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Quantum dynamics of the polarized Gowdy T* model
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The polarized Gowdy T3 vacuum spacetimes are characterized, modulo gauge, by a “point particle”” degree
of freedom and a function ¢ that satisfies a linear field equation and a nonlinear constraint. The quantum
Gowdy model has been defined by using a representation for ¢ on a Fock space F. Using this quantum model,
it has recently been shown that the dynamical evolution determined by the linear field equation for ¢ is not
unitarily implemented on F. In this paper, (1) we derive the classical and quantum model using the “covariant
phase space” formalism, (2) we show that time evolution is not unitarily implemented even on the physical
Hilbert space of states HC F defined by the quantum constraint, and (3) we show that the spatially smeared
canonical coordinates and momenta as well as the time-dependent Hamiltonian for ¢ are well-defined, self-
adjoint operators for all time, admitting the usual probability interpretation despite the lack of unitary dynam-

ics.
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I. INTRODUCTION

Over the past 30 years, spacetimes admitting two com-
muting Killing vector fields have been studied repeatedly as
“midisuperspace’” models for canonical quantum gravity;
see, for example, Refs. [1-11]. These models admit an infi-
nite number of degrees of freedom—they are field theories —
and as such they are more sophisticated than the “minisuper-
space”” models, which are mechanical models with a finite
number of degrees of freedom. In particular, the quantized
midisuperspace models can bring into play intrinsically
quantum field theoretic features which have no analogues in
quantum mechanics. One of these features—the failure of
time evolution to be unitarily implemented—is the impetus
for the present paper.

Of the midisuperspace models the Gowdy class [12] is
interesting since it defines an inhomogeneous cosmology in-
cluding a big bang or a big crunch. It was first studied as a
quantum gravity model by Misner [2] and Berger [3], who
explored a variety of approaches to defining the quantum
theory and extracting physics from the polarized Gowdy T*
model. This model arises by assuming spacetime is not flat,
that it has the topology RX T?, and that there is an Abelian
two-parameter isometry group with spacelike orbits T>CT?
generated by a pair of commuting, hypersurface-orthogonal
Killing vector fields. In this setting, the vacuum Einstein
equations imply that, modulo gauge and a ““point particle”
degree of freedom, the classical dynamics of this model are
governed by a function ¢ that satisfies a linear field equation
and a nonlinear constraint. The field equation is equivalent to
that of a one-dimensional symmetry reduction of a massless
free scalar field propagating on a flat spacetime (M, g). The
spacetime (M, g) can be viewed as the causal region of (a
compactification of) a three-dimensional version of Misner
spacetime.! The Gowdy time foliation equips (M, g) with a
foliation by expanding (or contracting) spatial sections,
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along which the time evolution of ¢ is given by the linear
field equation. The constraint requires the total momentum of
the scalar field ¢ to vanish. One of the quantizations of ¢
studied by Berger [3], and subsequently studied by Husain
[4], Pierri [10], and Corichi et al. [11], is equivalent to the
restriction of the standard quantum theory of a massless free
scalar field on three-dimensional Minkowski space to the
compactified Misner spacetime (M, g). This defines a Fock
space representation for ¢. The total field momentum can be
defined in this representation and physical states are eigen-
states of it with zero eigenvalue. Thus the polarized Gowdy
T? model is defined as a constrained quantum field theory.

In Ref. [11], it was observed that the time evolution of ¢,
as defined by its linear field equation, cannot be implemented
as a unitary transformation on the Fock space described
above. This sort of phenomenon, which is not unexpected in
quantum field theory [14,15], has been seen in other, related
settings [16,17]. The lack of unitary dynamics leads the au-
thors of [11] to conclude that the quantized model under
consideration is not physically viable. In this paper we will
extend the results of [11] in three significant ways, which
will be described in the following paragraphs.

First, the classical analysis we develop in Sec. II as the
underpinning for the quantum theory (Sec. III) is quite dif-
ferent from the standard Dirac techniques utilized in [10,11]
since we formulate the model using the “‘covariant phase
space” formalism [18]. This feature of our work is perhaps
of some intrinsic interest since it represents a nontrivial ap-
plication of that formalism. The principal utility of the cova-
riant phase space approach to the Gowdy model is that it
allows for an independent, relatively simple construction of
the ‘“‘deparametrized” dynamical system, which is not en-
tirely straightforward in the Dirac type of approach featuring
in [10,11] owing to the presence of the point particle degrees
of freedom which are subsequently mixed in with the time
variable during the deparametrization process. The covariant
phase space formalism allows one to work directly with the
classical spacetime and this makes it very easy to keep track
of the field degrees of freedom, the point particle degrees of
freedom, and the choice of time that is used in the model.
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Second, we show in Sec. IV that the proof of the failure of
time evolution to be unitarily implemented on the initial,
“auxiliary” Fock space can be extended to apply to the
physical Hilbert space of states defined by the momentum
constraint. A priori, it is possible that the dynamical evolu-
tion is unitarily implemented on the physical Hilbert space
but not on the auxiliary Hilbert space. In this scenario the
polarized Gowdy T® model would have unitary dynamics,
physically speaking, with the nonunitarity found in [11] just
being a technical complication. We show, however, that this
is not the case.

Third, we show in Secs. V and VI that, despite the failure
of time evolution to be unitarily implemented, a number of
basic operators have entirely satisfactory behavior. In par-
ticular, the canonical coordinates and momentum of the
quantum field ¢ and all their derivatives (when spatially
smeared with smooth functions) are at each time well-
defined self-adjoint operators with continuous spectrum on
the real line. Therefore, if not for the existence of the mo-
mentum constraint, which restricts the class of physical op-
erators, the canonical field operators would represent observ-
ables with a perfectly acceptable physical interpretation in
the Heisenberg picture. Operators representing physical ob-
servables can be obtained from the canonical field operators
by projection into the physical Hilbert space [10], and the
self-adjointness of the field operators implies that these op-
erators are again physically acceptable, despite the lack of
unitary dynamics on the physical Hilbert space. Moreover,
we show that the one-parameter family of Hamiltonians for
the deparametrized Gowdy model can be defined as self-
adjoint operators both on the auxiliary Fock space and on the
physical Hilbert space, despite the fact that the dynamical
evolution they generate is not unitarily implementable.

