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Parametrized field theories, which are generally covariant versions of ordinary field theories, 
are studied from the point of view of the covariant phase space: the space of solutions 
of the field equations equipped with a canonical (pre)symplectic structure. Motivated by issues 
arising in general relativity, we focus on phase space representations of the space-time 
diffeomorphism group, construction of observables, and the relationship between the canonical 
and covariant phase spaces. 

1. INTRODUCTION 

One of the central features of Newtonian mechanics 
is the presence of an absolute time: a preferred foliation of 
Galilean space-time. Despite the presence of a universal 
notion of time, it is still possible to formulate dynamics in 
terms of an arbitrary time parameter. This is the “param- 
etrized” formulation of mechanics, which is obtained by 
adjoining the Newtonian time to the configuration vari- 
ables of the mechanical system. * The resulting formalism 
is often elegant but, given the existence of a preferred 
time, never really necessary. 

The need for a field-theoretic formalism that includes 
arbitrary notions of time (and space) becomes apparent 
when one studies dynamical theories consistent with Ein- 
stein’s general theory of relativity. Here there is no pre- 
ferred standard of time (or space), and it is usually best 
to keep this fact manifest by never selecting such a stan- 
dard. This can be done by including the gravitational 
field, in the guise of the space-time metric, as a dynamical 
variable and keeping the resulting “general covariance”- 
more precisely: the space-time diffeomorphism 
covariance-of the theory manifest. However, it is not 
necessary to add new physics (gravitational dynamics) in 
order to achieve a generally covariant formulation of a 
field theory. It has been known for a long timez4 that any 
field theory on a fixed background space-time can be 
made generally covariant by adjoining suitable space-time 
variables to the configuration space of the theory in much 
the same way as one does in the parametrized formula- 
tion of mechanics. This diffeomorphism covariant formu- 
lation of field theory is likewise called “parametrized field 
theory.” 

Parametrized field theory allows one to study field 
theory without prejudicing the choice of time (space), 
and for this reason alone it is a useful tool (see, e.g., Ref. 
5). Because parametrized theories are generally covari- 
ant, they also serve as an important paradigm for the 
dynamics of gravitation6 Indeed, general relativity is of- 
ten viewed as an “already parametrized” field theory; if 
this point of view could be explicitly implemented, then 

one could solve some very basic problems’ that are espe- 
cially troublesome for the program of canonical quanti- 
zation of the gravitational field. 

A relatively unexplored formulation of Hamiltonian 
gravity is based on the “covariant phase space.“*-” The 
covariant phase space is defined as the space of solutions 
to the equations of motion and thus has the virtue of 
preserving manifest covariance. Because the space of so- 
lutions admits a (pre)symplectic structure, one can still 
employ sophisticated Hamiltonian methods to formulate 
the quantization problem. Thus it is of interest to try to 
apply covariant phase space methods to study the canon- 
ical quantum theory of gravity. Given the importance of 
parametrized field theory both as a paradigm for general 
relativity and as an elegant formulation of field theories, it 
is worth examining such theories from the point of view 
of the covariant phase space. In particular, how do the 
stubborn problems of time and observables’ appear in the 
covariant phase space formulation of parametrized field 
theory? Can we use the parametrized field theory para- 
digm to better understand the covariant phase space of 
general relativity? This latter question is made more 
pressing since it has been shown recently that, strictly 
speaking, the canonical (as opposed to covariant) phase 
space structure of general relativity cannot be identified 
with that of any parametrized field theory.” As we shall 
see, the covariant and canonical approaches to the phase 
space of parametrized theories are quite different, and 
hence it is plausible that the parametrized field theory 
paradigm will be more suitable in the context of the co- 
variant phase space formulation. 

In this paper we will present the covariant phase 
space formulation of a general parametrized field theory. 
In particular we will address the issue of the action of the 
diffeomorphism group on the phase space, which is a 
delicate problem in the conventional Hamiltonian formu- 
lation,*’ as well as the related issue of how to construct 
“observable? in this formalism. In canonical gravity the 
construction of observables has so far proven intractable, 
so it is useful to see how the covariant phase space ap- 
proach handles this question. Most important perhaps, 
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we will spell out in detail the (somewhat complicated) 
relationship between the covariant and canonical phase 
space approaches to parametrized field theory by com- 
paring the phase spaces, group actions, and observables in 
each formulation. In particular, we would like to see how 
the reduced phase spaces of the canonical and covariant 
approaches manage to be the same, which is implied by 
the general results of Ref. 11. This is a nontrivial issue 
mainly because the covariant phase space admits an ac- 
tion of the space-time diffeomorphism group while the 
canonical phase space does not. I3 Presumably, these re- 
sults will at least hint at the corresponding results in 
general relativity. 

There are some disadvantages associated with trying 
to give an analysis that includes a “general field theory.” 
In particular, if one tries to give too broad a coverage of 
possible field theories, then the description becomes quite 
opaque if only because of the notational difficulties. Thus, 
for simplicity, we make some simplifying assumptions 
about the field theories being studied that, while perhaps 
violated in some very exceptional cases, are typically 
valid. One important exception to the previous statement 
is that we will not attempt to include parametrized gauge 
theories in our analysis. There are a couple of reasons for 
this. First, the structure of a parametrized gauge theory is 
rather different from that of a theory without any gauge 
invariances. This is because the parametrized formulation 
of nongauge theories leads to a phase space formulation 
that is well behaved with respect to the diffeomorphism 
group of the space-time manifold, while the parametrized 
gauge theory brings in the larger group of bundle auto- 
morphisms. It is an interesting problem to find a globally 
valid formulation of parametrized gauge theory, but we 
shall not do it here. At any rate, if one wants to use 
parametrized field theory to understand general relativ- 
ity, then the relevant group is the diffeomorphism group 
and gauge theories can thus be played down in impor- 
tance (however, see Ref. 14). One of the other main as- 
sumptions we will make is designed to simplify the task of 
relating the covariant and canonical phase spaces. Specif- 
ically, we will identify the space of Cauchy data for the 
field theory with the canonical phase space for the theory. 
Given a spacelike (Cauchy ) hypersurface, the Cauchy 
data will be assumed to be the fields and their normal Lie 
derivatives on that surface. (There are, of course, impor- 
tant cases that violate this assumption, e.g., the Dirac 
field, but such field theories present no new features in the 
context of the present investigation.) In practice this 
identification, which is tantamount to identifying the tan- 
gent and cotangent bundles over the space of field con- 
figurations, is done in terms of metrics, both on space- 
time and on the manifold of fields, but it will be too 
cumbersome to try to make explicit the identification. 

