the relative orienta­
tions. 

RESULTS 

Figures 1-5 illustrate the dependence of the dispersion 
energy upon the distance between molecules. We begin our 

o~------------------------------, 
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FIG. 2. Dispersion energy for IH20h. VP and MP2 values calculated with 
identical basis sets. DAMPI and DAMP2 results were obtained using Eqs. 
(3H5) and respective values of; = 0.949 and; = 1.344. 
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FIG. 3. Calculated dispersion energy for C, complex of H20-HF. 
f10H) = 0.957 A, 8 (HOH) = 104.5 ',f1FH) = 0.921 A. The intermolecular 
orientation is such that 8 (HFO) = 2.5' and the HOH bisector makes an 
angle of 136.9' with the O-Faxis. 

analysis by pointing out a few general features of the results. 
In all four cases, and over the entire range of intermolecular 
separation, second-order M011er-Plesset theory leads to a 
greater (i.e., more negative) dispersion energy than does 
MP3. When compared to MP3, or to any other method for 
that matter, the MP2 dispersion energy appears to have dif­
ferent asymptotic behavior. The MP2 dispersion approaches 
zero much more slowly for large R and increases less rapidly 
as R decreases. Over most ofthe R range for all four systems, 
the extra two terms included in the M( 10) multipole expan­
sion lead to significantly greater dispersion energies than the 
leading term proportional to R -6. In three of the cases ex­
amined, the latter M(6) energy is in remarkable coincidence 
with the supermolecule MP3 results. The exception to this 
rule is HF-HF which will be discussed in greater detail be­
low. The parametrized A-A and B-B dispersion energies 
generally fall in the range between the M( 10) values and the 
smaller MP3 energies. (Again HF-HF proves an exception.) 

At this point, it would be most illuminating to discuss 
each case on an individual basis. We begin with H 20-HOH 
for which there is available the most extensive theoretical 

-1.0 
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IVP.3 
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FIG. 4. Dispersion energy for C 3V complex ofH3N-HF. rjNH) = 1.012 A, 
rjHF) = 0.92 A. The internal 8 IHNH) angle is 106.5 '. 
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: 

FIG. 5. Calculated dispersion energy for (HFlz. For the left-hand molecule, 
r(FH) = 0.902 A and 8 (HFF) = 123.2·. r(FH) = 0.904 A and 
8 (HFF) = 6.0 • in the other molecule. 

and experimental data base with which to compare our re­
sults. Included in Fig. 1 and labeled as VP are the dispersion 
energies of this system calculated by Jeziorski and van He­
mert using a direct variation-perturbation method.32 This 
procedure was applied directly to the uncorrelated subsys­
tem wave functions, calculated with a fairly extended [432/ 
21] basis set and an unexpanded interaction Hamiltonian. 
These results may be taken as the most accurate evaluation 
of the dispersion energy in the water dimer system to date. 
We note from Fig. 1 that the multipole expansion through 
the CIOR -10 term furnishes dispersion energies in excellent 
agreement with the accurate VP data. Significant discrepan­
cies arise only for distances smaller than the equilibrium se­
paration of 3.0 A. Differences in this region are not unex­
pected owing to charge overlap effects. However, these 
effects appear to be minimal in the vicinity of the equilibrium 
structure and for larger distances where M( 10) and VP dis­
persion energies are in excellent agreement. The atom-atom 
parametrized dispersion energy mimics quite well the M( 10) 
data, which is not surprising since it is against this data that 
the Aij parameters were fit. 