The results summarized in the previous paragraph indi-
cate that it may be possible to considerably soften the con-
clusions reached in [11] concerning the physical viability of
the quantum Gowdy model. We discuss the situation in Sec.
VII.

II. POLARIZED GOWDY MODEL: CLASSICAL THEORY

Fix standard coordinates (,x,y,z) on M =R" ><T3, where
t>0 and 0<x,y,z<2. The polarized Gowdy T3 metrics
are defined by [12,19]

g=He" 9 (—dt®dt+dx®dx)

+1e ?dy@dy+e®dz®dz}, (2.1)

where />0 is a constant and both y=+vy(f,x) and ¢
=@(t,x) are periodic functions of x with period 27. The
space of Gowdy metrics is thus parametrized by (/,y,¢).

The vacuum Einstein equations, when restricted to (2.1),
are equivalent to

1

_(P,tt_?(P,t+(P,xx=O7 (22)

t
V=5 (@it e)=E vmre0 =T (23)
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All smooth solutions to Eq. (2.2) are of the form

1 | I .
o(t,x)=—(gq+pht)+ — E a,Hy(|n|t)e™
PSR 5 21”=;0°°[ o(|n]

+afHg(In|r)e™™], (2.4)

where H, is a Hankel function of the second kind” and the
sequence {a,} is rapidly decreasing, i.e., its elements ap-
proach zero faster than the reciprocal of any polynomial in n
as n— =, Given Eq. (2.4), the solutions to Eq. (2.3) can be
expressed in the form

t X
7(t,x)=yo+f dt’E(t',x)-I—f dx'Tl(ty,x"), (2.5)
To

X0

where 7, is a constant. The metric function vy is thus param-
etrized by vy, and ¢. [The quantities (#,,xy) can be fixed
arbitrarily; different choices of them merely redefine v, .]
Because v is periodic in x it follows from (2.3) that

©

2
CEIJ dxIl(x)= >, nla,|*=0,
0

n=-—o

(2.6)

which can be viewed as the sole remnant of the Hamiltonian
and momentum constraints. Note that C is independent of ¢,
so that the constraint (2.6) need only be imposed at a single
value of 7.

According to Egs. (2.1)—(2.6), the set of smooth solutions
to the Einstein equations for the polarized Gowdy metrics
can be identified with the set

T={(l,y9,9.p-a,,aF), n=%x1,£2,.|C=0}. (2.7)

The set I" has a presymplectic structure naturally defined by
the Einstein-Hilbert action as follows.> With a convenient
normalization, the Einstein-Hilbert action takes the follow-
ing, remarkably simple form when restricted to the Gowdy
metrics (2.1):

2We could equally well use Hankel functions of the first kind,
which is the choice made in [10,11]. The choice used here has the
feature that its notion of positive frequency agrees with that defined
by the timelike Killing vector field of Minkowski space when the
field ¢ is interpreted as a function on the interior of the future light
cone. This is the same convention used in the “Schmidt model”
[20]. No results in this paper depend upon which type of Hankel
function is used.

3Using the results of [21] it can be shown that the polarized
Gowdy isometry group satisfies the “principle of symmetric criti-
cality.” This implies that any generally covariant local variational
principle for a spacetime metric, when restricted to the set of all
metrics admitting the polarized Gowdy isometry group, yields the
correct set of reduced field equations.
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1 2
S[l,y,¢]=(ﬁ) L eR

ty 2@
=—lf dtf dxty =yt e,
1 0

+ ! ! 24 L2 28
7Tyt O (2.8)
Of course, one cannot obtain all the field equations (2.2),

2
0( 61,8y ,6¢)= j dx(tdy,—tép ,— dy+te ,6¢)
0
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(2.3) as critical points of Eq. (2.8) since gauge fixing condi-
tions have been used to define (2.1).* Nevertheless, as we
shall see, this action is suitable for defining a presymplectic
structure on I'.3 Following the general prescription of [18],
vary the action (2.8) and extract the resulting boundary term,
which defines a (-dependent) one-form on the space of dy-
namical variables (/,vy,¢). Pull back this one-form to I" to
get the presymplectic potential. At a point (/,y,,¢) eI, the
value of this one-form on a tangent vector (6l,0y,,0¢) is
given by

2 X t
=J’ dxl{—5y0+t65—t5<p’,—J dx’éH(tO,x’)—f dt'58(t’,x)+t(p’t5<p]
0 X0 ty

=1

2@ X t
215(—27T70+IE([)_\/27T/lp_j dxf dx’H(tO,x')—f dt'E(t")
0 X0 t

where

E(t)= J:wdx E(t,x). (2.10)

One point to keep in mind here is that the fields ¢ and their
variations ¢ are subject to the field equations and con-
straints. The presymplectic two-form is obtained from the
symplectic potential by exterior differentiation. At the point
(L,y9,9)el’, the two-form evaluated on a pair of vectors

(81,8, ,0¢) and (81,8, ,d0¢) is given by
(81,8 ,60:01,8y,,0¢)
~ ~ 27T ~ ~
=0lo&E— Ol 6E+ J dx(OP 40— 5P¢5¢),
0
(2.11)
where
p=\lp, Py =t\lg,, (2.12)
and
“One can get only the ¢ field equations from varying ¢ in Eq.
(2.8). The equations obtained from varying vy are trivial since y only
appears as a divergence. The equation coming from varying [ is

nontrivial, but is automatically satisfied when ¢ and vy satisfy Egs.
(2.2), (2.3).

