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[1] The ground-based magnetometer network has long been a powerful tool for
monitoring and observing the variations of the currents flowing in the magnetosphere-
ionosphere (M-I) system. The time series of magnetograms are nonstationary and their
frequency behavior changes over time. They are therefore not amenable to traditional time
domain or spectral (Fourier) analysis. In recent years, various new mathematical
techniques have been developed to analyze magnetometer data and the wavelet technique
has stood out as being particularly relevant. In order to correctly make statistical inferences
based on wavelet analysis, the wavelet coefficient distributions of magnetograms must
be examined. In this work, we apply the discrete wavelet transform to the 1-min
magnetometer records and then use several statistical techniques to analyze the probability
distributions of the wavelet coefficients. It is found that the distributions of these
coefficients for both storm and quiet times are highly nonnormal and can be classified as
being heavy tailed. This finding suggests that when applying statistical techniques to the
wavelet coefficients of the magnetograms, one must make sure that these techniques

are robust to large departures from Gaussianity manifested by the presence of heavy
probability tails. It is also found that the tail indexes for storm times are on average smaller
than those of quiet times, which reflects the stronger impulsive and nonstationary features

in magnetometer data during storm times, and the shifts are most significant for the
wavelet coefficients corresponding to physical scales of 4—8 min.
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1. Introduction

[2] The currents flowing in the magnetosphere-iono-
sphere (M-I) form a complicated multiscale system in which
a number of individual current components connect and
influence each other [7syganenko, 2000], and their varia-
tions are closely connected to various nonlinear dynamic
M-I processes, including magnetic storms and substorms.
The monitoring and observing of the variations of the M-I
current system has long been an important tool helping us to
understand the response of the M-I system to the solar wind
driver and explore the electrodynamics in the magneto-
sphere and ionosphere. Among the various observational
means, the global network of ground-based magnetometers
stands out with unique strengths [Friedrich et al., 1999].
The recorded data are in continuous form covering all UTs
and seasons, and almost all electrodynamic processes in the
M-I system directly or indirectly leave their traces in the
magnetograms. On the other hand, the capability of simul-
taneously observing many nonlinear M-I electrodynamic
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processes by the magnetometer leads to magnetogram
records that contain multiple-scale information with com-
plex behavior. An example of a magnetogram is displayed
in Figure 1 which shows the relative horizontal component
of the magnetic field disturbance, measured at Boulder,
Colorado, during a very strong storm which took place
between 30 March and 2 April 2001. Owing to the multi-
scale and nonlinear nature of the M-I current system, the
magnetograms are nonstationary and quite impulsive, and
their frequency spectrum changes with time, sometimes
quite abruptly. Therefore the traditional Fourier analysis,
which decomposes signals into infinite sine and cosine
components, is not well suited to the analysis of the
magnetograms. Windowed Fourier analysis may offer some
help, but the signals are still assumed to contain a relatively
constant frequency spectrum within windows. In recent
years, there has been an increasing interest in using wavelets
to analyze various nonlinear geophysical data sets with
time-dependent spectral characteristic, including the mag-
netometer data [e.g., Lui and Najmi, 1997; Wei et al., 2004;
Haldoupis et al., 2004; Krankowski et al., 2005].

[3] Most of these studies have not relied on statistical
methodology which requires some information about the
distributional properties of the wavelet coefficients. In
particular, very different statistical methods are required
depending on whether the wavelet coefficients have a
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Figure 1. Relative Horizontal intensity in 0.1 nT, Boulder station 30 March to 2 April 2001.

distribution which is close to Gaussian or a distribution with
heavy probability tails. We explain the concept of heavy
tails by referring to Figure 2. Figure 2a shows a simulated
realization of 2048 independent standard normal random
variables. As is well known, practically all observations are
within three standard deviations of the mean and no
unusually large or small observations are seen. By contrast,
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Figure 2.
o = 1.85.

in Figure 2b, there are a number of observations which are
much larger or much smaller than most observations. This
means that there is a large probability that an observation is
far away from the mean, or, equivalently, that the density
function extends farther away from the mean than a normal
density; that is, it has heavier tails. Random variables like
those in Figure 2b are therefore called heavy tailed. They
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(a) Normal (Gaussian) random variables. (b) Heavy-tailed random variables with tail index
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Figure 3. (a) Third difference of the horizontal

KOKOSZKA ET AL.: DISTRIBUTION OF WAVELET COEFFICIENTS

A06202

(b)
8
8 &
[
2 8
s 2
B
£
o ©
Q
N
£
o
S .
j =
©
o
(=]
o
S 4
a9
T T T T T
0 500 1000 1500 2000
Index
(d)
o
S
Q
T
£ .
g
x
[}
©
c
= o |
s o
o | M
T T T T

0 100 200 300 400

k

intensity, Boulder, 30 March to 2 April 2001.

