A Teacher's Story

A Penny's Worth of Principles and Standards Using Scientific Notation

John Staley ${ }^{1}$
Hereford High School
Randallstown, Maryland
Patricia S. Moyer ${ }^{2}$
George Mason University
Fairfax, Virginia
Donna R. Sterling ${ }^{3}$

George Mason University

Fairfax, Virginia

A Penny For Your Problem

How much is a penny worth? Have you ever thrown away a penny? If you had enough pennies to fill your bedroom, how much money would you have?" These were just a few of the questions that were asked as a high school Algebra I class completed the study of exponents and scientific mplications of scientific noarch of real life students could put their fingers on, to sel for the mathematics. What evolved was a three-day lesson entitled Pennies, Pennies, Everywhere!!! Staley \& Walls, 1999). During this multimedi interdisciplinary lesson students utilized ratios, proportions, measurement and conversion skills, perimeter, area, volume, and scientific notation to determine the value of penny-filled cubes the size of their desks, the classroom, the earth and othe celestial objects. The initial purpose of the lesson was to determine the amount of money that could be contained in a classroom full of pennies. This had direct relevance to the students, because each
week the school held a penny collection to raise funds for a charitable cause.

The Principles and Standards in Action

 The lesson Pennies, Pennies, Everywhere!! directly incorporates the NCTM Principles (Equity, Teaching, Learning, Assessment, and Technology), the Content Standards (Number \& Operations, Algebra, Geometry, Measurement, and Problem Solving), and the Process Standards 2000). This article discusses how the Principle and Standards played an integral role in the design and implementation of the lesson in an Algebra I high school class.
Lesson Overview

This three-day lesson consists of several classroom activities and an assessment in which students work collaboratively to complete a variety of task different the number of pennies that can fit int for perimeter, area, and volume of various objects.

[^0]Day one's activities, Sizing Things Up uses a brie video clip to review ratios and proportions, and Penny Statistics allows students to gather classroom. The second day's activity, To Infinity and Beyond utilizes the Internet to gather data about celestial objects that are compared to the size of the classroom. Day three's activity is the assessment that involves students in determining the penny value of a football field and writing a letter explaining the process used to calculate the penny value of their bedrooms.
We use the following vocabulary for penny measurements.
Penny Statistic - the conversion of an object's length, width or height into a quantity of pennies.

- Penny Width (pennyw) - the diameter of one penny, it is used for length and width measurement conversions. 1 pennyw $=.75$ inches or 1.33 pennyw $=1$ inch. Area pennyw
pennyw
Penny Height (pennyh) - the thickness of a penny is used to measure height. 1 pennyh $=$ 10 inch or 10 pennyh $=1$ inch. Note penny its penny statistic
- Penny Value - the dollar worth of an object after its length, width or height has been converted into penny statistics.

We assume that all pennies are neatly placed in rows and columns when being counted for are and perimeter. For example, the penny value of a one inch stack of 3 by 5 cards can be calculated or the perimeter and area of a card or the volume f the stack of cards.

Videos Captivate Students

To begin the first activity, we showed Sizing Things $U p$, an episode from the Numbers Alive TV series produced by Maryland Publi Television (1995). This episode documents a rock band's adventures while performing at Camden Yards, where the band members use ratios and proportions to make a variety of estimations.

The Sizing Things Up activity sheet following this article focuses students on the following tasks: recording the capacity of Camden yards calculating the number of stadiums, the same size as Camden Yards, that it would take to seat one million people; and determining the amount of money a hot dog vendor would donate to a charity.

