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A new, general, field theoretic approach to the derivation of asymptotic conservation laws is pre-
sented. In this approach asymptotic conservation laws are constructed directly from the field equations
according to a universal prescription which does not rely upon the existence of Noether identities or
any Lagrangian or Hamiltonian formalisms. The resulting general expressions of the conservation laws
enjoy important invariance properties and synthesize all known asymptotic conservation laws, such as
the Arnowitt-Deser-Misner energy in general relativity. [S0031-9007(96)01656-0]

PACS numbers: 03.50.—z, 04.20.Cv

In nonlinear gauge theories such as Yang-Mills theory The purpose of this Letter is to describe a new, general
and general relativity, conserved quantities such as chargmnstruction of asymptotic conservation laws for classical
and energy-momentum are computed from the limitingfield theories which provides a viable alternative to exist-
values of two-dimensional surface integrals in asymptotiégng methods. Our construction is based upon a remark-
regions. Suclasymptotic conservation lavese most of- able new spacetime differential fort, which we derive
ten derived by one of two, rather distinct, methods. Ondor any system of field equations. We show, by virtue
method, applicable to gauge theories such as Yang-Millef an identity involving the exterior derivativ®¥ and
and general relativity, relies upon the construction of identhe linearized field equations, thdt defines asymptotic
tically conserved currents furnished by Noether’s theorentonservation laws (when they exist) for any field theory.
[1-3] and subsequent extraction of a “superpotential” torhus we are able to establish that asymptotic conserva-
define a conserved surface integral. Unfortunately, theréon laws for field theories can be viewed as arising from
is no general field-theoretic criterion to select the appro{asymptotically) closed differential forms canonically as-
priate current: Fomny field theory there are infinitely sociated to the field equations. We also show that
many currents that can be expressed as the divergence péssesses a number of attractive field theoretical prop-
a skew-symmetric super-potential, modulo the field equaerties. In particular, this differential form is constructed
tions. This method of finding asymptotic conservationdirectly from the field equations according to a univer-
laws is thus somewhatd hoc An alternative approach sal prescription which does not rely upon the existence of
to finding asymptotic conservation laws in gauge theoNoether identities or any Lagrangian or Hamiltonian for-
ries is based upon the Hamiltonian formalism. In thismalisms. The form enjoys important invariance properties
approach, asymptotic conservation laws arise as surfa@nd synthesizes all known asymptotic conservation laws;
term contributions to symmetry generators [2,4—6]. Thefor example, it is easily seen to reduce to the Arnowitt-
Hamiltonian approach to finding asymptotic conservatiorDeser-Misner (ADM) energy in general relativity. We
laws lacks thead hocflavor of the superpotential formal- emphasize that in obtaining these resultsanpriori as-
ism but is somewhat indirect: To construct asymptoticsumptions are made concerning the space of gauge sym-
conservation laws using this method one must have thmetries of the theory. The symmetries required for the
Hamiltonian formalism well in hand and one must know existence of asymptotic conservation laws are automati-
a priori the general form of the putative symmetry genera-cally derived as a consequence of our general formalism.
tor in order to find the appropriate surface integral. Thus our formalism contains a number of distinct field
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theoretical advantages. With regard to specific applicaand their formal linearizatiod,Ag = 0. Such linearized
tions, we are able to extend existing results on asymptoticonservation laws play a pivotal role in the general theory
conservation laws in a number of ways. For example, wef lower-degree conservation laws, as presented in [8]
obtain covariant expressions for asymptotic conservatiofsee also [14]). In [8] it is shown that every closed
laws which can be used to generalize the conservatiop form w[h], depending upon the fieldg4 and their
laws in asymptotically flat general relativity and Yang- derivatives and linearly on the field variatiomd and
Mills theory to other asymptotic structures. We alsotheir derivatives, can be cast intauaiversal normal form
obtain a formula which generalizes the asymptotic conser¥,[4], which depends upon certain auxiliary fielgs
vation laws of the Einstein equations to arbitrary secondthat are subjected to a set of algebraic and differential
order metric theories. To illustrate this latter point, weconstraints. This normal form, which forms the basis
consider a class of “string-generated gravity models” [7]for our construction of asymptotic conservation laws, is
It follows immediately from our formalism that the stan- obtained as follows. Details, generalizations, and further
dard ADM formulas still describe conservation of energy,examples of this construction will appear in [8].
momentum, and angular momentum for these theories, at To begin, it is helpful to write the formal linearization
least in the asymptotically flat context. of the field equations (1) as

To describe our results in more detail, let us fix
an n-dimensional spacetime manifold/, with local

coordinatesx’, i = 0,1,...,n — 1, and let us label the \ye then define dinear lower-degree conservation law

totality of fields for our classical theory by, A = for the field equations (1) to be a form w[4], where
I,...,N. These fields are subject to a system of fieldp < n — 1, of the type

equations which we write as
Ap(e?, i 0%ij) = 0. (1)