2@ X t 2w
—2176y0+t5E(t)—\/2775(%) —f dxf dx' STI(z, ,x')—f dt’5E(t')+f dxte 0@
0 X0 t 0

0

2w
+J’ dxlte b, (2.9)
o 0
[
i=—2ay,ttE(t)—27/lp
2w X t
—f dxf dx’l_[(to,x')—f dt'E(t")
0 X0 1y
+ L1 szd P 2.13
37, x P y(t.x)p(t,x). (2.13)

From the field equations it follows that & (like / and ) is a
constant of motion:

dg_
E—O. (2.14)

From the field equations and their linearization it follows that

d - - -
Ew(él,&yo,égo;&l,&yo,5<p)=0, (2.15)

so the presymplectic structure is defined independently of the

SFrom the point of view of a traditional Dirac type of Hamiltonian
analysis, one can interpret this action and its presymplectic structure
as corresponding to the result of a partial gauge fixing and deparam-
etrization, with all of the first class constraints except Eq. (2.6)
being rendered second class, followed by the use of Dirac brackets.
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value of ¢. This is guaranteed by the nature of its construction
[18].°

The form w is degenerate because ¢ is subject to the
constraint (2.6). The degeneracy directions for w are given
by

ol=0=056¢, do=¢,, (2.16)
which implies, in particular,
Syo=11 ((19.%¢), (2.17)
so that
w(61,8yy,6¢;0I1 ,(19.x0),¢ )=0. (2.18)

The vector field on I" defined by Eq. (2.16) generates a one-
parameter presymplectic group of transformations on I':

§—¢&.

We can interpret the presymplectic structure on I' as fol-

lows. Consider  the unconstrained space r
={,y0,9.p,a,,a),n==1,22_.}. Define a nondegener-
ate two-form @ on this space using Eq. (2.11), but without
imposing C=0= 6C. It is straightforward to verify that @ is
conserved by virtue of the field equations and their lineariza-
tion, so that this symplectic form is ¢ independent. From @

o(t.x)—@(t,x+N), (2.19)

[—1,

we can read off a canonical chart for I'; the canonical pairs
are (¢,P4) and (§,0). Since />0 it is convenient to define
new canonical variables (Q,P) e R? by

0=Inl, P=-I¢. (2.20)

We extend the one-parameter group (2.19) and its infinitesi-

mal generator (2.16) to I in the obvious way. The presym-
plectic space of solutions (I', w) can then be reconstructed

from (I",@) by (i) imposing the constraint

2
c:f Py =0, (2.21)
0

thus defining ' CT", and (ii) pulling back the symplectic two-
form @ to I, thus defining w.

To summarize, the space of solutions to the vacuum Ein-
stein equations for the Gowdy metrics (2.1) consists of a
“point particle” degree of freedom with canonically conju-
gate variables (Q,P), and a field degree of freedom de-
scribed by ¢, or equivalently the canonical variables
(¢,P¢), or equivalently the variables (¢,p,a, ,a,’f) n==1,
+2...., subject to the constraint (2.6) or (2.21). This charac-
terization of the vacuum Gowdy spacetimes is essentially the
same as obtained from the Hamiltonian methods of [7,10,11].
The only significant differences are as follows. First, by
working directly with the space of solutions to the field equa-

®In fact, a similar computation shows that (d/dr) 851,87y, ,0¢)
=0. 0 is conserved because of a special feature of the Einstein-
Hilbert action: it vanishes when the field equations are satisfied.
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tions, the metric variable 7y can be defined in terms of ¢
using an integral over time (and space) rather than the purely
spatial integral that is used in the Hamiltonian formalism.
Second, the “point particle” degrees of freedom (Q, P) have
been defined as constants of the motion and have been
clearly disentangled from the time variable. There is no “g-
number” aspect to the time, such as arises in [10,11].”

Dynamical evolution from t=t¢, to t=t, can be viewed as
a presymplectic map 7, ,: I'=T (see, e.g., [17]). The map
takes a given solution (/,7y, ,¢) of the Einstein equations to a
solution (/,yy,$) whose Cauchy data at r=¢, are the
Cauchy data for (I,yy,¢) at t=t¢,. In particular,

o(t)=e(t3),
1@ ()=t (13). (2.22)

Since the general solution to the field equations is known

explicitly, it is straightforward to construct (1,9,,%)
= 7;1 ,tz(l,'}’() ,@). We have

Yo=7%, I=l=0=0, P=P, (2.23)
G(1,x) : (G+pInt)+ :
tx)=— nt)+ —
¢ V2l p 2421

X E [anH0(|n|t)einX+c"l;kH6k(|n|t)e*inx]’

n=—o

n#0

(2.24)
where
q—q+pln(%), p=pr, (225)
and
a,=a,a,+Ba*, (2.26)
with
i
an:T|"|[I1HT(|”|H)H0(|”|I2)
—t,Hg ([n|t)Hy(|n|t,)] (2.27)
and

"These authors rescale the time variable with a dynamical variable
constructed from the point particle degree of freedom so as to sim-
plify the form of the field equations for the field ¢. However, this
complicates the dynamical behavior of the point particle degrees of
freedom. By working with constants of motion, these complications
are avoided.
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i
,8,,=T|n|[t1Hik(|n|t1)H(’5‘(|n|t2)

—t,Hi ([n]t)H (In|ty)]. (2.28)

The same equations (2.23)—(2.28) define a symplectic map
T.T-T.

III. POLARIZED GOWDY MODEL: QUANTUM THEORY

The quantization of the polarized Gowdy model used in
[3,4,10,11] can be understood in the present formulation of
the model as follows. Define a Hilbert space H by

H=L*(R*®F, (3.1)
where F is the symmetric Fock space built from the Hilbert

space of square-summable complex sequences ¢, , n==*1,
+2
*2,..,

go |, <. (32)

Any W e F can be represented as an infinite sequence of
complex sequences®

\P:(IAO’¢/n17¢mlm27--wlﬂml-“mkv-“)v (33)
where i, € C,
lpml'“mk:w(ml“'mk)’ (34)
and
|l//0|2+2 2 |lzbm1---mk|2<oo' (35)

k=1 my--m;#0

The canonical pairs (Q, P) and (g, p) are represented as iden-
tity operators on F and are represented on (a dense domain
in) L*>(R?) exactly as one would canonical coordinates and
momenta for a particle moving in two dimensions, e.g.,

y=(x.y) e LX(R?), qy=x¢,

1 1
plp:?dx‘/l’ Qy=yi, Pl//:l_.&yl,b. (36)