As the class viewed the video segments, tudents actively participated in the discussio hile completing the worksheet. Pausing the vide llowed ample opportunity for students to recor information, perform calculations, and share the nswers with classmates. More importantly, allowed the teacher to check student readiness for the lesson by assessing prerequisite skills of number computations, ratios, and proportions. The teacher used the following series of questions:
(1) How many people can Camden Yards seat?
(2) How might you determine the capacity of the stadium?
(3) Do you think this is an accurate way to estimate the seating capacity for the stadium?
(4) How many stadiums of this size would you need to seat one million people?
During the discussion about the number of fans that could fit into Camden Yards, several connection between ennies do you think it would taks to fill a box the ize of your desk or the classroom? They used thi nnection along with their understanding of ratio and proportions when making estimations.
During the second set of questions, the teacher asked:
) How much money will Ben, the owner of the concession stand, donate for each hot dog sold at the game?
(2) What is the ratio of hot dogs sold to people in attendance?
(3) If the stadium holds approximately 50,000 people, how many hot dogs will Ben sell?
(4) How much money will he donate?

After viewing the video, the class quickly transitioned into Penny Statistics-the second ctivity sheet-where students gathered variou he classroon. Students pplied the Mesurement Standards, including understanding measurable attributes of objects and the units, systems, and processes of measurement, and applyin processes of measurement, and applyin appropriate techniques, tools, and formulas to
determine measurements, to complete the activities (NCTM, 2000). They used material from their packets: a standard ruler, 5 yards of string knotted at yard intervals, a yardstick, and handful of pennies. The teacher began the lesson by defining a penny height as the thickness of one penny used to measure height and the penny value as the dollar worth of an object after its length
width or height have been converted into penny statistics and the perimeter, area or volume calculated. A student then read the directions our all measurements before beginning was to gather all measurements before beginning the The col

The collaborative groups of four students began their adventure of gathering measurements of pennies, stacks of pennies, desks, and the
classroom as the teacher circulated around the classroom observing their progress. Students first estimated the number of pennies in a one-inch stack, the number of pennies needed to cover their desks, and the number of pennies in a stack that would reach from the floor to the ceiling of the classroom. Next they measured the diameter of a penny, the thickness of a penny and the number of
pennies in a one-inch stack.

After completing all the measurements students used ratios and proportions to determine the number of pennies in a one-foot stack, a oneyard stack, and a yard of pennies lying flat on a table. Students then measured their desk and the classroom in inches and converted thes equivalent before calculating perimeter, peny lume, and determining the penny value of each bject. ${ }^{\text {bject. }}$
Student work during each part of the lesson was monitored with the use of built in checks on the worksheets that required the teacher's initials before proceeding to the next section. For example, when students completed Part B of the enny Statistics worksheet, they obtained the teacher's initials then proceeded to measure thei desks. A second check required students to get the teacher's initials before gathering classroom measurements. Students of varying ability levels graes (-1 1th) were very involved in the
activity. Students discussed different strategies to complete the various measurements and utilized different tools at their disposal to gather measurements. Most of the groups were able to gatner the measu

Interdisciplinary Activities Enrich The

 LessonOn the second day, students completed the To Infinity and Beyond... activity, which involves research on the Internet and extensive use of scientific notation to perform various calculations. gather and the first 15 minutes of class to objects from pre the diameter of several celestial of the students this activity incorporated material they had studied in their science class, and applied scientific notation skills recently studied in mathematics class. Once they completed gathering and recording the data they began a series of calculations that allowed them to compare the size of their classroom with an earth-sized cube and Students first or celestial objects.
Sth the previous activity Penny Statistiolume, from the previous activity Penny Statistics, from and proportion skills. Next students determine the volume of a cube with sides the length of the earth's diameter, approximately 12756.3 km . The also determined the number of classrooms that could fit inside of an earth cube, which the abeled $N=$ volume earth cube / volume of lassroom.
During the remainder of the class student calculated the volume of cubes with sides equal to he diameters of the following celestial objects Venus, Mars, Jupiter, Saturn, Neptune, and Pluto They compared each volume to the size of the earth cube and determined the number of calculation involved determining the penny value for each object. This allowed students to compre he various objects in the context of dollars and cents, which gave them a referent for nderstanding the magnitude of the different size of each object.