The plan of the paper is as follows. In Sec. II we deal 
with a brief summary of the salient features of parame- 

trized field theories; this includes the usual canonical for- 
mulation. In Sec. III we provide a quick tour of the co- 
variant phase space formalism and apply it to 
parametrized field theories. Next, in Sets. IV and V, we 
turn to the representations of the diffeomorphism group 
on phase space and the extraction of the observables; both 
of these issues are simply and neatly treated using the 
covariant phase space. The final section, Sec. VI, is in 
many ways the most interesting; in it we spell out the 
relationship between the covariant and canonical phase 
space formulations. 

II. PARAMETRIZED FIELD THEORIES 

We consider a collection of fields, fl, propagating on 
a globally hyperbolic space-time (A, gcrs) according to 
the extrema of the action functional 

wp? = I, J%w%f% (2.1) 

For simplicity we assume that the fields are nonderiva- 
tively coupled to the background geometry, and that the 
Lagrangian only depends on the fields and their first de- 
rivatives. The equations of motion are 

&T/s@ = 0. (2.2) 

Note that the solution space of this equation generally 
cannot admit an action of the space-time diffeomorphism 
group, Diff(d), because the metric is fixed. 

The parametrization process enlarges the configura- 
tion space by the space of diffeomorphisms from J? to 
itself. When dealing with these new dynamical variables, 
denoted X, it will be convenient to work with two copies 
of &, ..M” and J‘, and then view XEDiff(d) as a map 
from Mp to .M”, 

X:.JtP-bP. 

Thus one can think of X as a field on &p taking values in 
Aa. Tensors on Mp will be distinguished by Greek in- 
dices from the end of the alphabet, likewise tensors on 
Aa will have Greek indices from the beginning of the 
alphabet. As an important example, the metric on &” is 
g&; given XEDiff(&) this metric can be pulled back to 
Ai?? 

gpv= (x*g),,=x;xfk.lpx, (2.3) 

where XE is the differential of the map X. 
Given XEDiff( A), the Lagrangian density defined 

on Aa can be pulled back to A9 This gives an action 
that can be considered as a functional of both ~4: =X*@ 
and X: 
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S[X,q+l= JAW =-nx*i3?hw% (2.4) 

Because the original action integral is unchanged by a 
diffeomorphism acting on both gcs and ly’, the action 
S[p’,Xl is invariant with respect to changes of the diffeo- 
morphism X provided one takes into account the change 
induced in #=X*fl. This leads to the fact that if 

is timelike. Here Y,,,,” is the differential of the map Y(,). 
We will normalize n, to unity: 

@%+,= - 1. (2.11) 

An equivalent way to express the requirement that the 
leaves of the foliation are spacelike is to demand that the 
metric induced on 2, 

(2.5) 

yab:= Y(r)apY(t)bv&voY(t) 7 (2.12) 

is positive definite for each t. Note that nP and ‘y& are 
functionals of YCf). 

then the equations 

~sb?+~l =o 

6X” (2.6) 

are automatically satisfied. This can be verified directly. 
The equations (2.6) are equivalent to 

The configuration space of the canonical formalism 
consists of pairs (&,Q>, where q% = yi;& and Q: 
=X0 YCt), which are just the fields pulled back to a slice. 
Note that Q represents an embedding of B into A”: 

Q:2 -UP, 

with normal 

V,F=O, 

where 

(2.7) na=X@cloX-l. 

In (2.13) we have defined X2 via 

(2.13) 

y-P+,“= - 2g- ‘I2 SS[qJ-m 
&w * (2.8) 

xp$Yg=g 
(2.14) 

X& = @!, 
As is well known, (2.7) follows from (2.5). 

The redundancy of the Euler-Lagrange equations as- 
sociated with S[@,Xl is a consequence of the invariance 
of the action functional (2.4) with respect to the pull- 
back action of diffeomorphisms on its arguments. If 
+Diff(&), then 

i.e., Xg is the inverse to the differential of XEDiff(J), 
viewed as a map of the tangent space at pe.M to that at 
X(p). The embedding Q is spacelike; let g be the differ- 
ential of Q, then 

w*qAJw =mm - (2.9) 

Thus the space of solutions to (2.5) and (2.6) will admit 
an action (in fact more than one) of Diff(M). This will 
be discussed in more detail in Sec. IV. 

The canonical phase space formulation of parame- 
trized field theory is developed in Ref. 4; here we simply 
summarize the needed results. If X and pA are viewed as 
a collection of fields on JZ~‘, then to pass to the Hamil- 
tonian formulation we need a foliation Y of JP: 

=yab* (2.15) 

Thus the configuration space can be viewed as that of the 
fields 8 on Z along with the set of spacelike embeddings 
of Z into A”. 

