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A Deformation Theory 
of Self-Dual Einstein Spaces 

C.G.TORRE 

The self-dual Einstein equations on a compact Riemannian 4-

manifold can be expressed as a quadratic condition on the curvature of an 
SU(2) (spin) connection which is a covariant generalization of the self-dual 
Yang-Mills equations. Local properties of the moduli space of self-dual 
Einstein connections are described in the context of an elliptic complex 
which arises in the linearization of the quadratic equations on the SU(2) 
curvature. In particular, it is shown that the moduli space is discrete when 
the cosmological constant is positive; when the cosmological constant is 
negative the moduli space can be a manifold the dimension of which is 
controlled by the Atiyah-Singer index theorem. 

Introduction 

The last few years have seen remarkable progress in the theory of differen
tiable manifolds in 3 and 4 dimensions [1]. What is more remarkable , at least 
from a physicist 's point of view , is the strong link these mathematical ideas 
have had with elements of field theory. In particular, in Donaldson 's theory of 
4-manifolds the moduli space of (gauge-inequivalent) solutions to the self-dual 
Yang-Mills equations plays the central role. This moduli space was originally 
studied by physicists (and mathematicians too) in the context of instanton con
tributions to functional integrals in quantum gauge theory, and recently it was 
shown by Witten [2] how in fact a quantum field theory- "topological Yang
Mills theory" - provides a (necessarily somewhat heuristic) explanation for the 
success of Donaldson 's approach. 

If Yang-Mills theory, which is firmly rooted in particle physics, should have 
such a profound role to play in describing the global structure of 4-manifolds , 
one is naturally led to ask: What then is the role (if any) for the earliest of 
the modern geometrical theories, namely, general relativity? The answer to this 
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question may lie in another remarkable recent series of results that, roughly 
speaking , reveal a new way in which one can view gravi.tation as a gauge theory. 
What I have in mind here is the program initiated by Ashtekar [3] of viewing 
the dynamics of the gravitational field in terms of the left (or right) handed 
(equivalently: self-dual or anti-self-dual) spin connection. The new perspectives 
afforded by the ensuing "connection dynamics" point of view in general relativity 
have stimulated renewed interest and fresh results in the program of canonical 
quantization of the gravitational field. 

As we shall see, the left-handed spin connection is also a useful variable for 
studying certain aspects of classical differential geometry, in particular, the ge
ometry and topology of self-dual Einstein spaces. This was realized early on by 
Ashtekar, Jacobson, and Smolin [4] in their study of the 3+1 form of half-flat 
solutions to the Einstein equations (with vanishing cosmological constant), and 
later it was shown by Capovilla, Dell , and Jacobson [5] that the self-dual Einstein 
equations (with non-vanishing cosmological constant) can be expressed purely 
in terms of the left-handed spin connection in a way which can be thought of as 
a covariant generalization of the self-dual Yang-Mills equations. 

The work that we shall present here can be viewed as a first attempt to assess 
the feasibility of applying ideas from topological field theory to the moduli space 
of self-dual gravitational instantons. Because topological quantum field theories 
are nearly "classical" - typically the semi-classical approximation is exact-the 
majority of the topological field theory formalism is dominated by the features 
of the linearized theory, i. e., the deformation theory of the particular moduli 
space under consideration. Thus in this talk we aim to develop the deformation 
theory of self-dual Einstein spaces using the self-dual spin connection as the 
basic variable. We shall see that the techniques which were brought to bear in 
the corresponding Yang-Mills problem [6] can be fruitfully applied also in the 
gravitational case. At the very least , it will become clear that the direct use of 
the left-handed spin connection leads to new results in the theory of Einstein 
spaces at relatively little cost in the way of extensive computations. 