Smaller in magnitude, but in excellent accord with one 
another, are the dispersion energies calculated by the MP3, 
M(6), and B-B procedures. The agreement between the lat­
ter two methods is gratifying since the pairwise bond-bond 
formalism was devised in an attempt to efficiently reproduce 
the leading term of the multipole expansion. However, the 
nearly identical MP3 dispersion energies are rather unex­
pected due to the drastically different formulation of this 
quantity. It is further noted that a very different approach; 
namely, the CI treatment with a comparable basis set,33,34 
yields dispersion energies quite close to the MP3, M(6), and 
B-B results, 

For distances less than about 3.2 A, the MP2 dispersion 
energies are smaller in magnitude than the VP values which 
might be explained on the basis of the larger basis set used in 
the latter calculations, and by the fact that MP2 accounts for 
different types of excitations (intersystem and intrasystem 
type) than does VP. However, the situation is reversed for 
longer distances where the MP2 dispersion energies are the 
most negative of all those calculated. This result is most like­
ly connected with the supermolecular nature of the calcula-

tions, resulting in the interaction-induced change of the HF 
potential35 as well as basis set superposition effects, which 
may exaggerate the magnitude of the dispersion energy at 
the MP2levei. For purposes of direct comparison between 
the MP2 and VP approaches, additional calculations were 
carried out at the MP2levei using a [432/21] basis set identi­
cal to that used by Jeziorski and van Hemert (denoted 
DZ + 2P here). These results are presented in Fig. 2 where it 
may be seen that in the vicinity of the van der Waals mini­
mum (R = 3.0 A), the MP2 and VP methods yield almost the 
same dispersion energies. For shorter intermolecular separa­
tions, the MP2 correlation contribution is less negative than 
the VP results whereas the situation is reversed for longer 
distances. The latter fact may possibly be attributed to mutu­
al improvements of the subsystem basis sets; we will return 
to this point below. 

For all intermolecular distances, the MP2 dispersion 
energies are greater than the MP3 values. This observation 
may be explained most simply by describing the third-order 
MBPT interaction energy roughly as the interaction of the 
uncoupled HF polarizability of molecule X with the correla­
tion-corrected polarizability ofY,36 which is known to be a 
positive quantity. 

While MP3/6-311 G** furnishes an excellent estimate 
of the leading term in the multipole-expanded dispersion en­
ergy, it does appear to be significantly different than the 
more complete M( 10) multi pole values. The accuracy of the 
MP3 treatment is verified in part by basically similar results 
using the CI method and a comparable basis set.33,34 

In an effort to improve the agreement between the VP 
results and the multipole expansion M(lO) in the region of 
small R, some damping of the latter expression was carried 
out. The doubly corrected damping procedure recently pro­
posed by Douketis et al. 37 was used. 

E,;;ult = [ L CnR -ngn(~R )]f(~R), 
n = 6,8,10 

(3) 

where Cn are the usual dispersion coefficients and ~ is a 
scaling parameter characteristic of the interaction. The 
damping functions 

gn(R) = [I - exp( - 2.1 R /n - 0.109 R 2/nl/2W (4) 

correct the various terms for charge overlap effects while the 
function/, 

f(R) = I - R 1.68 exp( - 0.78 R) (5) 

corrects the expansion for exchange overlap and other ef­
fects. The damped E ,;;ult was calculated with two different 
values of~. These were 0.949 which was obtained for H2O­
HOH interactions from the empirical formula given in Ref. 
37 (denoted DAMP I in Fig. 2) and 1.344, the value adopted 
by these authors for He-He interactions (DAMP2). Use 9f 
the first value leads to very strong damping such that the 
scaled dispersion energy is even smaller than the MP3/6-
311 G** values. The second value of 1.344 also leads to an 
overcompensation, although somewhat less dramatic, and 
the corrected dispersion energy is smaller than the VP re­
sults. We conclude that only a very small damping of the 
multipole expansion is necessary in H20-HOH and prob­
ably other H-bonded systems as well; this damping is unnec-
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essary for the equilibrium separation and larger distances. 
We now turn to the H20-HF system for which the de­

pendence of the dispersion energy upon intermolecular se­
paration is presented in Fig. 3. As in the previous case ofthe 
water dimer, the MP3 and M(6) results are in close coinci­
dence while the M( 10) expansion of the multipole expression 
leads to much higher values, particularly at small distances. 
The atom-atom parametrized dispersion energies are not as 
close to the M( 10) values here as in the previous water dimer 
case nor are the B-B estimates in as good agreement with 
M(6). The second-order M011er-Plesset energy is a much 
flatter function of the intermolecular distance than the other 
quantities. 