The Hamiltonian form of the action is a functional of 
curves in the phase space ‘Y’, the phase space consisting of 
pairs ( &,nA), (Q,P), where IIIA and P are conjugate to 8 
and Q, respectively; it takes the form 

where Z is the three-manifold representing space. Tensors 
on B are represented via Latin indices. Derivatives along 
R are denoted with a dot. For each td2, Y becomes an 
embedding, Y, f). * I: -+&‘. We demand that the embedded 
hypersurface is spacelike, which means that the normal 
n,, to the hypersurface, defined by 

Nq,n;Q,J’,N = s (nA#+Pa@--aHa)* RXI 
(2.16) 

Y(t)aPnp=OO, (2.10) 

Here @ is the derivative with respect to the parameter t 
of a one-parameter family of embeddings and is geomet- 
rically a vector field on A”; Pa is therefore a one-form 
density of weight one on A”. N” are Lagrange multipli- 
ers enforcing the first-class constraints 
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H,:=P,+h,zO. (2.17) 

The constraints identify the momentum conjugate to the 
embedding with ha, which represents the energy- 
momentum flux of the fields ly’ through the hypersurface 
defined by Q:2-+Ja; h, is a functional of &, IIA, and Q. 
The energy-momentum flux can be decomposed into its 
components normal and tangential to the hypersurface 
embedded in A”: 

ha=-n&+@du t (2.18) 

where h is the energy density of @ as measured by an 
observer instantaneously at rest in the hypersurface and 
h, is the corresponding momentum density. Here pa lifts 
one-forms on B to one-forms on Ma restricted to the 
embedded hypersurface and is defined as 

Q2=4b&f?& (2.19) 

Ill. THE COVARIANT PHASE SPACE 

The covariant phase space approach to dynamics ex- 
ploits the point of view that the phase space of Hamil- 
tonian mechanics is a symplectic manifold. It can be 
shown that any (local) action for a dynamical system 
contains within it the definition of a presymplectic struc- 
ture on its critical points.” If there are no gauge trans- 
formations in the theory, then the presymplectic struc- 
ture is a genuine symplectic structure and one can thus 
formulate Hamiltonian dynamics on the space of solu- 
tions to the equations of motion. In relativistic theories 
this leads to a manifestly covariant phase space descrip- 
tion. 

The action functional S can be viewed as a scalar 
function on the space JZ? of all field histories, X&-R. 
From this point of view, the variation of a field is a tan- 
gent vector Y to this space. The first variation of the 
action then can be viewed as the action on Y of the 
exterior derivative of S: 

SS=dS( ?q. (3.1) 

Now restrict attention to the submanifold rC .&’ of so- 
lutions to the equations of motion. (For simplicity we 
ignore the possibility that the space of solutions has sin- 
gularities.) Then the first variation of the action reduces 
to a surface term at the (asymptotic) boundary of the 
space-time & (for an explicit expression see Refs. 10 and 
11): 

zWS(?q= s uPwwa - (3.2) 

Here i:l?-+ d is the natural embedding of the space of 
solutions into the space of all fields. The surface term 
defines the (pre)symplectic potential 0x, which is a one- 
form on I, via 

%w-;c> = s zPwm,, (3.3) 

where I: is a Cauchy surface in 4. For simplicity we will 
use the same notation (2) to denote an abstract three- 
dimensional manifold as well as for its image after an 
embedding. Whenever it is necessary to distinguish the 
two we will work explicitly with the embedding. In (3.3) 
Y is a tangent vector to I’, i.e., it is a solution of the 
linearized equations of motion. Note that, in general, 8x 
depends on the choice of 8. Denote as fl the closed two- 
form on I’ obtained as the exterior derivative of 0x: 

NAP-) =de~(F-,F-). (3.4) 

Because d’S=O, it can be seen from (3.2) that J-I is in- 
dependent of the choice of Z. (If B is not compact this is 
true only with suitable boundary conditions at spatial 
infinity.) fi is the (pre)symplectic structure. 

If there are no gauge symmetries in the theory, then 
the Hessian of the Lagrangian is nondegenerate and one 
can pass directly to the Hamiltonian form of the action. 
From this form of the action it can be seen that the 
(pre)symplectic structure defined on the covariant phase 
space l? and the usual symplectic structure on the mo- 
mentum phase space are equivalent. In particular n is 
nondegenerate in this case and is thus a true symplectic 
structure. 

If the action functional admits gauge transforma- 
tions, then 0, necessarily has degenerate directions. A 
detailed proof of this can be found in Ref. 9; it is worth 
sketching a simple proof here. First, we shall define a 
gauge transformation Y :I -+ I as any suitably differen- 
tiable map of l? onto itself that has arbitrary support on 
JY. By “support” we mean the region of space-time for 
which the transformation of field values in that region is 
not the identity. The requirement of arbitrary support is 
crucial; it guarantees that gauge transformations are, 
roughly speaking, parametrized by arbitrary functions on 
A. Now consider a one-parameter family of gauge trans- 
formations 3s beginning at the identity. If such families 
of transformations do not exist, then the symplectic struc- 
ture need not be degenerate. Infinitesimal gauge transfor- 
mations correspond to certain “pure gauge” tangent vec- 
ton 9 t0 r, 
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9:dg.f , (3.5) 
s=o 

which, thought of as fields on space-time, have arbitrary 
support on A. We want to show that for each pure gauge 
tangent vector 9, a( Y,g) =0 for all choices of Y. To 
do this consider Q(Y,s) and n(.Y,Z’), where the 
pure gauge solutions to the linearized equations, &? and 
Z’, are chosen to be identical in some (arbitrarily small) 
neighborhood of the hypersurface Z in d used to eval- 
uate fl( Y,g), but let 3 vanish on some other hyper- 
surface. Such a pure gauge solution d”’ can always be 
found because of the requirement that .?3s have arbitrary 
support. Because R is defined by an integral involving the 
fields and their derivatives on 2, it is clear that a( Y,g) 
=a( Y,Z’). On the other hand, because fI is actually 
independent of the choice of the hypersurface and 9”’ 
vanishes on some hypersurface, we see that Kl( Y-,9’) 
=O, and hence a( .Y,S ) =0 for all choices of Y. We see 
that to every infinitesimal gauge transformation corre- 
sponds a degenerate direction for a. 