(Other equivalent representations are, of course, possible.)
The remaining degrees of freedom in the field ¢ are repre-
sented as identity operators on L*(R?) and are represented
on the Fock space F as follows. Using the representation
(3.3) for W € F, we define annihilation and creation opera-
tors for each /#0 by

8Here 4, is the “vacuum amplitude,” W, is the amplitude for
“one-particle with momentum m;,” etc. For convenience, we rep-
resent the entire sequence { ¢, ,k=*1,%=2,...} simply by the symbol

Wy -
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az‘I’:(lﬂz ’ﬁlﬁlml"/glplmlmz"") (37)
aI*\I,: (07¢05m11 ,\/25[(m1¢m2) 7‘/351(ml¢'m2m3) ’) .
(3.8)

These operators (on their common domain) satisfy

ay=(a,)", lay.an]=8yul. (3.9)
The quantum field ¢ is defined as an operator-valued distri-
bution on R*XS' using the operator representation of
(q.p,a,,a¥) in the expansion (2.4). This quantization just

described satisfies the prescription
) 1

{Poisson bracket}« —{commutator}
i

for the canonical coordinates on I", where the Poisson alge-
bra is defined by the symplectic form @.

The representation of (a,, ,a¥) on F just described can be
viewed as the outcome of a general procedure, in which the
Fock space representation is defined once the appropriate
“one-particle Hilbert space” is extracted from the space of
solutions of Eq. (2.2) (see, e.g., [22]). Let us sketch this
construction since some of its ingredients will be useful in
what follows. Modulo the zero frequency modes (g,p), the
space of solutions to Eq. (2.2) can be identified with the
space S of rapidly decreasing sequences of complex numbers
p={p,}, n==1,%22,... The symplectic form @ can be
pulled back to give a symplectic form () on S. Introduce a
scalar product u: SXS—R by

1 % *k
wp.0)=5 2 (pio,+aip,). (3.10)
n#+0

Following the prescription found in Ref. [22], this scalar
product can be used to define a Hilbert space H of square-
summable sequences of complex numbers (denoted as be-
fore) such that the Hilbert space scalar product is given by’

(p.0)=1u(p.0) = 5 (p.00). (3.11)

H is the one-particle Hilbert space out of which the symmet-
ric Fock space F is constructed via tensor products and direct
sums, as usual.

The relation between this way of describing the Fock rep-
resentation and that of Refs. [10], [11] is as follows. In Refs.
[10], [11] the one-particle Hilbert space is extracted from the
space of solutions S of Eq. (2.2) by defining a suitable com-
plex structure J: S—&. This complex structure can be ob-
tained from the scalar product p and symplectic structure ()
by “raising an index” on () using w so that

Q(p,o)=2u(p,Jo). (3.12)

The bilinear forms x and Q on S are extended to H by complex
linearity and continuity.
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As noted above, this quantization is based upon the ca-
nonical commutation relations associated with the symplec-

tic space (I",@), which is the space of solutions to all field
equations except for the constraint (2.6). The usual strategy
for imposing the constraint is to represent C as a suitable
operator on H and then to define the Hilbert space of physi-
cal states, thys , as the kernel of C. To do this we proceed in
a slightly roundabout fashion which is technically more con-
venient and which provides a simple example of a general
strategy we shall use again when discussing the Hamiltonian.
Essentially, we shall define C as the generator of the unitary
transformation that implements the classical transformation
(2.19). The physical Hilbert space is then defined as the set
of vectors which are invariant under the unitary group.

The transformation (2.19), extended in the obvious way

from I to I, corresponds to the symplectic transformation

(g.p)—(q.p), (Q.,P)—(Q.P),

(a,,af)—(e™a, e "™ a¥).

(3.13)
It is easy to check that this one-parameter group is strongly
continuous'® in \ relative to the norm
lpll*=p(p.p) (3.14)
defined on H. It then follows from the results of [15] that the
symplectic group (3.13) is implemented in the sense that
there exists a (strongly) continuous group of unitary transfor-
mations U(N): F— F—uniquely determined up to a phase for
each A —such that
Ut(N)a,UN)=e"a, . (3.15)
In fact, since the Fock representation is the Gelfand-
Naimark-Segal (GNS) representation of a state canonically
built from w [22], unitary implementability follows directly
from the observation that the symplectic transformation pre-
serves the scalar product u [23]. Choosing the phases so that
the Fock vacuum state is invariant under the unitary group,
we have, using the representation (3.3),

U()\)\I’:(l//() ’efiml)\l)[,ml’efi(ml+m2))\
—i(my+my+etmp)
Xl’b’"l’”z""’e i ) ‘/’m|m2“'mk’~-')~

(3.16)

The quantized constraint (again denoted C) is defined as

AU

C=i ,
dn |,

(3.17)

Using the representation (3.3), C is given (on an appropriate
dense domain) by

19The transformation group p— p(\) is strongly continuous if and
only if limy _, [[o(\) = p(Xo)[[*=0, ¥V XoeR.

PHYSICAL REVIEW D 66, 084017 (2002)

Clp:(Omlwml’(ml+m2)¢mlm2""7(ml+m2+' "+mk)

X o) (3.18)
We extend the definition of U(\) and C to H by defining
these operators to be the identity on the L*(R?) factor. We
define the physical space H,,,CH as the set of vectors in-
variant under the unitary group U(\):
Hopys={¥ e HIUN)P =V, V NeR}. (3.19)

It follows that ¥ e H
(3.3) satisfy

Yim, =0.

phys if and only if its Fock components

wmlmzz 5(]’”1 +m2)/\/ml >
(3.20)

l//mlmz"'mk: 5(/’"] +m2+' ”+mk)x)(mlm2'“mk71,

where the sequences {¢, ¥ m,¥m my-m,} are each

square summable. This is formally equivalent to the usual
definition of H,,, in which C is defined by normal ordering
and the physical states are annihilated by C.