The mathematical setting for what follows is an SU(2) principal bundle with 
connection over a "spacetime", which will be taken to be a compact, smooth, 
Riemannian, 4-dimensional spin manifold M , and associated vector bundles 
equipped with covariant derivatives. In this framework, left-handed spinors arise 
as sections of the vector bundle associated with the defining representation of 
SU(2). We will primarily be concerned with the vector bundle constructed via 
the adjoint representation; the space of smooth sections of this bundle will be 
denoted So and can be viewed as the symmetric tensor product of the bundle 
of left-handed spinors with itself. Given a soldering form, So can be identified 
with the bundle of self-dual 2-forms. The tensor product of So with the bundle 
of p-forms is denoted Sp . We will use Penrose's abstract index notation [13] 
to describe the various geometric objects under consideration. In particular, 
lowercase Latin indices will denote tensors on M , and uppercase Latin indices 
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denote SU (2) spinors , i. e., sections of the various vector bundles . Spinor indices 
are lowered and raised with the SU(2)-invariant symplectic form EAB and its 
inverse EAB. When dealing with elements of Sp it will be convenient at times to 
use a matrix notation in which the spinor indices are suppressed; in this context 
square brackets [ , ] will represent commutators in the Lie algebra su(2). 

The emphasis of this presentation will be on developing formalism and pre
senting key results; no attempt will be made to be rigorous , e.g., with respect to 
functional analysis. 

Definition of the moduli space 

The self-dual Einstein equations are 

(1) 

(2) C 1 mnc 
ab ed = - 2" Eed abmn 

where Rab , Cabed, and Eabed are the Ricci tensor, Weyl tensor, and volume form 
of the metric gab respectively. A is the "cosmological constant". One might, 
more accurately, call metrics satisfying (2) "conform ally anti-self-dual", but for 
brevity we will simply refer to them as "self-dual". 

When A =I 0, eqs. (1) and (2) can be written in terms of an SU(2) (spin) 

connection as follows. We first rewrite (1) in terms of a soldering form I: A
' , 

which is an isomorphism between vector fields and SU(2) x SU(2) spinors, and 
the self-dual part of the associated spin connection "iJ a : Sp -+- Sp+ 1 . The 
spacetime metric is obtained via 

(3) AA' 
gab='a IbAA', 

while the curvature of the left-handed spin connection is given by 

(4) 

where FAB = F(AB ) If we define the self-dual 2-forms ab ab· 

(5) ~AB. 2 AA' B 
Uab .= I[a Ib]A" 

which define the isomorphism between So and the bundle of self-dual 2-forms 
mentioned above, Fab is related to the self-dual part of the Riemann tensor, 

R(+ ) . 
abed' Vla 

(6) R(+) - 1 FABE 
abed - -2" ab edAB, 

or, in an su(2) matrix notation, 

(7) 
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The Einstein equations (1) are equivalent to [7] 

(8) \7[aEtef = 0 

and 

(9) 

Eq. (8) enforces the condition that \7 a is the covariant derivative coming from 
the left-handed (self-dual) part of the spin connection compatible with 'Ya; given 
(8) , (9) is equivalent to (1). 

While the Einstein equations can be formulated in terms of a soldering form 
and the left-handed spin connection, it is rather remarkable that the self-dual 
Einstein equations can be written purely in terms of the spin connection via 

(10) F,(AB F CD ) - 0 
[ab cd) -

and 

(11) det~ > 0, 

where ~ is a linear map from the space of symmetric rank-two spinors to sym
metric rank-two spinor densities of weight one defined by 

(12) "",AB. abedFABF 
'¥CD .= '" ab edCD· 

Here ",abed = ",[ab ed) is the Levi-Civita tensor density of weight one. 