Sha 6ha 
+2 SX’B sxw~+~ a "tB (6X 6g, 

&l-h 
-s2wB> +gX,a - (SqY%Fa 

-s$%xta> , 1 (3.7) 

where we use the primes to distinguish fields at different 
spatial points (on the same hypersurface). Here R is in- 
dependent of the choice of 2. 

As usual, one can show that in the degenerate case R 
is the pull-back to I of a^nondegenerate two-form, w, on 
the reduced phase space I, which is the space of orkits in 
l? of the group of gauge transformations. Thus l? is a 
symplect& manifold (possibly with singularities) ; func- 
tions on I are the “observables” of the theory. As shown 
in Refs. 9 and 11, this definition of the reduced phase 
space and observables is formally equivalent to other 
standard definitions, e.g., that coming from the Hamil- 
tonian formulation on the usual canonical momentum 
phase space. 

Application of the covariant phase space formalism 
to parametrized field theory is relatively straightforward. 
The phase space r is the space of solutions to (2.5) and 
(2.6). A point in I is a pair (q”, X) satisfying these 
equations. Tangent vectors Y to I’ at (qA, X) are pairs 
(Sp’,Sx”), which are solutions to the field equations 
which are linearized off (qA, Xa). Note SX” is a vector 
field on da generating a one-parameter family of diffeo- 
morphisms. 

The symplectic potential takes the form 

From the general argument presented above, we 
know that R has a degenerate direction for each infini- 
tesimal gauge transformation of the theory. Assuming the 
original (unparametrized) theory had no gauge invari- 
antes, the degeneracy of R will stem from the action of 
infinitesimal diffeomorphisms on I. It is easily verified 
that given +Diff(&) and a solution (q’,X) to the equa- 
tions (2.5) and (2.6), then ((P*@,Xo+) also satisfies 
these equations; this is simply the statement that the field 
equations are “covariant.” Now let 3 = (L&J’,&X) be 
the pure gauge vector field arising from the induced ac- 
tion on l? of a one-parameter family of diffeomorphisms 
4, of&p generated by the vector field d. [L, denotes the 
Lie derivative and is defined as LflA= (d/ds) &?~#1,=~, 
and L,X= (d/ds) X0+&,.] Then it folloys that 
n(Y,..Y) =OVY. The reduced phase space I is the 
space of orbits in I’ of Diff(&). Actually, at this stage 
one has to make a choice. To obtain a reduced symplectic 
manifold, it is sufficient to pass to the space of orbits of 
the subgroup Diff,(d) CDiff(J) that is the connected 
component of the identity. From the point of view of 
dynamics as symplectic geometry, it requires additional 
physical input to identify points related by “large diffeo- 
morphisms” in Diff(&)/Diff,(d). We will try to pro- 
ceed in such a way that our results are independent of the 
choice made hereA At any rate, a globally valid gauge 
which represents I is to simply fix X, e.g., X=identity, 
and we recover the original unparametrized description 
of the field theory on Aa. 

ox(Y) s, U’I,6+-hh,GXa’. (3.6) IV. REPRESENTATIONS OF THE DIFFEOMORPHISM 
GROUP 

We can now take the exterior derivative (on I’) of 0 to 
get the (pre)symplectic form R. The explicit structure of 
R depends on the specific form of the Lagrangian, but the 
general expression is of the form 

There are two natural symplectic actions of Diff (A ) 
on r: one is a right action, the other is a left action. The 
right action of &Diff(J) is defined via 

cp right’ w,m = c4*qAw>. (4.1) 
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Because fi as defined in (3.10) is independent of the 
choice of Cauchy surface, it is straightforward to verify 
that + neht preserves the presymplectic structure. 

Unlike the conventional Hamiltonian formulation of 
a generally covariant theory, the phase space representa- 
tion of the Lie algebra diff(d) cannot be via the Poisson 
algebra of functions F on l? because, in light of the de- 
generacy of the presymplectic form, the definition of such 
functions is trivial: 

dF=f2(9;) =o. (4.2) 

The representation of diff(J) on F is via the one- 
parameter subgroups of Diff(d), which are realized by 
vector fields on dp. These vector fields induce the pure 
gauge vector fields on F: 

2 = G,Jp%m. (4.3) 

Note that because R is closed and has degeneracy direc- 
tions 9 it follows that 

L&2=0, (4.4) 

which is the infinitesimal version of the fact that a,,,, 
preserves a. Given a two-parameter family of symplectic 
diffeomorphisms generated by the two vector fields on F, 
3 = (Lu(pA,.&,X) and 9’= (L&‘&J), it is a straight- 
forward computation to show that the Lie bracket 

[ 3,A?‘] = 9”, 

where 

(4.5) 

9”= (L[W,“]dL[l4”]X). (4.6) 

Thus the commutator algebra vect(J) of vector fields 
on 4” is antihomomorphically mapped into the commu- 
tator algebra of (R preserving) vector fields, vect( I) on 
I’. Using the standard antihomomorphism from diff(&) 
into vect(&), we obtain a homomorphism from diff(d) 
into vd(r). 