IV. NONUNITARY DYNAMICS ON Hpys

The principal finding of [11] is that the Gowdy model
time evolution is not unitarily implemented on the auxiliary
Hilbert space H. In our formulation of the model this result
arises as follows.

Time evolution is defined in the Heisenberg picture by the
(pre)symplectic transformation (2.23)—(2.28). Time evolu-
tion is unitarily implementable on H if and only if there
exists a unitary transformation U=U(t,,t,): H—H such
that

ufQu=9, U'PU=P, 4.1)
153 .

UlqU=q+pIn —| UpU=p, 4.2)
1

UTanU=anan+,8naT_n,

UlalU=afal+BFa_,. (4.3)

There is no obstacle to satisfying Eqgs. (4.1) and (4.2), but
Eq. (4.3) is possible if and only if the sequence {8,} is
square summable [24] (also see [22] and references therein).
From the large-argument asymptotic expansions of the Han-
kel functions appearing in 3,, it follows that 3, is not square
summable,

(12— 1,)*
2:——‘,—
BiP=gr+0

1
n#0
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so U, as defined above, cannot exist.

Strictly speaking, this does not establish that the time evo-
lution fails to be unitarily implemented in the Gowdy model
because the Hilbert space H is merely an auxiliary device
used to construct the physical Hilbert space Hyys. Time
evolution need only be unitarily implemented on H,; a
priori it is possible that a unitary U: H,ys— Hppnys €Xists, but
has no appropriate extension to all of . As it turns out, this
scenario does not occur and time evolution cannot be uni-
tarily implemented on H, either. So this loophole in the
argument for nonunitarity given in [11] can be closed. We
demonstrate this as follows.

We first note that the product of any vector x e L*(R?)
and the “vacuum state” in F,

Vy=x®(1000,..), “4.5)
is a “physical state,” that is,
UMW, =T, (4.6)

so that W € Hyys - Next we note that a_a, , k#0, defines
a linear operator on (a dense domain in) H,, . We define the
time evolution of this operator to be that induced by the
Bogoliubov transformation (2.26)—(2.28):

a,kak—>(a,ka,k+B,ka,t)(akak-i—ﬁkaik). (47)

It is easy to check that the right hand side of Eq. (4.7) defines
a linear operator on (a dense domain in) H,, . We now
show that the square-summability condition on {83,} is again
necessary for the transformation (4.7) to be unitarily imple-
mentable on H,,. To this end, we suppose that there is a
family of unitary transformations

U(tl ’t2): thys*)thys (48)

that is continuous for all #,, 1,>0 and satisfies

U(t,t)=1, U(t),t))U(ty,t3)=U(t].t3). 4.9)
U'(ty 1) a_a U(ty 1)
=(a_a i+ B_a))(aaptBa’,y). (4.10)
The condition (4.10) implies that
(a_ya_i+B_rap) (et Ba’,)
XU (ty,t,)¥y=0. 4.11)

From Egs. (4.6), (4.8) and (3.20) we have that U™, takes
the form

U'(t1.1) ¥,
=x®(40.0,0(m+m;) P, 0(my+my+ms)
X g o). (4.12)

for square-summable lﬂ’”n’ 1,0,,,1,”2, . The vacuum compo-

nent of Eq. (4.11) implies
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Br

P :__% (4.13)

From Egs. (4.13) and (3.5), a necessary condition for
U'(t, ,t;)¥,—and hence U(t, ,t,) —to be defined is square
summability of {i,}. Because the sequence {«a;} is bounded
from below away from zero and also bounded from above,
square summability of {i;} is equivalent to square summa-
bility of {fB,}, assuming that ¢,#0. Because U(?,,t,) is
continuous in each argument, it follows from Eq. (4.9) that
o7 0. Therefore, unitary implementability on H,, requires
square summability of {8;}, which does not hold, Eq. (4.4).

V. SELF-ADJOINTNESS OF CANONICAL FIELD
OPERATORS

Here is is shown that, despite the failure of time evolution
to be unitarily implemented on H or H,, the canonical
coordinates and momenta for the field ¢ are well defined,
self-adjoint operators for all >0 and admit the usual prob-
ability interpretation.

The canonical field operators (¢,P ) associated with a
time  are formally defined as distributions on S' via [cf. Eqgs.
(24) and (2.12)]

©

d(x)= \/%(CI"‘P Int)+ 21%"_230 [Ho(|n|t)e™a,

n#0
+HE(|n|t)e ™al], (5.1)
P y(x) : till[H(ll)'
X)=—p— —— n n|t)e™a,
N = 2205 :
+H¥(|n|t)e "™ al]. (5.2)

These distributions formally define canonical field operators
(&(f).P 4(g)) associated with any smooth real-valued func-
tions fand g on S':

d(f)=folg+tpInt)+ \/2—;

X 2 [Ho(lnlof—a,+H(nl0f,a)]. (53)

n#0
o0

mw
Pue)=gor— 5 2 _lnllHi(Inlg-a,

n#0

+H{(|n|0)g,al]l. (5.4)

where

(5.5)

1 o]
f= \/:n; —\/:n_Zm gne'

Note that the sequences {f,} and {g,} are rapidly decreasing.
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To make these formal definitions precise we consider the
dense subspace

HOZDX]‘—()CH,

where DCL?(R?) is a common, invariant dense domain for
the operators (¢,p,0,P) [e.g., in the representation (3.6) D
could be chosen to be smooth functions with compact sup-
port] and F,C F is the dense set consisting of vectors with a
finite number of nonzero components when represented ac-
cording to Eq. (3.3) (i.e., Fock states with “a finite number
of particles™). It follows that 7, is a dense, invariant domain
for the canonical field operators. Moreover, it is easily
checked that these operators are Hermitian (i.e., symmetric)
on Hj.