(b) Randomized observations from panel Figure 3a. (c) Plot of observations in Figure 3b against the
quantiles of Student’s #, distribution. (d) Hill plot of observations in Figure 3b.

are characterized by the tail index o whose precise defini-
tion is given in section 3. Statistical methodology and
theory for observations which have heavy tails is often very
different than for observations which are approximately
normal. It is of particular importance to know if the tail
index o is greater or smaller than 2. If o < 2, most statistics
which use sample standard deviation cannot be used be-
cause the sample standard deviation does not converge to
the population standard deviation. This issue is taken up in
some detail in section 4, but it is important to keep in mind
that the differences in statistical methodology go much
further; we refer to Adler et al. [1998] for a more extensive
background.

[4] To establish a connection between magnetograms
and heavy-tailed random variables, we refer to Figure 3.
Figure 3a shows third differences of a central portion of the
magnetogram displayed in Figure 1. Differencing is
a standard technique in time series analysis [see, e.g.,
Brockwell and Davis, 2002, pp. 29—-35]. If the observations
are denoted by X, t =0, ..., N — 1, the series of (first)
differences is defined as VX, =X, — X,_,t=1, ..., N — 1.
Second differences are differences of the first differences,
etc. Differencing typically eliminates a meandering behav-
ior of a time series. For example, the series in Figure 3a has
approximately constant mean zero which makes it more
regular than the original data displayed in Figure 1. As will

be explained in section 2, wavelet coefficients are in a sense
equivalent to local differencing at various scales. However,
to focus attention, we consider in this introduction the
traditional simple differences, choosing the third difference
arbitrarily to illustrate the point (differences of orders one to
four have similar properties). The variability of observations
in Figure 3a evolves with time reflecting the evolution of
the storm. By contrast, the variability of the simulated
observations in Figure 2b does not appear to change with
time. This is because these observations are independent,
unlike the third differences of the magnetogram. To be able
to compare these two set of observations, we applied a
random permutation to the observations in Figure 3a and
displayed the result in Figure 3b. A visual inspections of
Figures 2b and 3b reveals a striking similarity and points
out that the distribution of the differences (and wavelet
coefficients) of magnetograms might be heavy tailed. Most
methods for estimating the tail index work best for inde-
pendent observations, and that is why we always apply a
random permutation before studying the tail behavior.
Intuitively, randomizing the observations destroys their time
dependence and allows isolation of the feature of interest:
the distribution of the extremal observations.

[s] Figures 3c and 3d illustrate two methods of estimating
the tail index o: QQ and Hill plots. These and other
methods are discussed in detail in section 4. If a plot with
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Figure 4. Plots of the DWT coefficients d, j = 1, ..

respect to a reference distribution follows approximately a
straight line, we conclude that the reference distribution is a
reasonable approximation to the distribution of the observa-
tions. In Figure 3c, the reference distribution (Student’s ¢
distribution with two degrees of freedom) has tail index a=2.
We thus see that the tail index of the third differences of the
magnetogram is approximately equal to 2. A more detailed
inspection of Figure 3c, to be presented in section 4, shows
that this index is in fact slightly smaller than 2. Figure 3d
shows the so-called Hill plot which will also be discussed in
detail in section 4. The vertical line at k= 100 shows the value
of k£ which we can use to find a tail index estimate on the y
axis, which is seen to be about 1.75.

[6] The main goal of this paper is to establish that the
wavelet coefficients of magnetogram records are heavy
tailed and to estimate their tail index. We also present
preliminary evidence showing that the tail behavior is
different during magnetically quiet and storm periods.

[7] The wavelet coefficients themselves are defined in
section 2. Heavy-tailed distributions are introduced in some
detail in section 3. In section 4, we describe statistical
techniques used to estimate the tail index and calibrate them
to suit our needs. Section 5 contains a detailed analysis of
the tail behavior of the wavelet coefficients of the horizontal
(H) component of the magnetic field during the storm event
shown in Figure 1, while section 6 summarizes the main
outcomes of our analysis, provides some extensions, and
discusses possible further research. In the following, when

KOKOSZKA ET AL.: DISTRIBUTION OF WAVELET COEFFICIENTS

A06202
d2
o
8
o
8 -
o
g -
o o
el
o
S
|
o
$ _
T T T T T T
0 200 400 600 800 1000
Index
d4
o
S -
<
S |
&
<
T o o . v*!ii#?%ﬂrwﬂh* -------- H*w4L+~4»—M
8
8 -
! T T T T T T
0 50 100 150 200 250
Index
., 4, Boulder station, 30 March to 2 April 2001.

referring to random variables, we use the common abbre-
viation 1.i.d. for “independent identically distributed.”