It is also possible to deline a left action of Diff(M) 
on F by letting the diffeomorphisms act on da and then 
using X to pull the results back to dir. Thus, given 
&Diff(&), we obtain new points in F via 

@left. bp93 = (&‘Q”~), (4.7) 

where 4=X-‘0+0X. Note that the left action of Diff(J4) 
on X amounts to a new choice of X via X-$0X, and this 
leads to a redefinition of 9” in terms of $“%p’ 
= (cpx,*ty’. 

The left action of Diff(&) on I is an antihomomor- 
phism from Diff(J ) into the group of (pre)symplectic 
diffeomorphisms of I’. This can also be seen infinitesi- 
mally, i.e., at the level of Lie algebras. Fix a point 

(FAX)&. A vector field v” on da generating a one- 
parameter family of diffeomorphisms of Aa defines a 
vector field on Jp via 

v”=xpv”ox= (X*v)r. a (4.8) 

Even though d so-defined is a “q number” (or in the 
language of Ref. 9 generates a field dependent local sym- 
metry), it still leads to degenerate directions for R 
through (4.4). As before, if we let -Y’ = (Lq@,L$) 
and 9’ = (LgqA,L~ X), then the commutator of these 
two vector fiel& is g;en by 

[ 9,9’] =9”, 

where 

(4.9) 

LIT”= hqv,wy#%~[“,w)x). (4.10) 

The right action of Diff(&) on l? views JY~ as fun- 
damental and (q’,X) as simply a collection of fields on 
dp’. It is this action of the diffeomorphism group that is 
directly available on the covariant phase space of general 
relativity. lo The key feature of the right action that makes 
it viable in general relativity is that it does not require a 
split of the phase space into nondynamical variables X 
and dynamical variables #. The left action, on the other 
hand, stems from the action of DiffW) on Aa, and it is 
only by identifying &” as the image of #’ under the 
map X that this action can be constructed. The left action 
is quite natural from the point of view of the parame- 
trized field theory because it realizes the diffeomorphisms 
directly on Aa, which is essentially the goal of the pa- 
rametrization process. It is unknown how to achieve such 
an action in general relativity. This would require a clean 
separation between gauge variables and dynamical vari- 
ables, which is of course a long-standing problem in grav- 
itation. 

V. OBSERVABLES 

Because the symplectic structure is degenerate, in or- 
der to obtain a conventional phase spaccdescription one 
must pass to the reduced phase space F, which can be 
identified with the space of diffeomorphism equivalence 
classes of the fields (@,X) that satisfy the field equations. 
Functions on the reduced phase space are the “observ- 
ables” of the theory. The observables can be represented 
as functions on I that are invariant under the (left or 
right) action of Diff(d) described in Sec. IV. 

An important class of observables is obtained from 
any “constants of motion” that the the field theory for @ 
may admit. More generally, if there exists ap-form p built 
from the fields ly’ (and the metric gap) that is closed 
when @ satisfies its equations of motion, then the integral 
Q&t/] of /3 over a closed p-dimensional submanifold a, 
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Q.&Y = j-/s (5.1) 
Q> right~~A=ww*w*9Jo 

= w’)*w’)*(~*qJ? 
is independent of the choice of (T (within its homology 
class). The subscript g indicates that Q will in general 
depend on the metric on J”. Pulling p back to JY” via X 
yields a closed p-form fl’ =X/3 on Jp and an observable 
Q’[X,q]:=Qm&p]. To see this, consider a diffeomor- 
phism 4 of JY~ and let (T be some p-dimensional subman- 
ifold of +.&p. For simplicity, let us assume that we restrict 
our attention to orientation-preserving diffeomorphisms. 
For any integral we have the identity 

=(x-l)*@ 

=xd 
= uA. (5.5) 

It follows that UA are also left invariant by the left action 
of Diff(J) on I’. 

VI. RELATION TO THE CANONICAL THEORY 

J/*F= J#(y)P~. (5.2) Let us now compare the canonical and covariant 
viewpoints on the phase space, the gauge group, and the 
observables. 

where 6(o) is the image of u under the diffeomorphism. 
Because p’ is closed, the right-hand side of (5.2) is inde- 
pendent of the choice of closed p-dimensional submani- 
fold within the homology class of o, which is preserved 
by Diff(& ), hence we can replace 4( 0) with (T to con- 
clude: 

A. Phase space 

JoW= s,P’. (5.3) 

Thus Q’[X%$,r$*~] = Q’[X,q], and Q’ is an observable. 
Unfortunately, there is no guarantee that there are 

any such closed forms for a typical field theory, and even 
if they exist there will usually be only a finite number of 
them. What is usually desired is a complete set of observ- 
ables thatzan serve (at least locally) as a set of coordi- 
nates on I. For a field theory such a set is necessarily 
infinite dimensional. 

One complete set of observables that is always avail- 
able if the unparametrized field theory has no gauge sym- 
metries are the fields fl themselves. Let us exhibit these 
observables as functions on the covariant phase space F. 
Given a point (9)At,X)rI’, we can obtain a collection of 
fields bA on da via 

UA: =x*qP, (5.4) 

where X, denotes the push forward of tensors on Jp to 
tensors on A” by X. By the way we constructed the 
parametrized formalism in Sec. II, it is clear that the 
fields dA, defined by (5.4), satisfy the equations of mo- 
tion (2.2) and hence are identifiable with the fields ly’ of 
the unparametrized theory. Are the fields BA, viewed as 
functions on F, observables? To see that they are we ex- 
amine the right action of Diff(.&) on l? and verify that 
UA is invariant under this action. The right action of 
&Dill’(&) on UA is 

