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The diffusion equation is solved for a semi-infinite region in the case of irradiation-enhanced difFusion

produced by a diffusion coefficient falling off exponentially in the medium. Near the surface the concentration

profile due to enhanced diffusion has a larger concentration than the profile due to thermal diffusion;

conversely far from the surface the enhanced-difFusion profile has a lower concentration than that due to
thermal difFusion. Thus, this type of enhanced difFusion results in a more abruptly changing profile than does

thermal diffusion.

Several mechanisms by which irradiation-en-
hanced diffusion can occur have been discussed in

the literature. These include: (i) defect-en-
hanced diffusion in which diffusion can be enhanced

by the presence of defects such as might be created
by high-energy bombarding particles; (ii) recoil-
enhanced diffusion in which the recoil momentum
imparted by a collision between a high-energy
particle and a diffusing atom can enhance diffusion;
and (iii) ionization-enhanced diffusion. In this
latter case there are several mechansims by which
ionization can enhance diffusion: (i) the "normal"
ionization-enhanced diffusion in which a change in
charge-state results in a state of lower migration
energy; (ii) the Bourgoin mechanism' in which
the diffusion saddle-point and equilibrium configura-
tions are interchanged between charge states; and
(iii) the energy-release mechanism in which the
release of strain energy or thermal energy in the
vicinity of the defect enhances its diffusion.

The usual experimental configuration for the
study of irradiation-enhanced diffusion involves
an external beam of particles impinging on the
sample. The external beam usually experiences
an attenuation in the sample which in turn results
in an inhomogeneity in the diffusion enhancement.
St. Peters et gl. considered the concentration
profile which resulted from a constant enhanced-
diffusion coefficient over a finite sample depth.
Here we consider the case of an enhanced diffusiv-
ity which decreases exponentially with depth into
the sample; such a dependence arises naturally in
ionization-enhanced diffusion (either due to the at-
tenuation of an external beam or carriers injected
from a junction), but may be approximately correct
in defect- enhanced and recoil- enhanced diffusion.
We further assume that the temperature is suffi-
ciently low that thermal diffusion is negligibl.
Then if the assumption of Fickian diffusion is valid
for the irradiated sample, the impurity concentra-
tion must satisfy

s,u=s„{D,z ~s,u),

where u(x, t) is the concentration of impurity atoms,
D„ is the value of the irradiation-enhanced-diffu-
sion coefficient at the surface, and 1/P is the dis-
tance from the surface where the intensity of
radiation falls off by e '. The sample is assumed
to occupy the region 0 & x & ~ (i. e. , we assume
the sample length I, » I/P), and M(x, t) must be
bounded as x-~. We take the initial and boundary
conditions to be

s(x, t=o)=o, x&0,

u(x=o, t) =so, t~ 0,

corresponding to a thick layer of impurity atoms
depositedon the surface of the impurity-free sample
prior to the irradiation. The I aplace transform
of Eq. (1) is taken with respect to time, and the
solution in transform space i.s found to be

u (x, p) = u~Ã, (qz)[pK, (q) I', (3)

where z=e ", q= (4p/p D„)'t, and K, is the mod-
ified Bessel function of the second kind of order
one.

The inversion of Eq. (3) is obtained through the
use of a contour integral in p space and noticing
that u (x, p) has a branch point at the origin. 9 The
result of the inversion is

(4)

e ~ j)ti(kz)Z~(k) —Zi(kz) j)fi(k)
T zI(~) + ~I()~)

J& and N, are Bessel and Neumann functions, re-
spectively, of order one, 0 is a dummy variable
of integration, and v is the dimensionless time
variable, r = 4P D„t The integral ca.n not be eval-
uated analytically, except in the special case t= {),
where, of course, the required initial condition (2)
is recovered.

A short time approximation can be evaluated by
using the asymptotic expansion for K, in Eq. (3)



KG%ALE, D PE AK A ND J

as p-~ sincep, nce p and t are inversely related 9'1~

The result of inver '

found to be
o inverting the expansion for E (3' '

q. g ls

—3v'~z(z —1)ierfc[(z —1)/2v' z]/4z

+ v(33zz —16z —15)P

(6)xerfc [(z —1)/2~'~z]/32zz]

wh1ch 1s valid for z«1. The repeat d
' tpea e 1n egrals

o e complementary error function

D

~\

x
.5

ierfc(y) = erfc(q) dq,

i'erfc{y) = i erfc(q) dq,

are tabul3. ted. ' K uatr.qua ion (6) has similarities to
e s l ua 1on or a constante solution of the diffusion equ t f

hermal-diffusion coefficie t 8 th
' n, w1 the same

initial and boundary conditions, namely,

gr(x, f) = uo erfc[x/2(Df)'~" (7)

With D =D„, for small x Eqs. (6) and (f}predict
u(x f) &u x. , ) r(x, f), while for large x, u(x, f) falls to
zero much more rapidly than ur(x t~

Equation y4~ can be evaluated numericall
a sim le

a y using

inte r
p e trapezoidal rule to calculate the nfe e 1 1nite

in egral, due to the rapid decay of the integrand.

of 7. as
%e have made this calculation for various lus va ues
o 7., as shown by the solid lines in Fi 1 Al

p (dashed line) is the thermal solution for
D =D, and the value of time, f =4(p'D„) ~. It is
seen again that u(x, t} is greater than wr(x, f} for
the region x&1/p, hutfor x»1/p ( )

1s c ear that for any choice of parameters to
char acteac erize a thermal-diffusion profile, in com-
parison to the enhanced-diffusion profil th1 e, ermal

us1on results in a more slowl hy c ang1ng pro-
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FIG. 1 Normalized concentration (x t)a, uo vs nor-
malized depth ( into the sample. Themp e. e solid lines give

e res ts for the enhanced diffusion coefficient, D(x)

, from Eqs. (4 and 5) for various effective tixnes
The dashed line gives the results for a norma

ther mall acty ac ivated diffusion coefficient D(x) =D
s or a normal,

v=1.
for

file. The shar er rp profile d1splayed for irradiat'
enhanced diffu

ia. 1on-

of the diffus
diffus1on is characteristic of th fo e all-off

e usion coefficient (and increase in the

which c
average jump time) with distance inside th l

causes the impurity atoms to tend to penc-
e e sample

trate primarily near the surface.
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