2. Discrete Wavelet Transform

[8] Suppose Xy, X7, ..., Xy_1 is an observed time series.
In our context, X; is to be thought of as the disturbance of
the H component ¢ min after the start of the record under
study. In order to define the discrete wavelet transform
(DWT), it is convenient to represent the observations as a
column vector X = [X,, X;, ..., Xy_1]7. We must also
assume that N = m2’, for some integers m and J. The DWT
is then a column vector W of length N (the same as the
number of observations), which can be represented as

;
W=ld.d,...d,s], (1)

cvdiya], N =29N, j=1,2,...,J (2)

N;=27’N. (3)

T
S; = [5,1707SJ,1> .- 7SJ,NJ—1} s

The wavelet coefficient d;; reflects the oscillations of the

observations around time 2’k and at scale 2. The coefficient
Sy 1s roughly the average of 27 observations around time
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Figure 5. Realizations of sequences of independent identically distributed random variables with tail
index (a) a =3.5, (b) a=2.5,(c) a=1.5,and (d) aa = 1.

2’k. These vague statements can be made precise, we refer
to chapter 4 of Percival and Walden [2000]. The vector Wis
obtained from the vector X by means of multiplication by an
orthonormal matrix (which is implemented as a fast pyramid
algorithm). Thus W can be viewed as X rotated in the N
dimensional space. The objective of the transformation is to
see the behavior of X at different scales.

[o] It is illuminating to compare the DWT to the contin-
uous wavelet transform (CWT), which has been used in
recent geophysical research [Boberg et al., 2002]. Denoting
by (#) a mother wavelet [see e.g., Chan, 1995, chapter 2;
Percival and Walden, 2000, chapter 1], the value of the
CWT at time a and at scale ¢ is defined as

N
Dle,a) = /0 X, V(¢ — @) fe)dt. )

The values D(c, a)* are typically plotted on the (a, ¢)-plane
using a color scheme and indicate the energy distribution
across time and scale. Note that the above definition
assumes that X, is available in continuous time, so in
practice an approximation to the integral must be used. The
pyramid algorithm computes the DWT exactly, but it gives
only an approximation to the CWT. One can show that in an
approximate sense, which can be made precise [see Percival
and Walden, 2000, chapter 11], d;; is equal to D(2, k).

7

The DWT is thus approximately equal to the CWT at dyadic
scales and at discrete times, with the number of coefficients
N; = 27N decreasing with increasing scale. The DWT is a
nonredundant representation of a signal measured in
discrete time and, since it is a result of an orthonormal
transformation, it exactly preserves the energy of the signal

in the sense that

N-1 J Ni—1 Ny;—1

2 _ 2 2
IS SO IR DN
=0 Jj=1 k=0 k=0

Moreover the DWT is more amenable to quantitative
statistical analysis and possess desirable statistical proper-
ties like the approximate decorrelation property. These
issues are too extensive to be discussed here; we refer to the
monograph of Percival and Walden [2000] and to Veitch
and Abry [1999], Percival et al. [2000], Whitcher et al.
[2002], Abry et al. [2002], Craigmile et al. [2005], and Jach
and Kokoszka [2005a] (also A. Jach and P. Kokoszka,
Wavelet domain test for long-range dependence in the
presence of a trend, submitted to Statistics, 2005), to name
just a few recent contributions.

[10] In this paper the DWT using the least asymmetric
LA(8) filter, also referred to as symmlet [see Daubechies,
1992], and J = 4 was applied to the magnetogram records.

5o0f 15
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Figure 6. Variance plots of ¢ distributed random variables with (a) v = 3.5 and (b) v = 2.5 degrees of
freedom, and stable random variables with (¢) o = 1.5 and (d) o = 1.

The parameter L in the definition of the LA(L) filter
corresponds to twice the number of local differences. Thus
an application of an LA(8) DWT is in a sense equivalent to
locally differencing the time series 4 times at the dyadic
scales. To make these statements precise, extensive notation
and theory is needed which is well beyond the scope of this
paper; an interested reader is referred to chapter 4 of
Percival and Walden [2000]. The choice of a filter is
equivalent to a choice of a mother wavelet. As described
in section 11.6 of Percival and Walden [2000] the main
advantage of the symmlets is that the resulting wavelet
coefficients do not “drift” relative to the original signal.
The choice of the width of the filter is a major issue, since
short filters may introduce some undesirable artifacts on one
hand. On the other hand, filters with large L can lead to the
increase in computational burden, more coefficients influ-
enced by boundary coefficients, etc. Combining all the
requirements one usually ends up with LA(8).