The relationship between (10) ,(11) and (1) ,(2) is as follows [5,7] . The general 
solution to (10) is 

(13) 

where A, a constant with dimensions (/ength)-2 , is needed for dimensional rea

sons. If we interpret 'Y: A ' as a soldering form, the inequality (11) guarantees 
that the metric (3) is positive definite. Now , (13) solves (9) directly, and (8) is 
satisfied by virtue of the Bianchi identity: 

(14) 

So, (10) ,(11) lead to a solution of the Einstein equations. As the 2-forms Eab 

are self-dual with respect to the metric which they define , so too is the SU(2) 
field strength ; it can be shown that the solutions generated in this manned have 
anti-self-dual Weyl tensor . Conversely, all anti-self-dual Einstein spaces (with 
A 1= 0) arise as solutions to (10),(11) [8]. Conform ally self-dual (as opposed to 
anti-self-dual) Einstein spaces can be obtained by a change of orientation, which 
amounts to using the right-handed spin connection ("primed spinors") 

Given a solution to (10) ,(11) , we can generate infinitely many others by using 
the induced action of the automorphism group of the SU(2) bundle being used l . 

1 I thank A. Fischer for patiently explaining to me the structure of this group. 
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This group, which we shall loosely call the "gauge group" , includes the usual local 
SU(2) gauge group (familiar from Yang-Mills theory) as a normal subgroup; the 
diffeomorphism group of M appears as the factor group (via bundle projection). 
The space of gauge-inequivalent solutions to (10),(11), which we shall denote 
M , is the natural "moduli space" of the problem. Our goal in what follows is to 
uncover some local properties of this moduli space by studying its tangent space 
TM. 

Remarks 

The translation of the self-dual Einstein equations into a quadratic condition 
on the curvature of an SU(2) connection is the result of a sequence of observa
tions. Ashtekar and Renteln [4] noticed that, in the context of the 3+1 formalism 
for (complex) general relativity in terms of Ashtekar 's "new variables" , all con
straints are satisfied by the ansatz 

(15) 

where E a is the densitized dual of the pull-back of Eab to a 3-dimensional sub
manifold of M , and B a is the non-Abelian magnetic field: the densitized dual 
of the pull-back of Fab . They also pointed out that the evolution of such ini
tial data sets leads to self-dual Einstein spaces. It was Samuel [7] who gave 
the 4-dimensional version (13) of the ansatz and showed how it yields solutions 
of the Einstein equations; shortly thereafter it was shown that the ansatz was 
equivalent to the self-dual Einstein equations [8] . Capovilla, Dell and Jacobson 
[5] pointed out that all reference to the soldering form could be eliminated via 
(10). 

Because the self-dual Einstein equations can be expressed in terms of an SU(2) 
connection, it is easy to see that they are related to the self-dual Yang-Mills 
equations. Indeed, if we identify -~AEa in (15) with the Yang-Mills electric field, 
then (15) is precisely the pull-back of the Yang-Mills self-duality ansatz to a 3-
dimensional submanifold. Furthermore, because the field strength satisfying (13) 
is self-dual with respect to the metric it defines, all solutions to (10),(11) are also 
solutions of the self-dual Yang-Mills equations2 (although, of course, the converse 
is not true). One can think of (10) as a diffeomorphism covariant generalization 
of the self-dual Yang-Mills equations, the latter being non-covariant because of 
the need for an externally prescribed metric in their definition. 

Note that there can, in principle, be topological obstructions to the existence 
of solutions to (10) ,(11) or (1),(2). For example, it is well-known that M must 
have vanishing first homology if it is to admit Einstein metrics with A > O. It is 
also easy to show that the Euler number and Hirzebruch signature of M must be 

2For example, Samuel showed [7] that the spin connection of De Sitter space can be iden
tified with the single instanton configuration in Yang-Mills theory. 
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positive and negative semi-definite respectively. In what follows we will indicate 
how some new obstructions might arise. 

Deformation theory 

Let us now turn to the formal construction of the tangent space T M to the 
moduli space discussed above. Consider a I-parameter family of solutions to 
(10) ,(11). A perturbation is a tangent vector to this curve at the point repre
senting a given solution and is represented by an element C of 51, 

(16) CAB = C(AB) 
a a' 

satisfying 

(17) 

where V' a and Fab are built from the unperturbed solution. The infinite-dimensional 
vector space of solutions to (17) can be projected to T M by identifying any two 
perturbations Ca and C~ which differ by an infinitesimal gauge transformation, 
z. e., 

if 

(18) 

where Na is a (complete) vector field associated with an infinitesimal diffeomor
phism of M and N E So generates an infinitesimal 5U(2) gauge transformation. 
It is straightforward to verify that any "pure gauge" perturbation (18) satisfies 
the linearized equations (17). 