Alternative Assessment Leads To

 Community InvolvementThe assessment activity consisted of two parts, written assessment modeled after the Marylan Students first calculated the number of pennie
needed to cover a football field. Students then wrote a letter to a friend explaining the process used to determine the number of pennies needed to fill their bedrooms. This writing activity provided opportunities for students to practice the necessary wring skills while communicating about manematical concepts. The use of familiar test formats, in our case the Maryland mathematic of test taking lowed for review and reinforcement mathematics curriculum, and served as mathematics curriculum, and ses
summative assessment for the lesson.

The enduring understanding students gained rom the lessons about penny measurements and pladents created and peceral days later whe for the school's penny collection program. Th flier had to be informational (the dates times of penny collection and general purpose) and ducational (information learned during the lesson). The use of technology was not require but highly recommended and several students used desk top publishing tool to create their projects. One student created a tri-fold brochure stating several facts about pennies and the informatio bout the penny collection day. Another student's lier compared the weight of an F-16 jet to the jet' penny value. Many of the projects were displayed classes throughout the school to promote penny ollection day.

Pennies Add Up

As we reflected on the development of the lesson and how it was implemented we focused on two rocess Standards: Communications and Connections (NCTM, 2000). The contextual nature of the lesson allowed students to mak connections between mathematics and scienc content, enabling them to recognize and connect mong mathematical ideas, and apply mathematics in contexts outside of school mathematics (NCTM, 2000). A major benefit of the lesson context was that it gave students a purpose for performing various calculations that connected to he school's fund raising activity. Students were no longer just doing the mathematics for the purpose of practice but they were highly engaged in trying to determine the amount of money that

Students were in each object.
Students were initially engaged out of the classroom, which led to their motivation conducting the various measurements and calculations. The use of celestial objects was
direct connection to material they had recently studied in their science class. This allowe students to connect the performance of standar and scientific notation calculations in mathematic class with the same concepts studied in science.
Communication played a key role during the Sizing Ihings Up video and Penny Statistic Ctivity. These experiences allowed students to menicate their understanding of concepts develop negotiation and interpersonal skills, an解 Listening and participating in the various student group discussions was one of the most meaningful parts of the lesson. Students organized and consolidated their mathematical thinking communicated ideas with peers and the teacher analyzed their thinking and the thinking strategie forers, and used the language of mathematics to pross (NCTM, 200). By interacting and roups, the teacher was able to extend, errich, and ssess student understanding.
Pennies, Pennies, E
Penn multiple enportunities there!!! allowed understanding of very large numbers and the arious representations of them, reinforcing the th-12th grade Number and Operations Standard NCTM, 2000). The calculations and conversions eveloped computational estimation skills using mental and paper-and-pencil computations, as well as technology for more complicated situations.
The Algebra and Geometry standards were an underlying thread in the lesson as students y using algebraic symbels and latical situations verbal and written expression of relations Students used equations for converting money, metric and standard measurement conversions, and the use of geometric formulas. The connection between the use of the algebraic equations, formulas, visualization, spatial reasoning, and geometric modeling, all Geometry Standards, allowed students to develop their problem solving skills. It also provided opportunities for them to solve problems in other contexts, apply and adapt a variety of appropriate strategies, and monitor and reflect on the process of mathematical problem solving as outlined in the Problem Solving Standards (NCTM, 2000).

The role of assessment is key in any lesson and may often be the driving force when selecting Assessment during the lesson was hin accurred as sulats compled vaig
activities. The built-in check points, requiring the and allowed the teacher to assess student performance and provide individualized or small group instruction as needed. The summative assessment activity allowed the teacher to asses students' understanding of key mathematical concepts addressed in the lesson and focused on their ability to communicate these ideas in writing. The true assessment of enduring learning was when students were able to communicate what they learned in their penny collection projects. developed a different outlook on scientific notation, the value of a penny and the value of participating in the school's penny collections. Several students commented that they couldn't wait to hear someone say "What's a penny worth anyway" or ths only a penny" so that they could tell them all about the true value of a penny.