[11] We focused on the coefficients d;; because the
coefficients s; reflect the smooth component of the mag-
netograms and are not centered at zero; the s;; are not used
in wavelet-based statistical inferential procedures. Figure 4
presents the coefficients of the DWT of the magnetometer
record from Boulder station during 30 March to 2 April
2001; the record itself is shown in Figure 1.

[12] Since the DWT uses the circular filtering that treats
the time series as a periodic sequence, the boundary

coefficients should be treated with caution. Using Table
137a of Percival and Walden [2000], we removed the
boundary coefficients to eliminate their effect on further
analysis.

3. Heavy-Tailed Distributions
[13] A random variable X is said to have a heavy-tailed
distribution with tail index o if

P(JX] > x) = L(x)x x>0, (6)

where o > 0 and L(x) is a slowly varying function defined
by the condition

L(x)
10

=1 (7)

From the practical point of view, it is convenient to think 2
that L(x) is a function which has a finite positive limit as x
— OQ.

[14] The probability tails of a heavy-tailed random vari-
able thus approach zero much slower than in the case of the
normal distribution for which P(|X| > x) ~ C;x "2
exp{—C,x*}, for some positive constants C; and C». Unlike
the normal distribution, condition (6) implies that there is a
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Figure 7. Plots of sas with o = 2 against (a) normal, (b) #, (¢) £, and (d) sas, o = 1.

large probability that a heavy-tailed random variable takes a
value far from the center of the distribution.

[15] As examples of a heavy-tailed distributions we
consider the symmetric a—stable (sas) distribution and
the ¢ distribution. We use both of them to calibrate the
statistical methodology discussed in section 4.

[16] The sas distribution is defined in chapter 1 of
Samorodnitsky and Taqqu [1994]. Here we note merely
that the tail index « of this distribution satisfies 0 < o < 2.
Consequently, the saws distribution has infinite variance.
Stable distributions are of fundamental importance in prob-
ability theory and arise as limits of partial sums in a similar
manner as the Gaussian distribution does in the Central
Limit Theorem [see Gnedenko and Kolmogorov, 1954].

[17] To model heavy-tailed distributions with finite vari-
ance, we used ¢ distributed random variables. A random
variable 7 has Student’s ¢ distribution with v degrees of
freedom, if its density is

+

vtl vl
fT(l‘) _ Fl_(‘( )) (ﬂu)71/2(1 + t2/v)7T

The ¢ distribution has finite variance, Var(T,) = 5%, if v > 2.
A simple calculation shows that

"~ ‘

—oo<t<oo. (8)

SIS

P(T >x) = /ocfr(t)dt ~Cx", 9)

so the tail index « for ¢ distribution is equal to the number of
the degrees of freedom v. As v increases, the density f(?)
approaches the normal density, but these densities are
considered close only for v > 30.

4. Methods for Detecting and Estimating
Heavy Tails

[18] In this section we introduce some techniques used to
detect a heavy tailed distribution and to estimate the tail
index. First, two visual analysis tools are discussed: the
converging variance test used to identify infinite variance
distributions and plots used to verify if the data come from a
heavy-tailed distribution and to estimate the range of the tail
index. Finally, the Hill estimator and its modifications are
presented.

[19] In order to describe these techniques, we focus on
four series of random variables with known tail indexes «
(Figure 5). The first two are ¢ distributed random variables
with finite variance and o = 3.5 and o = 2.5. The other two
follow an infinite-variance stable distribution with tail index
a=15and a=1.

4.1. Converging Variance Test

[20] The converging variance test is an informal visual
data analysis technique used to determine whether the data
have infinite variance. The main idea of the test consists of
plotting the sample variance o7, of the first m observations
as a function of m. If the data come from the distribution
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Figure 8. Hill plots for stable random variables with (a) =1 and (b) o = 1.5, and ¢ distributed random
variables with (¢c) v = 2.5 and (d) v = 3.5 degrees of freedom.

with infinite variance, o2, will show large jumps. Other-
wise, it will converge to a finite value. Despite the fact that
this test was originally designed for i.i.d. random variables,
it is also applicable to dependent data, as long as the order
of the observations is first randomized [Adler et al., 1998,
p. 137].