We have postulated that the field equations are of second o
order only for the sake of simplicity. The general theoryWhich satisfies
which we outline here is developed in [8] for field _ B Bi

. : Dwlh] = p~6,Ap + 'D; 6,Ap + -+
equations of arbitrary order. To address the problem of wolh]=p ’;i iB_“i P OhEE
finding asymptotic conservation laws for (1), we begin by + p Dy, i O Ap . (5)
first broadening the usual notion of a local conservatior]n Egs. (4) and (5) the coefficienMi"iz'"i’ and pBiixi
law. We say that @onservation law of degrege for (1) are spacetime forms and(p + 1) forms, respectively,

is a spacetime form which depend on the fieldg# and their derivatives.
® = wp, x [x @M dx" A o A dxt (2)  Equation (5) is an identity in the field variatioh¢' and
their derivatives but is still subject to the field equations
Ap = 0. The next step is to derive equations for these
multipliers p from the integrability conditionD?w[h] =
Dw = (Dkwkli..kl,)dxk AdxF A A dxR (3) 0. ltisaremarkable fact that the highest order multiplier

. . . . Biii-i i thus constrained by purely algebraic condition
vanishes on all solutions to the field equations. In (), P y 2) yadg
J

is the usual total derivative operator. When=n — 1, pBUEic A dxloly = 0. (6)
we may express (2) in the forme = gy,.i, ,J¥dx* A . . .

... A dx*1 in which case the vanishing of (3) coincides We cr_ﬂll this fundamental equatldh_e algebraic Spencer
with the vanishing of the divergend,J* of the current €quation for the linear conservation law[/] for the
J. Accordingly, we shall say that the-form conserva- field equations (1]15]. For the field equations that one

tion law (2) is anordinary or classical conservation law typically considers, itis not too difficult to apply standard
in the casep = n — 1 and alower-degree conservation methods from tensor algebra to solve the Spencer equation

lawwhenp < n — 1. (6) [8]. '!'he solutions to (6) (_)ften allpw one to simplify
Recently ([8—13]) a number of methods have beerihe identity (5), by repeated “integration by parts,” to the

developed for the systematic computation of all lower-réduced form

degree conservati.on laws for field .equations such as D). Dw[h] = pB8,Ap. )

The central premise of this note is that the techniques

introduced in [8] can be successfully adapted to theWe remark that for Lagrangian theories, full knowledge

analysis of asymptotic conservation lawsThe principal of the gauge symmetries of the theory often allows one to

ideas are as follows. & is a lower-degree conservation pass directly to the reduced form (7).

law for Az =0, then it is readily checked that the Define p? = dx’ A p® and defineu? to be the inte-

variation 8, » of w with respect to field variations® =  rior product u? = 9/dx’ = pB. Assuming that the re-

¢4 is closed by virtue of the field equationsz = 0  duced equation (7) holds, we then have the following

_ A i pA A
5hAB = O'AB]’Z Jij + O-ABh i + O'AB]’Z .

w[h] = MAhA + MX hA’l-] + ..+ Mj‘lizmikhA,iliz...ik s
(4)

depending locally on the fields* and their derivatives to
some finite order, such that the exterior derivative
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complete characterization of all linear lower-degree con- To demonstrate the utility of our general theory of

servation laws of degree < n — 1[8]. asymptotic conservation laws, and to expose some of its
Theorem (classification of linear lower degree conser-novel features, we consider the vacuum Einstein field

vation laws)—Let Ag(p?, ¢ ;, ¢4 ;;) = 0 be a system equations. Here, as a consequence of (8a), the auxiliary

of second-order field equations and suppose the linear fields p are determined by a single vector fietdand the

form w[h] satisfies the reduced equations (7). Then (ij)normal form¥ ,[/] becomes

the conservation law multipliep? satisfies

B(i Jk> _ BGi _J) Bli J K1 _ 1 o
P oa =0 P~ OB + ka ] 0, \PX[h] 6 Eijhk (vuhrs)Xla-”’rsu']
o
p¥oas + Dj[PB(IO'AB] =0; (8a,b,c) |
(i) the p form + 3 hrs(VuX,)a""’”“j:|
W, [h] = ; hA|:,u,?0'23 - p —— Dj(u; O'A]B):| X dx" A dx®, (20)
2 where V is the covariant derivative defined by the
+ ht 9 . "
g+ 1 Pl o], ©) Chritoffel symbols of¢ and "' = aG"*/ag;; m(go)

whereq = n — p, is closed by virtue of the equations is the symbol of the Einstein tensor. In expanded form,

Ap = 0,8,A5 = 0, and (8); and(iii) every linearp form  Vx[] becomes
w[h] satisfying (7) differs from,[ ] by an exact linear