The form (18) of infinitesimal automorphisms arises as follows . A I-parameter 
family of automorphisms yields a complete vector field on the SU (2) principal 
bundle where the connection naturally lives as an su(2)-valued I-form; the "in
finitesimal" action of the automorphism group on the connection is the Lie de
rivative of the connection I-form along this vector field , which can be identified 
with an element of 51. Using the fixed unperturbed connection, the vector field 
can be split into horizontal and vertical parts; the horizontal part yields the first 
term in (18) , which can be thought of as a "gauge covariant Lie derivative", 
while the vertical part of the vector field generating the automorphism leads to 
the second term in (18) in the familiar way. 

Crucial for the results to follow is that when Fab satisfies (10) ,(11) , and hence 
(13) , the r.h.s of (18) can be written as 

(19) N b Fha + V' aN = (\7 b J)Fba + [\7 b L, Fba ] + hb Fba + \7 aN, 

where J E COO(M) is a real-valued function, L , N are elements of 50 and the 
background self-dual Einstein metric is used to provide the isomorphism between 
vector fields and I-forms. Eq . (19) results from a Hodge decomposition of Na: 
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'\j af is the exact part of Na , L comes from the co-exact part , and ha is the 
harmonic part of Na . For details, see [9]. To simplify the results which follow, 

let us henceforth assume that M has vanishing first homology so that ha is in 
fact zer03. 

The tangent space to moduli space (where it is well-defined) can now be 

characterized as follows. Let W4 denote the space of smooth sections constructed 
as the product of the bundle of 4-forms with the totally symmetric trace-free 
tensor product of So with itself, e.g., if w:b~fD E W4, then 

(20) ABCD _ (ABCD) 
Wab ed - wab ed . 

Define the following linear differential operators: 

Do : COO(M) EI1 So EI1 So -+ SI, 

(21 ) 

and 

(22) D C - p,(AB'\j CCD) 
1 - [ab e dj 

Because any perturbation which is "pure gauge" satisfies the linearized equations, 
we have 

(23) DIDo = O. 

The tangent space T M to moduli space, at a given point representing the un

perturbed self-dual Einstein space , is then simply 

(24) TM = I<erD1 . 

ImDo 

We have thus arrived at a cohomological description of T M . In particular, 
the differential complex 

(25) Do 
-----+ 

is elliptic, i. e., the symbol sequence is exact, so exactly as in Hodge theory we can 
characterize T M by the kernel of an elliptic differential operator. To do this we 
need inner products on the various sections which feature in the complex. The 

inner products are constructed using the unperturbed self-dual Einstein metric 

and the su(2) trace (equivalently: the symplectic form fAB), e.g., for C, C' E S1 
we set 

(26) 

3Vanishing first homology is guaranteed, e.g., if M is simply connected. 
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with obvious generalizations to sections of the other bundles. Using this inner 
product one obtains the following adjoint operators 

(27) 

(28) 

and "Laplacians" 

(29) 

(30) 

(31) 

D~ : Sl -T COO(M) EB So EB So 

D~C = (trFab'1 aCb; ['1 aCb, Fab]; -'1aca) , 

Dr : W4 -T Sl 

D '" F cd nb ABC D 
1W = CDv Wabcd , 

~o : COO(M) EB So EB So -T COO(M) EB So EB So 

~o = D~Do , 

~1 : S1 -T S1 

~1 = Di D1 + DoD~ , 

~ 2 : W4 -T W4 

which are elliptic second-order partial differential operators. In (27) ,(28) we have 
extended the action of 'Va to include tensors via the connection compatible with 
the background self-dual Einstein metric. 