[21] Variance plots work well for identifying extremely
heavy-tailed series. For example, the variance plot of s o s
random variables with o = 1 shows the biggest jumps
which indicate the infinite variance of the distribution of
the data, Figure 6d. Similarly, for o = 1.5, Figure 6¢, the
variance plot suggests the infinite-variance distribution.
When the tail index is around 2 the jumps on the variance
plots are not large, but still visible for both infinite and
finite variance (see Figure 6b). Finally, when the tail index
« exceeds 3, the variance plots clearly converge to a finite
value, correctly indicating the finite-variance distribution,
see Figure 6a. Thus the converging variance test is useful if
the true tail index is not too close to 2: Large jumps may
occur owing to chance even if the data have finite variance.
Similarly, partial variances may appear to converge to a
finite value even when the data have infinite variance.
Therefore the converging variance test should be used only
as an exploratory tool, or to validate other more quantita-
tive methods.

[22] In section 5.1, the converging variance test is used to
find out if the distribution of the DWT coefficients of the

magnetometer records have infinite variance. In the follow-
ing section, another type of visual analysis is presented.

4.2. Plots

[23] The plots are used to solve a wide variety of prob-
lems concerned with exploring the distribution of the data.
In this paper, they are used to verify whether the coefficients
of the DWT of the magnetometer records follow a distri-
bution with heavy tails. The plot is the graph of the points

k1
Xew FPZEEIN) ko
' n+1

where X, is the k-th largest observation (order statistic) in
a sample of size n, and F is a continuous distribution
function (cdf).

[24] By Glivenko-Canteli theorem [Billingsley, 1995, the-
orem 20.6], which says that the empirical cdf converges

(10)

Table 1. Number of the Upper Order Statistics £ Used to Compute
the Hill Estimator &, for Selected Series Lengths

Series Length Number of Upper Order Statistics &

2160 100
1080 125
540 50
270 40
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Figure 9. Plots of the randomized DWT coefficients d;, j = 1, ..., 4.

almost surely to the theoretical one, the plots should be
roughly linear if X; have cdf F. This property is illustrated in
Figure 7c¢, which shows the plot obtained for 1080 simu-
lated #, random variables with o = 2 and using as F' the
correct ¢ cdf.

[25] Applying the plot analysis to the data, one compares
the plot to a straight line. If the plot curves down on the left
side and up on the right, the distribution of the data has a tail
that is heavier than the one of the reference distribution F'
(Figures 7a and 7b). If the plot curves up on the left and
down on the right, the tail index of the distribution of the
data is larger than the tail index of the reference distribution
F; see Figure 7d. This method applied to the wavelet
coefficients (section 5.2) gives results consistent with a
more quantitative technique introduced in the next section.

4.3. Hill Estimator

[26] In this section the Hill estimator of the tail index o
is introduced and its practical application is discussed.
The Hill estimator of « is based on the k& upper order
statistics X, < ... < Xj,, i.e., k largest observations, and
takes the form

~1
) 13
Qn = (k ; InX;, — lnXk‘,,> ) (11)

In our application, the largest k& observations are always
positive because the wavelet coefficients have mean zero

and k is very small relative to the total number of
coefficients.

[27] The Hill estimator is very natural since different
asymptotically equivalent versions of &, can be derived
by various methods, and it has the same form as the
maximum likelihood estimator; see chapter 6.4.2. of
Embrechts et al. [1997]. Moreover, for the Hill estimator,
standard statistical properties hold, such as weak consistency
[Mason, 1982], strong consistency [Deheuvels et al., 1988]
and the asymptotic normality, using which the asymptotic
confidence intervals can be constructed [Embrechts et al.,
1997, theorem 6.4.6].

[28] To compute the estimate ¢y ,, one has to choose an
appropriate value of k, which is the main focus of this
section. In the asymptotic theory, it is assumed that k = k(n)
is a function of the sample size n. The mathematical
conditions for & state merely that

k(n) — oo, — 00; (12)

o
k(n)
that is, a sufficiently large number of upper order statistics
should be used; however, this number should be asympto-

tically negligible relative to the sample size.
[20] If conditions (6) and (12) are satisfied, then

VE(8in — @) 5 N(0,02).
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Figure 10. Variance plots of the randomized DWT coefficients (a) d;, (b) d>, (c) d5, and (d) dj.