Author's Note: A copy of the complete lesson plan can be obtained at the Thinkport website. The following activities have been renamed or revised with the revised name in parenthesis: Penny Statistics (How Many Pennies...?), To Infinity and Beyond...(Pennies in Outer Space) and Assessment (Penny Donation Box). The Numbers Alive! series videos are available from the NETA Educational Resources website http://www.netaonline.org.

References

Maryland Public Television (Producer). (1995).
Numbers Alive! Sizing Things Up [Television Series Episode]. Owings Mills: MPT. National Council of Teachers of Mathematics. (2002) Reston, VA: NCTM.
Staley, J. \& Walls, E. (1999). Pennies, Pennies, Everywhere!!! [On-line]. Available: http://www.thinkport.org/Tools/ContentViewer/C 6e2-9d52-5371666019ab

Mini-Grants from NCCTM

NCCTM is pleased to be able to offer Mini-Grants to teachers who need some support to implement a innovative idea at their schools. There are no preconceived criteria for projects except that students should benefit from the grant. Possible projects for consideration include math clubs, field days, contests, workshop for parents, math activities, math laboratories, and research topics.

Each of the three NCCTM state regions has $\$ 5000$ to award to teachers in their area. The average minigrant is about $\$ 600$ but some have been awarded for as little as $\$ 100$ or as much as $\$ 2000$. Applications will be accepted only from persons who are NCCTM members as of I September 2005. Don't let the application process intimidate you! See the sample application on the website and use it as a guide!

Completed applications must be received by 15 September 2006 to be considered. For mor information and submission guidelines, see the website http://www.ncctm.org or contact Phyllis W Johnson <pwiohnson210@earthlink net, 252-752-1796>

The NCCTM Materials Marketplace

The Marketplace will be back this fall, and the organizers need your help! Please consider donating materials to the marketplace. We are looking for new or gently used supplies such as manipulatives, posters, books, professional development materials-anything that would be useful to new teachers.

Preservice and new inservice teachers will be invited to come and purchase at rock botton prices all sorts of materials-textbooks, technology, supplies, etc.-to start building their resource base.

Please contact coordinators Kim Aiello and Shana Runge if you have materials to contribute. ncctmmarketplace@hotmail.com

Sizing Things Up Activity Sheet
Use this space to record numbers and numerical terms mentioned in the video.
\qquad
Video Segment 1:

1. How many people can Camden Yard seat? \qquad
Video Segment 2:
2. How many stadiums the size of Camden Yards would it take to seat 1 million people? Show you work, and explain how you got your answer on the lines below.

Video Segment 3:

3. How much money will Ben donate for each hot dog sold at the game? \qquad
4. What is the ratio of hot dogs sold to fans in attendance at the game? \qquad

$$
\underline{\text { hot dogs }}=
$$

fans
5. What will the total of Ben's donation be? Show your work in the space below and explain you answer.

Penny Statistics (How Many Pennies...?) Activity Sheet

Directions: Today, you will use ratios and proportions to help you calculate the penny capacity of several objects. Perform all necessary measurements and calculations with the materials given to you in your kit. Now you are ready to begin your penny experience. Have fun counting

Part A: Estimation

Use your estimation skills to fill in the blanks to the following statements.

1. There are \qquad pennies in a one-inch stack
2. It takes \qquad pennies to cover the top of your desk.
3. It would tak \qquad stacked pennies to reach from the floor to the ceiling of your classroom.

Part B: Data Collection

4. Find the diameter of one penny \qquad inches
We will call this "penny width" or pennyw. Use this information to complete the following ratios.

$$
\begin{array}{cc}
\frac{1 \text { penny }_{w}}{\frac{\text { inch }}{}} & \text { penny }_{w} \\
\frac{1 \text { inch }}{} & \text { penny }_{w} \\
\hline 1 \text { foot } & \frac{\text { penny }_{w}}{1 \text { yard }}
\end{array}
$$

5. Find the height of one penny \qquad inches. We will call this "penny height" or penny $h_{\text {. Us }}$ Us this information to complete the following ratios.