The Fredholm alternative implies the: orthogonal decomposition 

(32) Sl = RanDo EB RanDi EB J( er~1 ' 

from which it is easy to show that 

J( erD1 '" 
(33) I =J(er~1=J(erD1nJ(erDo· 

mDo 

Because ~1 is elliptic- hence Fredholm- we see that M is finite-dimensional. 
Just as the alternating sum of the dimension of the kernels of Laplacians in 

Hodge theory defines a topological invariant (the Euler number) , the alternating 
sum of the dimension of the kernels of the above Laplacians is a topological 
invariant . Let I denote the "topological index" associated with the complex 
(25) [6]. It is completely determined by the topology of M and the SU(2) 
bundle over M. The Atiyah-Singer index theorem then implies 

(34) I = dimJ(er~o - dimJ(er~l + dimJ(er~2' 
so, provided I( er~o = 0 = J( er~2 (see the next section), the dimension of 
moduli space (if it exists and is a manifold) is determined by the topology of M 
via the index I. 
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Re11wrks 

I do not yet have an explicit expression for I; it is evidently a linear combina
tion of the Chern number k of the SU(2) bundle being used as well as the Euler 
number X and modulus of the signature Irl, which are both invariants4 of M . 
Because the SU(2) bundle describes spinors on M , it is possible to relate the 
second Chern number to X and r (see (6)): 

(35) 
1 3 

k = -X +-r 2 4 1 

so I can be expressed as a linear combination of X and Irl. Notice that, because 
k must be an integer and r is a multiple of 8 for a spin manifold, X must be an 
even integer. 

For some purposes it is useful to rearrange the elliptic complex as follows . Let 

(36) 

D* : COO(M) E9 So E9 So E9 W4 -t S1 

(37) D* : = Do E9 Dr· 

D is an elliptic operator; the Fredholm alternative implies the orthogonal de
composition 

(38) S1 = RanD* E9 KerD, 

and we have 

(39) TM = KerD. 

The Atiyah-Singer index theorem now reads 

(40) I = dim/{ er D* - dimK er D. 

A similar elliptic complex arises in the deformation theory of the moduli 
space of self-dual Yang-Mills connections. The first space in (25) is replaced by 
So (representing infinitesimal SU(2) gauge transformations, i.e., vertical auto
morphisms), the second space of sections is again S11 while the third space is the 
product of So and the space of anti-self-dual 2-forms. The topological index in 
this case is again determined by k, X, r, which are all independent in this case. 

4 Only the absolute value of T can appear because the dimension of the kernels of the 
Laplacians does not depend on the orientation of M . 
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Vanishing theorems, linearization stability 

It turns out that the properties of the moduli space depend rather strongly 
on the sign of the cosmological constant A. To see this, we shall show that, when 
A > 0, I< er~l = 0 = I< er~2, while I< er~o = 0 when A < 0, and explore the 
consequences of these "vanishing theorems" . 

Let us begin with I< er~l' which formally defines the tangent space to moduli 
space. We have seen that TM = Ker~l = KerD1 n I<erDo, which can be 
understood as expressing T M as the space of self-dual perturbations (I< er Dt) 
in a particular gauge (K er Do). Given that C E K er Do we have 

( 41) 

where 

( 42) D C 1 FmnCD'n CAB 
1 = 12fabcd Vm n 

(note: in (42) we have used DoC = 0 to remove the symmetrization on spinor 
indices; we have also used the self-duality of Fab). Explicit computation then 
reveals 

( 43) £>, C = Z:Vb [(6~'6~ + ~<.b'd) \7 ,Cd] , 
where we have again extended the action of Va to tensors via the metric com
patible connection of the background geometry. Using DoC = 0 ~ VaCa = 0, 
it follows from (43) that 

(44) 

which is a remarkably simple elliptic partial differential equation for Cb. It 
is easily seen that the linear operator - VaV a + A is positive definite when 
A > 0 (relative to the inner-product introduced above) and hence we see that 
I< e1'~1 = 0 when A > O. This means that, when the cosmological constant 
is positive, all perturbations of self-dual connections are "pure gauge", i. e., all 
instantons are isolated-the moduli space is discrete. 