Using this property, one can construct a confidence interval.
For example, a 95% (asymptotic) confidence interval for the
tail index « is

(ak —1.96 un/VE,  Gn + 1.96 Ggr /\/1€>. (14)

[30] The Hill estimator is difficult to use in practice owing
to its sensitivity to the choice of the number of upper order
statistics k. Unfortunately, there is no algorithm for selecting
an appropriate k. Therefore, before estimating the tail index
o of the wavelet coefficients of the magnetograms, we had
to find an appropriate value of & for a given series length n.
The optimal £ may depend not only on 7, but also on the
unknown tail index o. We found values of & which give
acceptable results for a range of o of interest as follows:
First, the Hill plots, which provide the tail index estimate for
different k values, were used to find an approximate k£ value
that would give a reasonable tail index estimate for any
heavy tailed distribution with o € (0, 4]. “Good” Hill plots
tend to have a noticeable horizontal stretch where they are
roughly constant over some values of k. An example of such
a stretch is marked with two vertical lines in Figure 8a. It is
preferable that & is chosen from such a region since it
usually gives an accurate tail index estimate. We followed
this recommendation and selected the ‘“optimal” k by
visually examining a large number of Hill plots for several
known values of o (indicated by horizontal lines in
Figure 8) and the values of n relevant to the analysis of

the magnetograms. We then validated our choices by
performing a simulation study which produced biases and
standard errors based on 1000 simulated values of &y ,. This
simulation study, presented in detail by Maslova [2005],
allowed us to draw conclusions about the behavior of
the Hill estimators. Before discussing these conclusions,
we present in Table 1 the values of k& we settled on as a
function of the sample size n. (The value of n is not to be
confused with the number of 1-min observations N; in
section 5, n corresponds to the number of the wavelet
coefficients at a given scale.)

[31] The estimates ¢, are close to the true value when «
is smaller than 1.5. When the true tail index « increases,
Gy, overestimates it: If o is between 1.5 and 2, & will likely
be above 2. Thus, for this range of «, the Hill estimator
might be misleading, since it suggests the finite variance
distribution, when in fact the true distribution has infinite
variance. By contrast, &, underestimates o when the data
come from a heavy-tailed distribution with o > 2.

[32] A possible solution is transforming the data so that
they would have heavier tails, for which &, gives a more
accurate estimate of the tail index «. If X has tail index a,
then (6) holds, and so

P(X? > x) :P(\X\ >x%) :2L(x%)x7%‘ (15)

It is easy to see from (7) that L(x"?) is also slowly varying.

Hence, if the distribution of X has tail index «, then the tail
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index of X* is /2. Applying the transformation ¥ = X7, the
tail index of a new series Y will thus not exceed 2, provided
that the original data have the tail index less than 4, as will be
seen to be the case in our applications. In this case (0 < <2)
the Hill estimator only slightly overestimates the tail index.

[33] Another way to improve the Hill estimator is to
use the smoothing method proposed by Resnick and
Starica [1997] which is a simple averaging technique
designed to help to minimize the sensitivity of the
estimator to the number of the upper order statistics
and reduce the high variability of the Hill plot. It consists
of averaging the Hill estimator over several values of £,
i.e., computing

(16)

where u > 1. Resnick and Stdaricd [1997] recommend to use
u € (n*!', n®?), where n is the sample size. We used u = 4 for
series of length n = 2160, n = 1080, and u = 3 for n = 540,
n = 270.

[34] Owing to the fact that the range of the smoothed plot
is reduced in comparison to the classical Hill plot, the
method is less sensitive to the choice of k. However, the
simulation results of Maslova [2005] show that the average
Hill estimator severely underestimates the tail index of finite
variance distributions. One should keep this in mind when
applying this method to the real data.
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[35] In conclusion, we can state that the Hill estimator and
its two versions discussed above must be used with care and
in conjunction with simulations and graphical methods like
converging variance test and plots. Unlike the graphical
methods, the Hill estimator however offers numerical values
of estimates together with a measure of uncertainty (confi-
dence interval).

5. Probability Tails of the Wavelet Coefficients
of the H Component

[36] In section 4 we described several methods of detect-
ing and estimating heavy tails based on a sample of i.i.d
random variables. Comparison of Figures 4 and 5 shows
that the DWT coefficients of the magnetograms are not i.i.d.
Therefore we always apply a random permutation to the
DWT coefficients of magnetograms. Randomized DWT
coefficients are shown in Figure 9 and are seen to resemble
the patterns in Figure 5.

[37] The detailed analysis in this section refers to the
dynamic range of the H component measured at the Boulder
station during the stormy period of 31 March to 2 April 2001.
Generalizations to other periods are discussed in section 6.