Because ¢ and p are already defined as self-adjoint opera-
tors which commute with a,, and al, in order to show that
&(f) and P4(g) are self-adjoint it is sufficient to restrict
attention to the field operators modulo the constant modes,
which amounts to using test functions f and g in Egs. (5.3)
and (54) with f,=0=g,. We then proceed by using the
approach described in Sec. X.7 of [25]: prove that F; is an
analytic domain for ¢(f) and P 4(g) (without the constant
modes). Nelson’s analytic vector theorem then implies essen-
tial self-adjointness of the canonical field operators and
hence a unique self-adjoint extension. The details follow.

Begin with a Fock state with exactly N *“particles:”

W= (00, oo 00...) € Fy.

With ¢ fixed but arbitrary, define

a(fHo):rgo f-.Ho(|n|t)a,

a*<fHo>=n§0 fH(|nl0)a) .

It is straightforward to verify the inequalities

(N+p)!
la(FH)" W=\ L HalPl o,
(N+p)!
R N e e T L P YO
where
IfHoll?= 2, |f.Ho(|n|0)],
n#0
D W [ R CE)

The first sum in Eq. (5.7) converges provided {f,} is square
summable, which it is since f: 8! —R is smooth. The second
sum in Eq. (5.7) converges since {#,,,...,, } must be square
summable if W is to be in H. The inequalities (5.6) imply
that
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(N+p)!
[6(r W= = IfHllgl 69)
By definition, W is an analytic vector for ¢(f) when
2 o) Wlg<e ¥ s. (59)

From Eq. (5.8) it follows that

Lol (N+0)!
60wl 7= 1w\ = IHollgl, - (5.10)

from which it follows that Eq. (5.9) is satisfied. This result
easily generalizes to superpositions of vectors with different
(but finite) numbers of “particles” and thence to all of F.

The preceding paragraph shows that, with respect to
&é(f), Hy is a dense, invariant, analytic subspace of H.
Therefore ¢(f ) is essentially self-adjoint on this domain and
has a unique self-adjoint extension [25]. In a similar fashion
one can show that P 4(g) can be defined, for all time t>0, as
a self-adjoint operator for any smooth function g. The only
change needed in the argument given above is the replace-
ment

HO(|n|t)f114>t|n|H1(|n|t)gn' (511)
Indeed, as long as the spatial smearing functions are smooth,
all spacetime derivatives of ¢ can, for each >0, be defined
as self-adjoint operator-valued distributions on S'.

The spectrum of each of the canonical field operators and
their derivatives is the whole real line, for all #>0. This can
be seen, for example, by comparing expressions such as (5.3)
and (5.4) with their counterparts for a free field on a flat
spacetime in inertial coordinates, which have continuous
spectra for all choices of the test functions. The Hankel func-
tions appearing in Egs. (5.3) and (5.4) can then be viewed as
simply redefining the test functions.

The spectral theorem [26] guarantees that for each self-
adjoint operator A on a Hilbert space H there is a unique-
projection-valued measure o({)) associated with any measur-
able set () CR such that

Azf Nda(N), (5.12)
R

Given a state represented by the unit vector ¥ e H, the prob-
ability P,({)) that the observable represented by A is found
to take the value in the set (J CR is given by the expectation
value

Pi(Q)=(V,o0(Q)P). (5.13)
Temporarily ignoring the constraint and working on H, this
result can be applied to the (spatially smeared) canonical
field operators at each time >0, whence the usual probabil-
ity interpretation can be implemented. Note, in particular,
that probabilities always add up to unity because
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o(R)=1, (5.14)
where I is the identify on H.

Of course, ‘H is not the physical Hilbert space H,,y, nor
do the canonical field operators represent observables since
they are not linear operators on H,s - The point is, however,
that the failure of unitary implementability of dynamics on H
does not destroy the physical viability of the field operators
(ignoring the constraint). Taking account of the constraint is
technically more complicated, but does not alter this conclu-
sion. Self-adjoint operators on H, can be defined by com-
posing polynomials in the (spatially smeared) canonical field
operators at each time >0 with the projection operator into
Hohys [10]. From the spectral theorem, these operators repre-
sent observables with the usual probability interpretation, de-
spite the lack of unitary dynamics on H. Another ex-
ample of a self-adjoint operator on H is provided by the
time-dependent Hamiltonian, which we shall study next.

VI. SELF-ADJOINTNESS OF THE HAMILTONIAN(S)

Here it is shown that each element of the one-parameter
family of Hamiltonians for the classical Gowdy model can
be promoted to a self-adjoint operator on H and/or on H s -
At first sight, this result seems to contradict the failure of
time evolution to be unitarily implemented. There is no con-
tradiction, however. The usual link between unitary transfor-
mations and self-adjoint generators (Stone’s theorem [26]) is,
precisely, that every continuous one-parameter unitary group
has a self-adjoint generator, and vice versa. Now, as seen
below, the Hamiltonian for the Gowdy model depends ex-
plicitly upon the time ¢, and the time evolution generated by
a time-dependent Hamiltonian need not generate a one-
parameter group. Indeed, the dynamical evolution (2.23)-
(2.28) does not form a one-parameter group, so that Stone’s
theorem does not apply.

The classical Hamiltonian for the polarized Gowdy model
can be viewed as a one-parameter family of functions H(?):

'R, which can be expressed in any of the following
equivalent forms:

H(t)=I1E(1)
2 11
:fo dx§<7pf,,+t¢'2)

1 1
:_P2+2 _An(t)anafn_l—Bn(t)a:‘an
2t n#0 2

+ %A;’:(r)a:fa*n) , (6.1)
where
Tt
Ay(t)= ¥ {[Ho(|n|) P+ [H\(In]0]7}, (62)
t
B,(1)=  n’[Ho([n|OP+H (In[0)P]. - (6.3)
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The functions H(t) are generators of the transformation
(2.23)—(2.28) in the following sense. The infinitesimal form
of the transformation (2.23)—(2.28) at time ¢ is given by'!