$\frac{1 \text { penny }_{w}}{\frac{\text { inch }}{}}$	penny $_{w}$
$\frac{1 \text { inch }}{\text { penny }_{w}}$	
1 foot	$\frac{\text { penny }_{w}}{1 \text { yard }}$

Check Point: Get your teacher's initials before you continue

\qquad

Part C: Box Capacity

Draw a sketch of the cardboard box your teacher has provided. Be sure to include accurate
measurements of the length, width, and height. Convert your measurements into inches and penny ${ }_{w}$ or pennyst.

Find the perimeter, area, and volume for the box. Record your answers in inches, pennies, and dollar value. Show your work.
6. Box top perimeter $=$ \qquad inches $=$ \qquad pennyw. \$ \qquad
Box top area = \qquad inches ${ }^{2}=$ \qquad pennyw ${ }^{2}$. \$ \qquad
Box volume $=$ \qquad inches ${ }^{3}=$ \qquad penny ${ }_{w .}$ \$ \qquad
7. Find the box volume in penniesv ("penny volumes"),

Box volume $=$ \qquad pennyw ${ }^{2} \times$ \qquad penny $_{\mathrm{h}}=$ \qquad pennyv

Check point: Get your teacher's initials before you continue. \qquad
Part D: Room Capacity
Draw a picture of your room. Be sure to include accurate measurements of the length, width, and height of the room. (If the room is not rectangular, use the area the teacher has marked as the "room area") Convert your measurements into inches and penny ${ }_{w}$, penny ${ }_{h}$, and penny y_{v}

Find the perimeter, area, and volume for the room. Record your answers in inches, pennies, and dollar value. Show your work
8. floor perimeter \qquad inches $=$ \qquad penny $_{\text {w. }}$ \$ \qquad floor area $=$ \qquad inches ${ }^{2}=$ \qquad pennyw ${ }^{2}$. \$ \qquad floor volume $=$ \qquad inches ${ }^{3}=$ \qquad pennyw. \$ \qquad
9. Find the room volume in pennies, ("penny volumes")

Room volume $=$ \qquad penny ${ }_{w}{ }^{2} x$ \qquad penny $_{h}=$ \qquad penny

Check point: Get your teacher's initials. \qquad

To Infinity and Beyond... (Pennies in Outer Space) Activity Sheet

Directions: Today, we will find a ratio to compare the size of our classroom to several celestial objects. Data for this activity can be found at http://www.seds.org/billa/tnp/overview.html. You should perform your calculations in scientific notation, since most of your data involves numbers of great magnitude.

Part A: First Things First

1. We must first convert our room volume from cubic inches to cubic kilometers. Use the data you gathered in yesterday's activity.

Room Volume Conversion

2. How many classrooms would it take to fill a cube with sides the length of the diameter of the Earth?

Volume of an Earth Cube $=(\text { diameter })^{3}=($ \qquad $)^{3}=$ \qquad km^{3}

Number of classrooms that would fit in the Earth Cube $=\frac{\text { volume of Earth Cube }}{\text { volume of classroom }}=$

Part B: Celestial Volumes

Directions: Now use the calculations from Part A and data from http://www.seds.org/billa/ tnp/asteroids.html for asteroid data to complete the chart. Note: to compute the size of an object compared to Earth, use a ratio of the object's radius to the Earth's radius.

Celestial Object	Ratio of Object's Radius to Earth's Radius (E)	Number of Classrooms that would Fit in Object	Measurement of object in pennyv
Earth			
Venus			
Mars			
Jupiter			
Saturn			
Neptune			
Pluto			

[^0]: ' Natasha finished her MA in Mathematics Education at Appalachian State in 2005 and is in her first year teaching high school. She is currently teaching Geometry and dual-credit Precalculus and Calculus.