The situation for H3N-HF, illustrated in Fig. 4, is in 
many ways similar to H20-HF. The multipole expression 
carried to the R -10 term is substantially greater than the 
M(6) and MP3 results which are quite similar to one another. 
In this case, the A-A dispersion energy matches the latter 
two curves quite closely, whereas the B-B energies are larg­
er, falling in the range between M(6) and M(lO). The MP2 
curve again has different asymptotic behavior than the oth-
ers. 

In comparison to the previous three cases, the results 
for HF-HF (Fig. 5) are anomalous in a number of ways. The 
MP3 dispersion energies are substantially smaller than the 
M(6) values. In addition, the correlation interaction energies 
calculated with M011er-Plesset theory are positive over a 
fairly wide range of R. Of course, dispersion is by definition a 
negative quantity and these positive values warrant some 
discussion. Some enlightening information in this regard 
comes from a previous study of (HFh by Lischka using the 
CEPA method.38 While his [7s, 3p, U /4s, lp] basis set was 
larger than ours and the geometry of the complex somewhat 
different (Coo v), the qualitative conclusions are expected to 
be quite relevant. A partitioning of the CEP A interaction 
correlation energy indicated that the change in the intrasys­
tem correlation energy due to the interaction is a positive 
quantity whereas the intersystem term is negative. Lischka 
found that combination of the two terms led to large scale 
cancellation with a slightly positive net interaction correla­
tion energy. It is thus clear that proper evaluation of the 
dispersion energy within the supermolecule framework re­
lies on a delicate balance between the two terms and small 
inadequacies in the basis set can result in a positive "disper­
sion" energy. Similar cancellation most likely occurs in the 
HCN···HF system studied recently by Benzel and Dykstra39 

where correlation effects calculated via the SCEP and cou­
pled-cluster approaches were found to make negligible con­
tributions to the H-bond energy. 

The 6-311 G·· basis set used here does indeed have 
some deficiencies as illustrated by the overestimation of the 
interaction energy at the HF level, calculated to be - 5.4 
kcal!mol, as compared to Lischka's recene 1 value of - 3.8 
(for the quasilinear C. geometry). Moreover, it is known that 
a basis set of 6-311 G·· type is unable to properly describe 
the subsystem properties of HF (e.g., multipole moments, 
polarizability) essential to reproduction to the interaction 
energy.40 A second and very diffuse set of d functions 
(t = 0.15) was therefore added to the F atoms. As may be 

TABLE II. Dispersion energies' calculated for HF-HF. 

6-3IlG*· 6-3IlG**(2d) 
R,A M(6) M(lO) MP2 MP3 MP2 MP3 

2.83 -0.52 -0.95 -0.24 -0.10 -0.94 -0.60 
3.10 -0.30 -0.49 -0.02 +0.08 -0.60 -0.35 
3.50 -0.15 -0.22 +0.18 +0.22 -0.18 -0.05 
4.00 -0.06 -0.08 +0.30 +0.29 +0.15 +0.17 

• All entries in kcallmol. 

seen in Table II, the MP3 dispersion energies with this 6-
311G·· (U) basis set are much closer to the M(6) values. 
Moreover, there is excellent agreement between the MP2/6-
31lG·· (U) and M(lO) dispersion energies. However, the 
problem of incorrect asymptotic behavior at large R is not 
completely removed as both MP2 and MP3 values become 
positive (albeit only slightly) for R = 4.0 A. Improved results 
would probably result from further extension of the basis set 
or carrying the MP expansion to higher orders. 