6l=0=90y,=0=0= 6P, (64)
J
Se=@,, Olte)=—(1¢,). (6.5)
We have, for any tangent vector (61,0, ,0¢),
@(61,6yy,69:00,¢ ,)=06H(1). (6.6)

To define H(¢) as a family of operators on H, we proceed
as we did when defining the constraint operator C. For each
fixed time =7 we compute the one-parameter symplectic

group on (I',@) generated by'?> H(7). As we shall see, this
one-parameter symplectic group can be implemented as a
continuous unitary group on H. The infinitesimal
generator—the Hamiltonian—can then be defined via
Stone’s theorem. Finally, it is easy to check that this unitary
group preserves H , so that the Hamiltonians thus defined
are self-adjoint operators on Hy . Here are the details.
The one-parameter group generated by H(7) can be

viewed as a transformation on I ':

(1’70 »q,P Ay ,a,f)—>(l(s),70(s),q(s),p(s),ak(s),a;f(s))

(6.7)

defined by (the overdot =d/ds)
@(51,8v0,0@,1,%y,¢)=0H(T), (6.8)

so that
. . , , p(s)

0()=P(5)=p(5)=0, d(s)=—, (©9)
dm(s): _iBm(T)am(s)_iA:Z(T)aﬂ—{m(s) (610)
am($)=iBy(T)ay(s)+iA,(T)a_,(s).  (6.11)

The point particle degrees of freedom (Q, P) are group in-
variants. The zero-frequency field modes (g, p) transform as
do the coordinate and momentum of a free particle with mass
7 under time evolution. These transformations are certainly
implementable as a continuous one-parameter unitary group.
The transformation of the nonzero-frequency field modes re-
mains to be considered. The solution of Egs. (6.10), (6.11) is
given by

"Note that the variation does not commute with the time deriva-
tive since the form of the canonical transformation (like its gener-
ating function) depends upon time.

’We emphasize that this group is not the set of time evolution
canonical transformations.

084017-9



C. G. TORRE

B, (7)
a,(s)= cos(|m|s)—iWsin(|m|s) a,(0)

iA(7)
|ml

am(s)=(a,(s))*.

sin(|m|s)a*,,(0),

(6.12)

Using the theory of unitary implementability [24,22] of sym-
plectic transformations, the transformation (6.12) is, for each
s, unitarily implementable if and only if

Ap(7) :
> sin(|m|s)| <ee. (6.13)
n#0
It is straightforward to check that
, 1 1
|Am(T)| :ﬁ—i_o ? P (614)

so that Eq. (6.13) is satisfied.

Furthermore, the transformation (6.12) can be imple-
mented as a continuous, unitary, one-parameter group if it is
strongly continuous in the norm (3.14) [15]. Strong continu-
ity means

lim [la(s)—a(so)[*= lim > |a,(s)=a,(so)|*=0,
5= s%son#o
(6.15)

which is easily verified as follows. The Bogoliubov coeffi-
cients in Eq. (6.12) are bounded so that there is an n-and
s-independent constant such that

|an(s)| g(COHSt)Han(SO)| + |a7n(s0)|]' (6]6)

Therefore

|an(s)_a;1(50)|2$(|an(s)| +|an(S0)|)2
= (const)[|a,(so)[*+a_,(so)[*

+la,(so)lla(so)l]. (6.17)

The right hand side of this inequality defines a square-
summable sequence of real numbers, thanks to the square
summability of a,(s(). (Square summability of the first two
terms is obvious; the last follows from the Schwarz inequal-
ity.) By the Weierstrass M test [27] this guarantees that
Sla,(s)—a,(sy)|* converges uniformly for all s. Uniform
convergence guarantees that 3|a,,(s) —a,(s()|* converges to
a continuous function of s, implying Eq. (6.15).

From all these considerations, Eq. (6.12) is implementable
as a continuous unitary group U(s): H—H,

. B,,(7)
U'(s)a,U(s)= cos(|m|s)—iWsin(|m|s) a,,

B iA%(T) ;

|m—|sin(|m|s)a (6.18)

—m
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from which the Hamiltonian H(7) is uniquely defined, up to
an additive multiple of the identity, as the infinitesimal gen-
erator.

The continuous unitary group U(s): H— H preserves the
physical Hilbert space.”> We can then say that the Hamil-
tonian H(7) represents an observable [although it is not
known precisely what is the domain of H(7) in Hyyl. To
see that U(s) acts on H,, we first note that the image of
the state W, defined in Eq. (4.5) is a physical state,
U(s)W € Hppnys - Indeed, writing Eq. (6.18) as

U'(8)a,U(s)=ap(s)a,+Bu(s)a’,, .  (6.19)
A straightforward computation shows that
p2 1 o
U(s)Wo=N(s)exp| —i=——s—= 2, y(s)ala® ¥,
27 2;%0 o
(6.20)
where
Bn(_s)
’Yn(s)_ an(_S)

and N(s) is fixed (up to a phase) by normalization. Evi-
dently, the action of U(s) on the Fock vacuum is given by
“pair creation” with each pair having zero total momentum,
thus yielding a state in H,y, . Using Egs. (6.19) and (6.20) it
is straightforward to compute the action of U(s) on a vector
obtained as the image of any polynomial in the creation op-
erators applied to W, . Since these states span H [as y varies
over a basis for L?(R?)], this defines U(s). It is then easy to
see that states satisfying (3.20) are mapped by U(s) into
states satisfying (3.20). For example,
U(s)aja’ ,Wo=[aF*(—s)a’ ,a}+a}(—s)B}(—s)

n—-—n —n-n
X(ala,+a_,a’,)

+ B (—s)a_,a,]U(s)V,,  (621)

from which it is clear that

U(s)aja’ ,Woe Hppys -
VII. REMARKS ON THE PHYSICAL VIABILITY
OF THE MODEL

In the quantum mechanical description of systems with a
finite number of degrees of freedom, lack of unitary dynam-
ics is normally associated with a failure of the probability
interpretation of the model. The absence of unitary time evo-
lution in the Gowdy model is an ultraviolet effect of the
same sort as observed in [16,17]; it has no analogue in the
quantum mechanics of a system with a finite number of de-
grees of freedom. Indeed, we have seen that, despite the lack