5.1. Converging Variance Test

[38] Recall that the converging variance test is used to
determine whether wavelet coefficients have finite or infi-
nite variance. We compare the variance plots of the wavelet
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coefficients (Figure 10) to the variance plots of the known
distributions introduced in section 3 (Figure 6).

[39] The wavelet coefficients d; seem to belong to the
finite variance distribution with the tail index o =~ 2.5
(compare Figure 6b). As discussed in section 4.1, when
the variance plot shows slight jumps like the variance plot
of d> and ds, Figure 10, the data might come either from the
infinite variance distribution with the tail index o € (1.5, 2)
or from the finite variance distribution with a € (2, 2.5).
Finally, one can clearly see that the wavelet coefficients d,
come from an infinite variance distribution, and the tail
index « appears not to exceed 1.5.

[40] The wavelet coefficients clearly belong to the class
of heavy-tailed distributions either with infinite variance,
with o € (1.5, 2), or with finite variance and the tail index o
€ (2, 2.5). The tail index appears to get smaller with
increasing level j. It is fairly safe to conclude that the
converging variance test indicates that the index « for the
coefficients d;, is between 1.5 and 2.5 for j = 1, 2, 3 and
between 1 and 2 for j = 4. For more details refer to section 4.3
of Maslova [2005].

5.2. QQ Plot Analysis

[41] In section 4.2, we discussed how the QQ plots can be
used to detect a heavy-tailed distribution and estimate an
approximate range of the tail index. In this section the QQ
plots are used to verify that the distributions of the wavelet
coefficients are heavy tailed.

[42] The plots of the wavelet coefficients d, and d, are
presented, respectively in Figures 11 and 12. Corresponding
plots for the coefficients d; and d5 are similar and are not
shown to conserve space. The empirical distributions of the
wavelet coefficients are compared to the standard normal
distribution, #4 and £, distributions, and s « s distribution
with a = 1.

[43] As noted in section 4.2, if the points in the plot
follow a line, one can infer the reference distribution F. If
the plot first curves down and then up, then the distribution
has a tail heavier than F. If it first curves up, then down, the
tail is lighter.

[44] The DWT coefficients at all levels j = 1, 2, 3, 4 are
seen to have tails much heavier than normal, the tail index
is, in fact, smaller than 4, compare panels a and b in
Figures 11 and 12. On the other hand, the tail index is
always greater than 1, see panel d in Figures 11 and 12. It is
thus very safe to conclude that 1 < o < 4. The analysis of
panel ¢ in Figures 11 and 12 indicates that o is perhaps
slightly greater than 2. These conclusions accord with
those reached in section 5.1 except in case of the coeffi-
cients d4 for which the converging variance test indicated
infinite variance, i.e., o < 2.

[45] We note that the main part of the plot in Figure 12d
appears small because of the presence of two relatively large
observations which must be accommodated by the plot.
This underscores the difficult of using plots for very heavy
tailed distributions. We also note that the number of
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Figure 13. Hill plots of the DWT coefficients (a) d;, (b) d>, (¢) d3, and (d) d.

observations on which these plots are based decreases by
two from n = 2160 for j = 1 to n = 270 for j = 4. This also
partially explains the different appearance of the coefficients
in Figure 9: The coefficients d, may look much more heavy
tailed than d, because there are § times fewer points, so only
a few large observations which dominate the plot are
possible. We therefore apply in the next section the Hill
estimator which has been calibrated in section 4.3 to the
specific values of n used in our analysis.

5.3. Hill Estimates of the Tail Index

[46] As discussed in section 4, the classical Hill estimator
is sensitive to the choice of the number of upper order
statistics k, but we found values of £ which give reasonable
tail index estimates for sample sizes n considered in this
study. These k values are now used to estimate the tail index
of the distributions of the wavelet coefficients and are
indicated by vertical lines in Figure 13 (and displayed in
Table 1). The squaring method introduced in section 4 only
slightly overestimates the tail index and is thus considered
to be most accurate. The smoothing method reduces the
variability of the Hill plot; however, it severely under-
estimates o

[47] In Table 2, the classical, average and “squared” Hill
estimates of the tail indexes of the wavelet coefficients are
given. These estimates are consistent with the results
obtained from the converging variance test, but indicate
tails heavier than those inferred from the plots.

[48] The values of the estimates in Table 2 accord with
the properties of the three versions of the Hill estimator. To
better illustrate this point refer to Figure 14, where tail index
estimates found using three methods and their asymptotic
95% confidence intervals are shown. The numbers on the x-
axis correspond to the wavelet coefficient levelsj=1, - - -, 4.
Notice that the average Hill estimator provides the smallest
estimates in all cases. The “squared” Hill estimator gives
the highest tail index estimates.