DISCUSSION 

From the foregoing arguments, it is clear that the 
choice of basis set plays a major role in calculation of disper­
sion energy with the M011er-Plesset method. The 6-311G·· 
basis set used here does have a number of deficiencies. De­
spite its inclusion of polarization functions on all atoms, it 
leads to overestimation of interaction energies of the various 
complexes considered here at the Hartree-Fock level. These 
overestimates are due to incorrect multipole moments, par­
ticularly exaggerated dipole moments, in addition to basis 
set superposition errors. Because of these deficiencies, it is 
rather surprising that this basis set leads to generally quite 
satisfactory values of dispersion energies for a wide range of 
intermolecular distances, including the equilibrium separa­
tion. Although basis sets like 6-311G··, containing only a 
single set of polarization functions, are not capable of prop­
erly describing the dipole polarizability,41 the MP3 disper­
sion energies generally agree quite well with the M( 6) values. 
Moreover, the basis set, when augmented by a second set of d 
functions, reproduces extremely well the M( 10) multi pole 
expansion dispersion energies for HF-HF despite the fact 
that a basis set of this type should not in principle properly 
describe the quadrupole polarizability.42 

A major source of this unexpected agreement may lie in 
mutual improvements of the subsystem basis sets. Karl­
strom and Sadlej43 have described a partitioning of the basis 
set superposition effects into primary and higher-order cate­
gories. The primary effect is associated with an artificial low­
ering of the subsystem energies in a purely mathematical 
manner. Higher-order effects result in changes in the electric 
properties, such as multi pole moments and polarizabilities, 
of each subsystem. Karlstrom and Sadlej argue that while 
the primary effect is an undesirable artifact, the higher-order 
effects may lead to improvements in calculated interaction 
energies. In our application of calculation of dispersion ener­
gies, the polarizabilities of each subsystem may be improVed 
considerably by the presence of the basis set of the other 
subsystem. (This is precisely the result found by Karlstrom 
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and Sadlej at the SCF level and would be enhanced at corre­
lated levels.) The resulting increase in the polarizabilities of 
the two subsystems introduces into the correlated interac­
tion energy a purely attractive contribution of proper disper­
sion type. For example, it has been demonstrated that func­
tions of! type are required for correct evaluation of the 
quadrupole polarizabilities.42 Within the supermolecule 
treatment of the HF dimer, the d functions of one molecule 
may act as substitutes for the! functions of the other, absent 
within the 6-311 G** (U) basis set. This hypothesis is con­
firmed in part by the observation that addition of a second 
and diffuse set of d functions on the F atom results in close 
agreement between the MP2 dispersion energies and the 
M( 10) values which explicitly include interactions between 
quadrupole polarizabilities of the two HF molecules. Thus, 
while primarily an undesirable artifact at the SCF level, basis 
set superposition may lead to improved results at correlated 
levels. 

Certainly the use of large, doubly polarized basis sets 
with M0ller-Plesset theory beyond MP2 is severely limited 
by rapidly increasing computer time required for MP3 and 
MP4 calculations. Therefore, an effective compromise 
between computer resources and accuracy is highly desir­
able. In particular, it is frequently necessary to choose 
between smaller basis set calculations up to fourth order of 
perturbation theory (as, e.g., in Ref. 44) or use ofa large basis 
set and truncation of the calculations at second order. The 
recent MBPT calculations of dipole polarizabilities by 
Diercksen et al.45 provide some relevant information. These 
investigators found a high degree of cancellation between 
third-order and full fourth-order contributions of MBPT 
theory, with the largest contribution to the latter term aris­
ing from triple excitations. We expect that similar cancella­
tion will occur in the case of dispersion energy. (The impor­
tance of triple excitations in intermolecular interactions has 
not yet been studied in the literature.) Therefore, there are 
reasons to believe that the MP2 dispersion energy, derived 
with a sufficiently polarized basis set, represents a good esti­
mate of the accurate dispersion energy. 

While the bond-bond parametrization leads to excel­
lent agreement with MP3 and M(6) for the water dimer, it is 
in general larger than those terms and rather closer to M( 10) 
in magnitude. The reasons for these differences may be 
traced to the participation of HF in all the other complexes 
studied. As described above, the excitation energy needed to 
evaluate the parameters in the B-B expression is somewhat 
uncertain for HF. As another approach, we recalculated 
E ~B using the experimental value of the molecular polariza­
bility ofHF and the Unsold value of the C6 coefficient (from 
HF-HF) along with a new value of excitation energy of 21.6 
eV. The results were little changed from those already pro­
vided in Figs. 1-5. A second choice was to fit the excitation 
energy such that E ~B would reproduce E ~(6) as closely as 
possible. Using this excitation energy (14.0 eV) the recalcu­
lated B-B dispersion energies were much closer to M(6) for 
both H3N-HF and H 20-HF. 