13Formally, this follows from the fact that C and H(7) commute.
But without a precise characterization of the domain of H(7) it is
hard to conclude anything from this formal result.
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of unitary dynamics, the probability interpretation of the
quantum Gowdy model appears to be intact in the following
sense. The basic dynamical variables (Q, P) and (¢,¢,)
(with the latter smeared with smooth functions of x) are self-
adjoint operators on H for all #>0. Observables (self-adjoint
operators on ) —besides functions of (Q, P)—can be
built from the field variables (¢, ,), by projection. The
spectral theorem then guarantees that the set of possible out-
comes of a measurement of the observables have probabili-
ties which add up to unity for all #>0. Remarkably, even
more complicated observables such as the Hamiltonians
H(t) for the model can, for each >0, be defined as self-
adjoint operators and given a consistent probability interpre-
tation. Similar remarks can be made about the systems con-
sidered in [16,17]. There, the basic linear fields can, for all
time, be defined as self-adjoint operators, so that the usual
probability interpretation is available for them, despite the
fact that the time evolution is not unitarily implemented.

In [28] it is argued that non-unitary Schrodinger picture
evolution in quantum gravity leads to difficulties with cau-
sality and locality. It is also pointed out there that these dif-
ficulties may be absent in a formulation of dynamics in the
Heisenberg picture. Of course, in quantum mechanics the
mathematically distinct Schrodinger and Heisenberg pictures
are physically equivalent. But this is precisely because of the
unitary implementation of dynamics in either picture. In the
type of situation being discussed in this article, dynamical
evolution is defined in the Heisenberg picture by the field
equations, and the Schrodinger picture description of dynam-
ics is unavailable. In this way the Gowdy model, as well as
the models appearing in [16,17], appear to evade the unac-
ceptable behavior discussed in [28].

It should be mentioned that in this paper we have re-
stricted attention to the Gowdy model as it is usually defined
via a specific choice of time. As emphasized in [11], in quan-
tum gravity one desires a theory that does not give a special
status to a particular notion of time in the classical theory.
With this in mind, the authors of [11] point out that one
should really be considering the “physical observables™ of
the gauge invariant formulation of the theory (e.g., the
“evolving constants of motion”) when deciding upon the
effect of the failure of unitarity on the physical viability of
the model. They then argue that the failure of unitarity ought
to imply that such observables are not well defined. While
this issue deserves further investigation, a gauge-invariant
formulation of the quantum Gowdy model and a definition of
its gauge-invariant observables are beyond the scope of this
paper. (However, see the paragraph below which discusses
the algebraic quantum field theory approach.)

An important question left open by these considerations is
the status of fundamental geometrical quantities in the
Gowdy model, e.g., the metric and curvature. Some of the
features of the metric and curvature operators have been
studied in [3,4,10], but a more thorough investigation is war-
ranted. To give a flavor of the issues involved, let us consider
the metric components in Eq. (2.1) from the point of view of
the quantum theory. Evidently, the exponentials of the quan-
tum fields ¢ and vy are required to define the quantum metric.
Of course, it is too much to ask that the quantum metric
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components be defined by self-adjoint operators pointwise;
some smeared version is required. Since Q and ¢(f) [de-
fined in Eq. (5.3)] are self-adjoint, we can define a smeared
self-adjoint ¢ via

o(f)=e"2¢(f), (7.1)

which can be exponentiated to define a self-adjoint, smeared
metric component. To define the quantum g, and g, metric
components in an arbitrarily small neighborhood of any
point one need only choose a sufficiently well-localized
smearing function f. The definition of the metric function y
(needed for g,, and g,,) is more problematic. The field vy is
formally defined in terms of (Q.P.,$.P,) via Egs. (2.5),
(2.12), (2.13), and (2.20). It is not clear that smearing y with
a smooth function of x and, e.g., normal-ordering of the cre-
ation and annihilation operators, will be adequate to render
the expressions involving £ and II well defined. That ques-
tion aside, it is not at all clear that the variable 7y, , defined in
terms of (Q,P,$,P,) via Eq. (2.13) is well defined. For
example, the integral appearing in the last term of Eq. (2.13)
is the generator for the following one-parameter group of
canonical transformations:

d—P(a)=ed, Py—Pyla)=e “P,.

It is straightforward to verify that this transformation group
is not unitarily implemented on H, precluding the existence
of a self-adjoint generator. Evidently, if y can be defined at
all it will be through some sort of regularization procedure
yet to be constructed (cf. [10]). It would seem that the need
for a physically tenable definition of 7y in the quantum theory
is the salient difficulty with the Gowdy model, not the failure
of unitarity.

Supposing one could not satisfactorily resolve the ques-
tion of how to define vy in the quantization of the Gowdy
spacetimes under consideration, one might respond by
searching for a different representation of the canonical com-
mutation relations (CCR) than that used thus far, one which
allows for a well-defined metric operator. Moreover, it is
possible that other representations of the CCR will also allow
for unitarily implemented time evolution.'*

However, the need for a search for an optimal choice of
representation can be eliminated if one is willing to define
the quantum Gowdy model using the algebraic quantum field
theory formalism (see, e.g., [22] and references therein). In
this formalism one, in effect, uses all representations of the
CCR at once. Provided that time evolution defines an auto-
morphism of the C* algebraic structure used to define the
theory (a weaker requirement than unitary implementability
in a given representation), the observables appearing in the
C* algebra will be defined as self-adjoint operators for all
time in any representation. Moreover, one approach to con-
structing gauge-invariant observables (e.g., such as in [29]),
which is valid when there exists a global time function, ob-
tains the observables from the canonical variables by apply-

(72)

This was suggested in Ref. [11]. Some of Berger’s work [3] can
be interpreted as considering alternate representations of the CCR.
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ing to them the inverse time evolution transformation.
Granted that this is an automorphism of the C* algebra, it
appears possible that the gauge-invariant observables will
have satisfactory physical properties. An application of the
algebraic approach to the quantum Gowdy model will have
to take account of the nonlinear nature of the space of solu-
tions to the field equations—the constraint in particular, and
the need to give probability distributions for the metric, cur-
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vature, etc. This certainly seems feasible and will be pursued
elsewhere.
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