The covariant phase space F is built from space-time 
fields and space-time diffeomorphisms satisfying (2.5) 
and (2.6). The canonical phase space Y is built from 
spatial fields that are Cauchy data for (2.5), along with 
spacelike embeddings and their conjugate momenta. How 
can I’ and ‘Y’ be related? Let us begin by answering the 
question at the level of the unparametrized field theory 
describing the fields fl on Aa. Assuming the Cauchy 
problem is well posed, there is a bijection between the 
space of solutions to (2.2) and the set of Cauchy data for 
(2.2). In fact, there are an infinite number of ways to 
construct a bijection from the space of Cauchy data onto 
the space of solutions. This can be seen as follows. Intro- 
duce an arbitrary, but fixed, spacelike hypersurface B in 
Aa. Because the Cauchy problem is well posed, each set 
of Cauchy data on B leads to a unique solution of (2.2). 
Conversely, each solution to (2.2) induces a (unique) set 
of Cauchy data on 2. For each choice of Z such a cor- 
respondence can be made; each map between Cauchy 
data and space-time solutions is bijective provided the 
function spaces for the solution space and Cauchy data 
are appropriately chosen. The symplectic structures on 
the covariant phase space and on the space of Cauchy 
data are mapped into each other by the induced action of 
the bijection. More succinctly, the covariant phase space 
and the canonical phase space are symplectically diffeo- 
morphic. 

Now return to the parametrized theory. A point in F 
is determined by (i) picking a diffeomorphism, (ii) pull- 
ing back the prescribed metric on A”, and (iii) solving 
the Euler-Lagrange equations (2.5 ), which are defined in 
terms of the pulled back metric. An allowed point in the 
canonical phase space lies in the constraint surface y 
defined via (2.17); a point in T is obtained by simply 
picking a spacelike embedding Q: 2-J” and a set of 
Cauchy data on X [the embedding momenta are deter- 
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mined by the constraints (2.17)]. Corresponding to a 
given point in I’ there are an infinity of points in f be- 
cause for every spacelike embedding there is a set of 
Cauchy data that generates the given solution. In the 
formalism based on ‘Y it is precisely the canonical trans- 
formations generated by the constraint functions in 
(2.17) that map points in T to other points in y corre- 
sponding to the same spacetime solution. This redun- 
dancy in Y’ is somehow to be matched by the redundancy 
in r, which treats diffeomorphically related solutions as 
distinct. 

The relation between r and y is again made by in- 
troducing an embedding Y: ~-UP; for now we will not 
assume that the embedded hypersurface is spacelike. For 
each diffeomorphism X: JP+.P there is an embedding 
XoY of I: into Aa. In addition, the solutions to (2.5) 
(and their derivatives) can be pulled back to B using Y. 
Thus each point in I’ defines a point in the product of the 
space of Cauchy dam for (2.5) [or (2.2)] and the space of 
embeddings of B into Aa. Let us denote this product 
space as ‘Y’ and the image of I’ in Y’ as Ar. Note that the 
map from r to Y’ need not be surjective and certainly 
cannot be injective because two different diffeomorphisms 
X,#Xz can have the same action on a given hypersur- 
face: X,0 Y=X20Y, and two distinct solutions to the field 
equations (2.5) can induce the same data on a slice pro- 
vided the slice is not a Cauchy surface. 

Because the space of spacelike embeddings is an open 
submanifold of the space of embeddings, it follows that y 
is an open submanifold of A r. The fact that the constraint 
surface arising in the canonical approach can be identified 
as a proper subset of the (image in Y’ of the) covariant 
phase space has important repercussions for the action of 
the spacetime diffeomorphism group on the canonical 
phase space. 

Let us denote the inverse image of T as F, anr r: 
f’+F the surjecti~n that assigns to a point (qA,X)EI’ the 
point (&,#,Q)EY, where 

4” = mA, 

p”’ FL&, (6.1) 

Q=XoY. 

The map P is not injective. To see why, let us think of rr 
as taking a solution qA and a diffeomorphism X and con- 
structing a spacelike embedding Q: 2-+Aa and the 
Cauchy data on this hypersurface for the solution fl 
= X,#. This interpretation is possible because (i) X0 Y: 
B +A” is by assumption a spacelike embedding and (ii) 
pX*= P. Now, if two points in F are mapped to the 
same point in T, then, because the Cauchy problem is 
well posed, the two points in i= necessarily correspond to 
the same solution @. Because of the way the parame- 

trized field theory is constructed from the field theory on 
Aa, or, equivalently, from our construction of observ- 
ables in Sec. V, it is a simple exercise to see that this can 
happen if and only if the two points in i= are related by 
the (right) action of Diff(4) on I’. Thus r fails to be 
injective whenever (i) one has two diffeomorphisms 
(X1,X,) that have the same action on the fiducial embed- 
ding Y, and (ii) the two diffeomorphisms and two cor- 
responding solutions to (2.5)) (pf,&), are related by the 
right action of (yet another) diffeomorphism p: 
A@‘+#‘. Notice that (i) and (ii) imply p must neces- 
sarily fix the embedding E 

poY= Y. (6.2) 

Having spelled out the relationship between ?; and T, 
let us relate the respective presymplectic structures. The 
presymplectic potential on the constraint surface (2.17) 
TC Y can be written as 

e(S&tsnJjQ) = S, (~AW-QW). (6.3) 

The map P pushes forward a vector y= ( SqA,SX) tan- 
gent to f; at (#X) to a vector n,r 
= ( y*scpA, r*L,G~A,Gxo Y) tangent to T at 
( P#,Xo Y). It follows from (3.6) that on F we have 
e,(y) = f3( r*Z;r), and hence 0x=n*O. This means 
that, on i?;, a=dez is the pull back by P of the presym- 
plectic structure d6J on the constraint surface in ‘Y. Note 
that while the identification off; with y is dependent on 
the choice of E Z-L&‘, the presymplectic structure it- 
self is independent of the choice of Y. 