[49] Figure 14 shows that it is safe to conclude that the
DWT coefficients at all four levels have tail indexes smaller
than 2.5. Since the “squared” Hill estimator has a tendency
to overestimate «, it is likely that all tail indexes are smaller
than 2, in which case the DWT coefficients should be
modeled using an infinite variance distribution.

6. Conclusions, Extensions, and Further Research

[s0] The objective of this paper is to show that the
distribution of the wavelet coefficients of the H component

Table 2. Hill Estimates of the Tail Index & of the Wavelet
Coefficients d;, j = 1, ..., 4

Wavelet Coefficients, d;

Tail Index Estimates & d, d, dy d,
Hill estimates 1.8195 1.146 1.229 1.1453
Average Hill estimates 1.535 0.884 0.9937 0.8991
“Squared” Hill estimates 1.9697 1.495 1.544 1.4094
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of magnetograms is heavy tailed and to obtain a quantitative
information on the probability tails (estimate the tail index).
This has been accomplished by applying two visual and
three inferential statistical tools which have been calibrated
for our specific application in section 4. A detailed analysis
of one data set was presented in section 5. The same overall
conclusion holds for other periods, other stations and other
wavelet filters: The wavelet coefficients have heavy tails
with the tail index in the range from 1 to 3.

[51] An example of a more extensive analysis is presented
in Table 3 and Figure 15 which show “squared” Hill
estimates of o for five stormy and five quiet periods in
March and April 2001. We focused on the ‘“‘squared”
version of the Hill estimator because it has been found to
be most accurate.

[s2] Some interesting conjectures can be gleaned from
Table 3 and Figure 15. For every DWT level j =1, 2, 3, 4,
the average tail index of the five stormy periods is smaller
than the corresponding average of the five quiet periods. As
seen in Figure 15, the range of the tail indexes for the quiet
periods is somewhat shifted to the up relative to the range for
stormy periods, especially for levels j = 2 and j = 3, which
correspond to physical scales of 4—8 min. In fact, an
application of a two-sample 7 test [see, e.g., Hayter, 2002,
section 9.3] shows that the averages for levels j =2 and j =3
are statistically significantly different with P-values equal,
respectively, to 0.63% and 4.08%. This means that the
probability of extreme events in the wavelet domain is
higher during stormy periods than during quiet periods.
While such a finding is not surprising, our analysis offers
a quantitative way of approaching this difference in
behavior.

[53] The conjecture that the tail index decreases during
stormy periods must be confirmed, or refuted, by a more
extensive and systematic analysis similar to that presented
by Wanliss [2005], who used a large collection of active and

quiet period in the epoch 1981-2002 to show that the self-
similarity exponent of the SYM-H index increases during
active periods. Such an analysis is however beyond the
scope of the present paper. The main lesson of this paper is
that when applying statistical techniques to the wavelet
coefficients of the magnetograms one must make sure that
these techniques are robust to large departures from Gaus-
sianity and take into account the presence of heavy prob-
ability tails.

[54] In our future work, by using a much larger database,
we will be able to find out whether the systematic decrease
of the tail index value from quiet to storm periods can be
statistically confirmed and will further explore the behavior
of the tail index for wavelet coefficients at octaves j = 2, 3.
We will try to understand why the most pronounced
difference in the tail index between storm and calm periods
occurs at these scales. This future research may reveal the

Table 3. Hill Estimates of the Tail Index, & of the Wavelet
Coefficients d;, j = 1, ..., 4

Wavelet Coefficients, d;

d d, dy d,

Stormy Periods
March 2001 2.9998 2.3308 2.5429 1.7422
19-21 March 2001 2.0210 1.9221 2.6507 2.0690
30 March to 2 April 2001 1.9697 1.4950 1.5440 1.4094
5-7 April 2001 2.7775 2.3183 22374 2.7570
11-13 April 2001 2.2930 1.7145 1.6952 1.5947
Average 2.4122 1.9561 2.1341 1.9145

Quiet Periods
8—10 March 2001 3.0642 2.9300 3.1270 3.1469
14—16 March 2001 2.0557 2.7402 2.6747 1.5555
25-27 March 2001 2.4027 2.2886 2.3275 1.9983
1517 April 2001 3.4009 2.7007 2.5397 2.2251
23-25 April 2001 3.0805 2.5401 2.8320 2.0916
Average 2.8008 2.6399 2.7002 2.2035
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underlying physics of tail index for the wavelet coefficients
representing different timescales and connect them to the
dynamic variations of various individual current compo-
nents in the M-I system.
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