A straightforward computation reveals that 

( 45) 

where 

(46) 

Again, we see that ~2 is a positive definite operator and K e1'~2 = 0 when A > O. 
Finally, in a similar fashion, it can be shown [10] that I< er~o = 0 when A < O. 
In light of these vanishing theorems , the Atiyah-Singer index theorem yields 

A> 0: I = dimI<er~o, 
(47) 

A < 0: I = dimI<er~2 - dimKer~l. 
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So, when A > 0, M is zero-dimensional and the dimension of f{ ertlo is 
controlled by the topology of M . A closer look at J( ertlo reveals [10] that this 
space can be identified with the space of Killing vectors of the unperturbed 
self-dual Einstein metric. Thus the dimension of the isometry group of a given 
self-dual Einstein metric is controlled by the Euler number and signature of M . 

When A < 0 the dimension of moduli space is also controlled by X and ITI 
provided that J( ertl2 = o. When J( e7'tl 2 # 0 one must confront the issue of 
linearization stability: it is possible that some solutions to (17) do not come from 
a I-parameter family of solutions to (10),(11) . Because solutions to tllC = 0 
are to represent tangent vectors to moduli space, spurious solutions arise when 
M has singular points where the tangent space is not well-defined . Using the 
implicit function theorem it is easy to see that a non-trivial kernel for tl2 al
lows for an obstruction to the existence of a manifold structure for M. More 
precisely, the implicit function theorem implies that M exists as a manifold in 
the neighborhood of a self-dual instanton provided D is surjective . From the 
splitting 

( 48) coo (M) E9 So E9 So E9 W4 = RanD E9 f{ er D* 

it is clear that D is surjective provided f{ e7'D* = 0, but, when A < 0, J( er D* = 
J( ertl.2. So, provided J( ertl2 = 0, the equations (10) ,(11) are linearization stable 
by virtue of the fact that M exists (locally) as an I-dimensional submanifold 
of the space of all SU(2) connections . Otherwise, one has to contend with the 
possible appearance of singularities in M where, strictly speaking, first-order 
pert.urbation theory fails. 

Remarks 

Typically, the singularities which occur in a moduli problem come from quo
tienting by the action of a symmetry (gauge) group which has fixed points . This 
is not the case here . Indeed , when A < 0, f{ ertlo = J( er Do = 0 so there are no 
fixed points. The singularities which can occur stem from pathological behav
ior of the self-duality equations (10),(11). To see this note that the Fredholm 
alternative implies the orthogonal decomposition 

( 49) 

so Dl is surjective only if J( er D~ = J( e7'tl 2 = O. Hence the singularities (if 
any) are already present once one restricts to the infinite-dimensional subspace 
(10),(11). 

It is interesting to note that the sign of the topological index can represent an 
obstruction to the existence of a self-dual Einstein metric (or connection) with 
a given sign for the cosmological constant. If I < 0 then clearly (47) cannot 
be satisfied when A > O. Similarly, if the topology of M is such that I > 0 
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then there can be no self-dual Einstein spaces with A < ° (away from points of 
linearization instability) . . 

In the deformation theory of self-dual Yang-Mills connections one can also 
prove certain vanishing theorems which are relevant to linearization stability as 
well as to the existence of symmetries associated with reducible connections. It is 
also possible to have a discrete moduli space, but this depends on the topology of 
the base manifold and SU(2) bundle. Singularities can appear in the Yang-Mills 
version of M; they arise from the above mentioned symmetries (which represent 
fixed points for the action of the gauge group) and/or from the failure of the 
self-dual Yang-Mills equations to define a sub-manifold. 