B. Gauge transformations 

We have exhibited both a left and a right action of 
Diff( A) on the covariant phase space I’. Because the 
map from I to Y’ is neither one to one nor onto there is 
no reason to expect that we can push forward to Y’ the 
Hamiltonian vector fields that generate the group action, 
and it is easy to check that, in fact, we cannot carry the 
group action from r to Y’. However, if we restrict atten- 
tion to 7~: F-+T the situation improves. It is still not 
possible to push forward the vector fields generating the 
right action, but it is possible to push forward the Hamil- 
tonian vector fields generating the left action. To see this, 
we must check that the failure of rr to be injective does 
not destroy the induced group action on y. Consider two 
points (pf,X,) and (pi,X,) in 1; that map to the same 
point ( Q,$,pA) in y. Now consider an infinitesimal dif- 
feomorphism 4 whose left action on 1; gives two new 
points ((XT ‘040X1> *qJ$Pm and ((X, ‘04 
0X2) *&,@JXJ. (We use an infinitesimal diffeomorphism 
so as to preserve the spacelike character of the embed- 
dings; the infinitesimal action of one-parameter sub- 
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groups is sufficient for studying the Hamiltonian vector 
fields.) The infinitesimal group action carries over con- 
sistently to 7 because, as mentioned above, there must 
exist peDiff(J) that fixes Y and such that X,=X,op, 
q$=p*q#. In detail 

(6.4) 

is consistent with 

4” -42 ‘A= Yyx,-‘ofpx;!)*p;, 

/‘piA= y*(X,‘%poX2)*L,cp,:, 

(6.5) 

because (by assumption) 

Q;=~oX20Y=t$oX,oY=Q; 

and 

(6.6) 

=((X,“p) -‘o~oxpY)*p*p~ 

= P(X,‘o~oX,)*cp:=q;A, 

py= y*(x,-‘o~ox2)*L,~; 

(6.7) 

=((X,op) -‘“~“x,v)*p*L,~~ 

= Y*(X1’o~oX1)*L,~~=p;A. (6.8) 

In (6.8) we used the fact that p leaves invariant the hy- 
pet-surface embedded by Y so that (~*n)~=n~. 

We see then that the infinitesimal left action of 
Ditf(M) on l? can be carried over to the canonical phase 
space formalism, i.e., the Lie algebra diff(.M) is realized 
on T, which was shown completely within the canonical 
approach by Isham and Kucha?.13 However, the group 
action fails to carry over for two reasons. First, the failure 
of P to be l-l prevents the Hamiltonian vector fields 
generating the action of Diff(&) on l? from being 
pushed forward to Y’. Second, while the vector fields on 
F can be pushed forward to y, these vector fields cannot 
be complete because (as emphasized in Ref. 13 ) Diff (.M ) 
always maps some spacelike hypersurface into one that is 
not spacelike. 

Often one does not exhibit the constraint functions in 
the form (2.17) as is natural when studying the represen- 
tation of diff(J), but rather in the projected form 

HL:=naHazO, 
(6.9) 

H,:=~HazO. 

When smeared with a scalar function ZV-’ and a vector N 
on 2, these constraint functions respectively generate ca- 
nonical transformations corresponding to normal and 
tangential deformations of the embedding of Z into Aa. 
This is also the meaning of the constraints occurring in 
general relativity although it is not known how to cast 
them into the parametrized form. In contrast with the 
deformation of a hypersurface along some arbitrary vec- 
tor field, a normal deformation involves the metric and 
this leads to the well-known complication that the Pois- 
son algebra of the projected constraint functions cannot 
represent a Lie algebra. Thus if we define 

H(N’):= NlH,, 
s 2 

H(N):= N”H,, 
I I: 

then we have the Poisson brackets 

(6.10) 

WW1),HW1) 1 =H(J), 

[H(W,H(M) 1 =HUNM), (6.11) 

WW%HW 1 =H( -Ld% 
where 

P=y=6(N1&A41-M1&,N1), (6.12) 

and hence the finite (as opposed to infinitesimal) canon- 
ical transformations generated by the projected constraint 
functions cannot realize a Lie group. The “open algebra” 
(6.11) can be summarized in terms of functions 
H(N’,N) on Y, where 

H(N*,N):=H(N’) +H(N) 

satisfies 

(6.13) 

[H(N’,N),H(&,M)] =H(L&-LLMN1,LNM+J). 
(6.14) 

The projected constraint functions are distinguished 
by the fact that their Hamiltonian vector fields are com- 
plete; in particular, the finite transformations generated 
by these functions map spacelike hypersurfaces to space- 
like hypersurfaces. For this reason, despite the technical 
complexity of the algebraic structure involved, one may 
choose to view the constraints (6.9) and the “hypersur- 
face deformation algebra” (6.14) as fundamental. At any 
rate, there is no known alternative to this “open algebra” 
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in general relativity. Consequently, it is of interest to in- 
terpret this algebra from the perspective of the covariant 
phase space. 