(p = 1) form. Wylh] = o e AV, X0 = 2~ AVIXT — X, VRl
We remark that this theorem can be readily generalized xh] 27 oijnl ! 2 !
to the case where (5) holds, rather than (7). + XUV R = ) dx" A dxk, (11)

To use this theorem for computing asymptotic con-
servation laws we proceed as follows. Suppose th@v
spacetimeM is non-compact and admits an asymptotic
region which is diffeomorphic tR X C’, whereC’ is
the complement of a compact set R"!'. Fix local

hereh = g”h,,, and indices are raised and lowered with
respect to the background metric. The differential form
(11) recently appeared in [2] [see Egs. (61), (63), and
o (75)], where it was derived from the Noether identities

coordinates (7, x! ) in the asymptotic region. and used in the study of black hole entropy
We conS|deraf|xed solutloqﬁA to the field equatlons and The spacetime form¥y[h] possesses tHe following
then, given a second solutigst, we seth! = ¢* — ¢°, desirable properties which reflect general features of our
Let w[@,h] be a srﬁcenme(;z‘ — 2) form depending formalism [8].
locally on the fields¢” and & anq their derlvatlve_s. (1) The formWy[A] is closed by virtue of the Einstein
We C‘?" @ an Esymptot!c conservation law for t(,he. field equation for the backgroungl and the linearized Einstein
equations AAB =0 _relat|ve to the. backgroundgg i, equations for the variatioh, provided thatX is a Killing
Whquverh satlsﬂe? ;[he ar;p2ropr|ate asyrrjf)tzotlc decayvector field of the background. By using the classification
condition asr Zo\/(x 2+ (22 4+ (2 =0, haorem above it can be shown that, modulo 2-forms
the p form o[, h] satisfiesw ~ O(1) and Dw ~  yhich are exact by virtue of these equatiols,[/] is the
O(1/r).  Under these conditions the I'm't,ﬁolc'm only linear lower-degree conservation law for the vacuum
fS wl[é, h], where S, is an (n — 2)-dimensional Einstein equations.

here of radiug in ther = #y hypersurface, exists and  (2) It is readily established that under the gauge trans-
is independent of,. We therefore can deduce from our formationk;; — h;; + A Yj) the formWx[h] changes by
classification theorem that if the asymptotic boundaryan exterior derivative of a canonically defined one-form.

conditions are such that This implies that¥'x[ 4] is suitably “gauge invariant.”
(i) ¥, [n] ~ O(1), (3) The form Wx[h] is constructed directly from
(i) the equationss,Ag(8) = 0 hold asymptotically to the field equations in a covariant fashion and with
an order such thgi?s,Az(8) ~ 0(1/r), and no reference made to the Bianchi identities or to any

(i) the conservation law multiplier equations (8) hold, Lagrangian or Hamiltonian. Indeed, most properties of
not exactly and not for all field values, but only @tand  W¥x[k] can be inferred directly from properties of the
only to the appropriate asymptotic order, tte normal  symbol of the Einstein tensor.
form W,[h] will be an asymptotic conservation law for  (4) If the vector field X is an asymptotic Killing
the field equationsAz = 0 relative to the background vector field forg and if » = g — ¢ satisfies appropriate
solution . We note that the conditions (i), (ii), and (iii) decay conditions, thenx[#] is always an asymptotic
can be relaxed so long as the relevant integrals arisingonservation law for the Einstein field equations.
from the application of Stokes Theorem to (7) vanish (5) In terms of the(3 + 1) formalism, a lengthy but
asymptotically. straightforward computation shows that the pullbackf
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Wy[h] to a leaf of a foliation of spacetime by spacelike compute the asymptotic conservation laws for string gen-

hypersurfaces becomes erated gravity in the asymptotically flat content from (10).
| Because the string-corrected symbol reduces to that of the
0w = —[GYUNX "V yhea — heaVpXT) Einstein equations on a flat background, it follows imme-
167 diately that the conservation laws (11), (12) still apply in
+ 2Xb 8t — XOhegm? the presence of the corrections to general relativity sug-
— Tp(h Xb — h® X9)]d2S, . (12) gested by string theory.

In summary, the theory of linearized conservation laws
In this equation ()X and X’ are the normal and |eads to a new, efficient, systematic, and covariant method
tangential components of a Killing vector with respectfor obtaining asymptotic conservation laws in field theory.
to the spacelike hypersurface ard is the normal- e expect that this approach will prove useful for a
tangential component of'; (i) the derivative operator wide range of field theories and asymptotic boundary
V,, is compatible with the background metig, induced  conditions which have been heretofore unexplored and

on the hypersurface; (iii) we have defined we anticipate that the spacetime fonin,[/2] will be a
1 valuable tool in the further study of conservation laws in
Gabed — 5 ,y1/2(,yac,ybd + ,yad,ybc _ zyab,ycd); field theory.
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