The atom-atom parametrization scheme appears to of­
fer a very efficient and reasonably reliable means of estimat­
ing dispersion energy in H-bonded systems. For the water 

dimer, the A-A results reproduce the multipole expansion 
to inverse tenth power of R extremely well, even in the region 
below the van der Waals equilibrium contact. The agree­
ment with M(IO) is less precise in the other cases however. 
This discrepancy is attributed to the presence of the F atom 
in these systems. The A-A parameters for this atom were 
extracted from calculations involving largely isotropic mole­
cules such as CHF 3 whereas we are using these parameters in 
this study on the highly anisotropic HF molecule. The excel­
lent agreement between A-A and M(IO) dispersion energies 
for the H20-HOH system may similarly be attributed to the 
fact that the A-A parameters for 0 were extracted from 
calculations involving the water molecule. It is therefore ex­
pected that agreement between A-A and M(IO) for systems 
containing HF might be greatly improved by fitting the pa­
rameters to a larger number of molecules containing F. 

In addition to the contribution of dispersion forces to 
the interaction energy as a function of intermolecular dis­
tance, it is important to consider as well the manner in which 
these forces may influence the dependence on the relative 
orientations. This question is addressed in Fig. 6 which illus­
trates the calculated dispersion energy as a function of the 
direction of approach of the HF molecule towards water in 
H20-HF. Specifically, a refers to the angle between the 
HOH bisector and the O-Faxis; the R distance is held fixed 
at 2.68 A. All methods agree that the magnitude of the dis­
persion energy increases as the plane of the water approaches 
the perpendicular arrangement relative to the H-bond axis; 
i.e., as a decreases from 180 ° towards 90 0. Superimposed on 
Fig. 6 as a dashed curve is the potential energy calculated at 
the HF level (with the 6-311G** basis set) which contains a 
minimum at a = 145 0. The MP3 equilibrium angle is slight­
ly smaller (138 0) and therefore represents a compromise 
between dispersion and forces accounted for at the HF level 
which follow opposite trends in the vicinity of the minimum. 

While all methods show a decrease in the dispersion 
energy as a approaches 180 0, there are some differences in 
the slopes of each. The MP2 dispersion energy is most sensi­
tive to the angle with MP3 slightly less so. The size of the 
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FIG. 6. Dispersion energy in HlO-HF as a function of relative orientation 
a. R IOF) is held fixed at 2.68 A. The dashed curve refers to the Hartree­
Fock interaction energy, the scale of which is on the right. 
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basis set may be expected to have a large effect on these 
results since it is known that the perpendicular polarizabili­
ties saturate less quickly than parallel properties as the basis 
set is enlarged. The A-A and B-B parametrized energies are 
less linear than the MP curves although the slopes in the 
region of the minimum (135 °-145 0) are not very different. 
The functional dependence of the M(6) and M(lO) multipole 
dispersion energies are notably smaller than the other proce­
dures. This difference may be a result of the fact that the Cn 

coefficients in the multipole expression are isotropic and the 
change in dispersion energy with a is caused only indirectly 
by the change in distance between centers of mass as the OH2 

molecule rotates. 