Concluding remarks 

By studying the local properties of the space of solutions to the self-dual 
Einstein equations we have seen the strong interplay between self-dual geometry 
and the topology of 4-manifolds. It is now time to assess how far we have come 
toward implementing the goals expressed in the introduction , i. e., we should 
now ask: can the moduli space of self-dual Einstein connections tell us anything 
about the topology of 4-manifolds? First of all, it is clear that while studying 
the deformation theory of M is certainly necessary for answering this question, 
it is far from sufficient. What is needed to construct a gravitational analog 
of Donaldson theory is to gain control over the behavior of M in the large. 
It is of course going to be a non-trivial problem to get an analogous level of 
understanding of the gravitational moduli space when A < ° as one has for 
the moduli space of self-dual Yang-Mills connections. On the other hand, for 
manifolds admitting gravitational instantons with A > 0, the moduli space is 
discrete and one already knows in the Yang-Mills case that a discrete moduli 
space leads to a new invariant for smooth 4-manifolds. 

From a physicist's point of view , the "explanation" of the success of Donald
son theory was given by Witten via topological Yang-Mills theory. It is therefore 
encouraging to note that many features of Witten 's topological Yang-Mills the
ory can be reproduced in the gravitational case. Indeed , as shown in [11] the 
classical aspects of the construction of Witten's theory have a natural diffeomor
phism invariant generalization to the gravitational case. The use of an SU(2) 
connection to describe both gauge and gravitational instantons leads to strong 
similarities between both topological field theories and one can hope that de
tailed analysis will lead to a similar degree of success in the gravitational case 
as was obtained via Yang-Mills theory. What is needed to complete the work of 
[11] is a better understanding of the quantum functional measure: the existence 
of a measure on connections which is consistent with the inequality (11) is bound 
to be a highly non-trivial issue. Alternatively (equivalently?), the theory may be 
profitably developed using the Hamiltonian formalism and canonical quantiza
tion. In addition, one needs a better understanding of the singularity structure 
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of M, which by the way is also a difficult issue in topological Yang-Mills theory. 
We have from time to time compared the deformation theory of the space of 

gravitational instantons to the corresponding deformation theory of Yang-Mills 
instantons. It is possible to give another analogy which also serves to summarize 
the key results of the work presented here, namely, I would like to argue that 
the moduli space of self-dual Einstein connections is a natural 4-dimensional 
generalization of the moduli space of Riemann surfaces. Every metric on a 
compact Riemannian 2-manifold is conformal to an Einstein metric, where A > 0 
for genus 0, the sphere, A = 0 for genus 1, the torus, and A < 0 for genus2:2. In 
both the gravitational and Riemann surface cases the moduli space is discrete 
when A > 0 and the dimension of the isometry group of the Einstein metric 
is controlled by the Atiyah-Singer index theorem (which becomes the Riemann
Roch theorem in two dimensions). When A < 0 the moduli space appears to be 
a manifold in each case whose dimension is again controlled by the topology of 
the two or four dimensional manifold via the index theorem. (The A = 0 case, 
which, it seems, cannot be handled via (10), is well known- it is the K3 geometry, 
which can be thought of as the 4-dimensional generalization of the torus in 
Riemann surface theory.) The analogy between self-dual Einstein connections in 
4 dimensions and Riemann surface theory in 2 dimensions is further strengthened 
by the observation that the moduli space of Riemann surfaces is identifiable with 
the diffeomorphism equivalence classes of complex structures on the compact 2-
manifold. Similarly, it is easy to see that the moduli space of self-dual Einstein 
connections is closely related to the space of quaternionic Kahler structures on a 
compact Riemannian 4-manifold [12]. More precisely, let O"i. , i = 1,2,3 denote 
a basis in su(2), then by solving (10) and (11) one can construct three almost 
complex structures, 

(50) Ji.' := - (3~) tru,F.', 

satisfying the algebra of quaternions. 

I would like to thank A. Ashtekar and J. Samuel for discussions . 
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