Because there are no hypersurfaces to be found in the 
realm of the covariant phase space, in order to make 
contact with the algebra (6.14) some spacelike hypersur- 
faces will have to be provided. So, for the purposes of the 
present discussion, let us assume that we identify dp= R 
XZ and require that the diffeomorphisms X are in fact 
spacelike foliations X: R x 2-+Ma. [If desired, a fixed 
spacelike foliation Y: R X Z -+ &’ can be introduced, and 
points in the covariant phase space identified with pairs 
( Y*qA,Xo Y) .] Each foliation X provides Aa with an 
adapted hypersurface basis built from the unit normal 
and tangent vectors to the hypersurfaces in Aa, which 
are defined as in Sec. II. In particular, 

g%Jzp= - 1. (6.15) 

A basis on dp can then be obtained by pull-back from 
that on &“, the relationship being 

np = ParfoX, 

~=x$QX. (6.16) 

On l?, the hypersurface deformations can be viewed 
as a modification of the right action of the infinitesimal 
diffeomorphisms that is available when one has a space- 
like foliation. We build a vector field p on &p’= R X I; 
by specifying the amount of normal (N’) and tangential 
(N”) deformation of each hypersurface 2: 

W=N%‘+iVX$ (6.17) 

To compute the induced action of these vector fields on 
the covariant phase space we consider the pure gauge 
vector fields 9,s’ on P defined by S = (LflA,LNX), 
9’ = ( LM(P~,L~X) (w is defined similarly to Np) and 
compute the commutator [S,q’]. The variations in np 
are computed using (6.15) and (6.16); after a straight- 
forward computation we find 

[9,9’] =9”, 

where 

A?-“= (Lh+#$LN+jX), 

(N*M)p= (iUa~,N1-iV~,,M1)n~ 

+(fbg(MIV,,NL-N'V@) 

+~~~dv"-N%W~~, 

(6.18) 

(6.19) 

and 4’ is the inverse metric induced on the leaves of the 
foliation. Comparing (6.19) with (6.14) it follows that 
the construction (N’,N”) -+w+ L??’ described above rep- 
resents an antihomomorphism from the algebra of hyper- 
surface deformations into the algebra of (a preserving) 
vector fields on r. 

C. Observables 

In the canonical Hamiltonian formulation of dynam- 
ical systems with (first class) constraints “observables” 
are defined as functions on the phase space that have a 
vanishing Poisson bracket with the constraint functions 
modulo the constraints. More geometrically, observables 
are functions on the phase space which project to the 
space of orbits of the Hamiltonian vector fields in the 
constraint surface. These abstract ways of defining ob- 
servables are meant to capture the notion of observables 
as “gauge invariant” functions on the physically accessi- 
ble portion of the phase space. 

In the canonical formulation of parametrized field 
theories the constraint functions generate canonical 
transformations corresponding to the change in the phase 
space data as the hypersurface they are on is deformed 
through space-time. The embeddings change according to 
the deformation, the truly dynamical variables (#,H,) 
change according to the dynamical equations, and this 
induces the change in the embedding momenta via the 
constraints (2.17) that are preserved in the course of the 
dynamical evolution. Because this motion on Y can be 
viewed as the infinitesimal action of Diff(&),13 it follows 
that in the canonical formalism the observables can be 
equivalently characterized as either constants of motion 
or invariants under infinitesimal diffeomorphisms. The 
latter characterization makes direct contact with the co- 
variant phase space notion of observables, but the observ- 
ables constructed in Sec. V differ somewhat from the con- 
stant of motion observables on Y. 

To see this we must spell out the construction of 
observables in canonical parametrized field theory, which 
is essentially an application of Hamilton-Jacobi theory. 
Imagine solving the Hamilton equations of motion for the 
canonical variables. This can be done by solving the 
many-fingered time functional differential equation@ 

W(x) -= ~‘?M%(Y) I, 
K?(Y) 

(6.20) 
sl&(x) 
-= [Wd~),Ha(~)l, W(Y) 

along with the constraints (2.17). Here the brackets are 
the Poisson brackets, and we allow the usual abuse of 
notation which identifies the solutions to the equations of 
motion with the canonical variables themselves. The so- 
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lution is thus specified by giving the canonical data as a 
funcgonal of the embeddings Q agd a set of initial data 
(p,lIA) on an initial embedding Q: 

~~=~,tQ,?“,ii,l, (6.21) 

dki?%Al=?“, 

~A[&?$41 =fiA . (6.22) 

For each Q (and 6) Eqs. (6.21) specify a diffeomor- 
phism (p”,fi,) + (&,IIA) that preserves the natural sym- 
plectic structure on the space of pairs (&,nA). In other 
words, dynamical evolution is a canonical transforma- 
tion. Inverting the map (6.2 1) amounts to expressing the 
initial data as a functional of the solution: 

fi~=fi,&?,~~,~~l. (6.23) 

Because initial data are always “constants of the motion,” 
the functionals on Y specified in (6.23) will have 
(strongly) vanishing Poisson brackets with the constraint 
functions, 

[?,H,l =O= te,&Jalp (6.24) 

and therefore represent a set of observables. Obviously, 
this set is complete. Therefore, in canonical parametrized 
theory the natural observabgs correspond to the freely 
specifiable sauchy data ( p,IIA) on a hypersurface deter- 
mined by Q. Note that this means that there will always 
be a symplectic diffeomorphism that identifies the observ- 
ables with points in the canonical phase space for the 
unparametrized theory. 

Our construction of the observables UA on the cova- 
riant phase space also led back to the unparametrized 
theory: the space of observables is equivalent to the space 

of solutions to (2.2). As mentioned above, the space of 
solutions to (2.2) is symplectically diffeomorphic to the 
space of Cauchy data for (2.2) which is, in turn, (as- 
sumed) equivalent to the canonical phase space of the 
unparametrized theoAq. Thus the reduced phase spaces in 
each case coincide: I E Y. 

Notice however that it is only the reduced phase 
spaces that coincide. The relation between I and Y is not 
entirely simple; indeed, one can at best identify y with an 
open subset of I. In particular, r admits an^action of 
IJifF(&) but Y (gr y> does not. Thus, while I arises as 
I’= l?/Diff(d), Y is obtained as the space of orbits of a 
much more complicated structure than a Lie group and 
these orbits are in a rather different spacz than I. In this 
sense it is perhaps remarkable that T--T. 
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