SUMMARY 

Several different procedures have been applied to the 
calculation of dispersion energy in a number of H-bonded 
systems. M~dler-Plesset theory appears to represent a very 
attractive means of incorporating dispersion contributions 
within the supermolecule framework. When used in con­
junction with a polarized basis set such as 6-311 G**, third­
order MP theory closely reproduces the interactions 
between the dipole polarizabilities contained in the leading 
R -6 term of the multipole expansion. Dispersion energies 
calculated with second-order MP theory are of greater mag­
nitude and lead to somewhat different asymptotic behavior, 
approaching zero more slowly for large R than the other 
procedures tested. On the other hand, MP2 reproduces quite 
closely the dependence of the MP3 dispersion energy on the 
relative orientation of the two subsystems. Anomalous be­
havior is noted when M0ller-Plesset theory is applied to the 
HF dimer with a 6-311G** basis set. This situation is im­
proved markedly, though, when the basis set is enlarged by 
addition of a second set of d functions on F. In fact, the 
resulting MP dispersion energies are in close agreement with 
values calculated using the multi pole expansion. MP2, ap­
plied to basis sets equipped with at least two sets of polariza­
tion functions, gives very reliable estimates of the accurate 
dispersion energy in the region of the H-bond minima. Cor­
rection of MP2 and MP3 values of interaction energies for 
BSSE by the use of the functional counterpoise method,46 as 
suggested in the literature,47 seems to be unnecessary. This 
procedure can lead to an overcorrection of the dispersion­
type terms arising from mutual improvements of the subsys­
tems' basis sets. 

The results have also demonstrated the usefulness of the 
multipole expansion as formulated by Mulder. The leading 
C"R -6 term is generally in close agreement with MP3/6-
311G** values. Carrying the expansion through the 
C loR -10 term results in extremely good agreement with the 
accurate results of a previous variation-perturbation treat­
ment of the water dimer. Of particular interest is the obser­
vation that little or no damping ofthe multipole expression is 
required in the vicinity of the equilibrium confomations of 
the weak H-bonded dimers with eqUilibrium H-bond lengths 
of 2.9-3.0 A whereas moderate damping is required for 
stronger systems like H3N .. ·HF with Req around 2.7 A.48 

Both types of treatments mentioned above would gen­
erally be precluded in applications to larger systems. It is 

TABLE III. The equilibrium values of HF interaction and dispersion 
(MP2, MP3) energies derived with (DZ + 2P) basis sets; M( 10) values added 
for comparison. All entries in A and kca1/mol. 

(H2Oh" (HFhb H 3N··· HF" 

Req 2.92 2.83 2.69 
LlEHF - 3.89 - 5.87 - 11.80 
MP2 - 1.82 -0.94 - 3.25 
MP3 -0.60 -2.84 
M(IO) - 1.96 -0.95 - 3.11 

"Yalues derived for MP2/DZ + 2P minimum; basis set from Ref. 32. 
b Yalues derived for CEP A (Ref. 31) minimum; 6-311 0**(2d ) basis set. 
cTaken from Ref. 48 values derived for MP3/6-3 I 10** minimum; M(IO) 
obtained by damping of multi pole expansion [Eqs. (3H5)]. 

therefore with some optimism that we note that the atom­
atom and bond-bond parametrization schemes seem capa­
ble of describing rather well the functional dependence of the 
dispersion energy on both the distance and angular features 
of the H-bonded complexes. As described in some detail 
above, careful parametrization of these two schemes can 
lead to excellent agreement with much more time-consum­
ing means of calculating dispersion energies. 

We note finally that there are tendencies in the litera­
ture to apply the MP2 method with very limited basis sets, 
e.g., 6-31G*, 4-31G or even STO-3G, to the SCF-optimized 
minima. Due to the fact that the MP2 dispersion energy is 
very strongly basis set dependent, the results obtained give 
very poor estimates of this quantity. Moreover, these basis 
sets are so far from the Hartree-Fock limit that the validity 
ofM0ller-Plesset partitioning of the total Hamiltonian is in 
question. In the systems studied here, the magnitude of the 
dispersion energy is approximately one third that of the HF 
interaction energy as may be seen in Table III. It is therefore 
not surprising that the positions of the HF minima differ 
markedly from those including correlation effects. We be­
lieve that a more appropriate procedure to locate the equilib­
rium structure consists of minimization of the sum of .JEHF 

and either atom-atom or bond-bond-formulated dispersion 
energies. 
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