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Cosmology, cohomology, and compactification

C G Torre

Department of Physics, Utah State University, Logan, UT 84322-4415, USA

Abstract.

Ashtekar and Samuel have shown that Bianchi cosmological models with
compact spatial sections must be of Bianchi class A. Motivated by general results
on the symmetry reduction of variational principles, we show how to extend the
Ashtekar-Samuel results to the setting of weakly locally homogeneous spaces as
defined, e.g., by Singer and Thurston. In particular, it is shown that any m-
dimensional homogeneous space G/K admitting a G-invariant volume form will
allow a compact discrete quotient only if the Lie algebra cohomology of G relative
to K is non-vanishing at degree m.

Spatially homogeneous spacetimes have been studied extensively as both classical
and quantum cosmological models (see, e.g., [1, 2]). In 3+1 dimensions all spatially
homogeneous models but one (the Kantowski-Sachs model) admit a freely acting three-
dimensional Lie group of isometries. These models are known as “Bianchi models”
since they can be classified — up to topology — according to Bianchi’s classification of
three-dimensional Lie algebras. It was noted by Ashtekar and Samuel [3] that the orbit
manifolds (the preferred spatial slices) for the Bianchi models can be compact only if
the Lie algebra of the homogeneity group is Bianchi class A. They also consider a class
of locally homogeneous geometries and show that the restriction to Bianchi class A
Lie algebras is still necessary for compact spatial sections in this more general setting.
It is straightforward to generalize the Ashtekar-Samuel results to orbit manifolds of
any dimension. The result is the same provided one generalizes “Bianchi class A” to
“unimodular”‡. However, to our knowledge it is unknown how to extend these results
to the large class of “weakly locally homogeneous spaces”§ of Singer, Thurston, etc.

[4, 5, 6]. Such spaces need not satisfy the local homogeneity criteria of [3]. For
example, as pointed out in [3], compact, weakly locally homogeneous spaces such as
arising in the Kantowski-Sachs model, or, more generally, such as obtained by taking
the product of a circle with a compact Riemann surface, are not covered by the results
of [3]. The purpose of this note is to show how to extend the results of [3] to the weakly
locally homogeneous setting.

‡ A Lie group is said to be unimodular if it admits a bi-invariant measure. A Lie group is unimodular
if and only if its adjoint representation on its Lie algebra is by linear transformations with determinant
±1. A Lie algebra is said to be unimodular if its adjoint representation is by trace-free linear
transformations (in terms of structure constants, Cb

ab
= 0). A connected Lie group is unimodular if

and only if its Lie algebra is. For three-dimensional Lie algebras, unimodular is synonymous with
Bianchi class A.
§ Unfortunately, the terminology here is not universal. Ashtekar and Samuel define “globally
homogeneous spaces” the way mathematicians normally define “homogeneous spaces”. Further,
Ashtekar and Samuel use “homogeneous” to denote a local form of homogeneity — one that is
inequivalent to what mathematicians normally mean by “locally homogeneous” and which Singer
defines as “weakly locally homogeneous”. We will use the latter term (in a no-doubt hopeless attempt)
to minimize confusion.

http://arXiv.org/abs/gr-qc/0402105v1
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The results of [3] on compactification of Bianchi models are closely related to
the fact that the class A models obey the principle of symmetric criticality, that is,
they always inherit variational principles by symmetry reduction [7, 8]. Indeed, the
obstruction to the spatially homogeneous symmetry reduction of, say, the Einstein-
Hilbert action is a boundary term which trivially vanishes for compact spatial sections.
Recently, necessary and sufficient conditions for the validity of the principle of
symmetric criticality were obtained for any isometry group action and for any metric
theory of gravity [9]. These conditions include the unimodularity condition for Bianchi
models, but in the general case they involve the relative cohomology of the symmetry
Lie algebra. These results are easily extended to the (weakly) locally homogeneous
setting. This suggests that one can generalize the necessary condition of [3] for the
existence of compact spatial slices to weakly locally homogeneous spaces in terms of
relative Lie algebra cohomology. In this note we show how to do this via an extension
of the proof used in [3] for globally homogeneous spaces. In particular, we show that
any m-dimensional homogeneous space G/K (admitting a G-invariant volume form)
allows a compact discrete quotient only if the Lie algebra cohomology of G relative to
K does not vanish at degree m. This result can be viewed as providing an extension
of the results of [3] to the weakly locally homogeneous setting.

We begin by reviewing some definitions. A smooth manifold M is a homogeneous

manifold if it admits a transitive Lie group G of diffeomorphisms. The isotropy group

K ⊂ G of a point p ∈ M is the subgroup which fixes p. M is diffeomorphic to
the manifold of right cosets: M ≈ G/K. With this identification, the transitive
G action on M is the projection to M of the left action of G on itself. If M is
equipped with a G-invariant Riemannian metric we say that (M, g) is a homogeneous

geometry. A generalization of a homogeneous manifold is a Clifford-Klein manifold

M̄ , which is the quotient of M by a discrete subgroup Γ ⊂ G acting freely and
properly discontinuously, M̄ = M/Γ. The covering map from M to M̄ is denoted by
π̄: M → M̄ . In general, G does not drop to act on M̄ , although the Lie algebra of
vector fields generating the action of G on M will drop to M̄ locally. A Riemannian
metric g on a manifold N is called weakly locally homogeneous if given any two points
x, y ∈ N there exist isometric neighborhoods of x and y. We call such a pair (g, N) a
weakly locally homogeneous geometry. The manifold N supporting a complete, weakly
locally homogeneous metric can always be realized as a Clifford-Klein manifold M/Γ,
with (M, π̄∗g) being a homogeneous geometry [6, 10].

Given a Lie algebra g and a sub-algebra k, the Lie algebra cohomology of g relative

to k, H∗(g,k), is defined as the cohomology of forms on g invariant under the adjoint
action of k on g [11]. For our purposes, it is convenient to define this cohomology in
terms of differential forms on a given Lie group G with Lie algebra g. Consider the
vector space Ωp(G) of left-invariant p-forms on G. Let K be a closed subgroup of G.
Denote by Ωp(G, K) ⊂ Ωp(G) the vector subspace of left G-invariant p-forms that are
also right K-basic. A right K-basic form ω ∈ Ωp(G, K) is invariant under the right
action of K on G and satisfies

X · ω = 0 (1)

for all vector fields X generating the right action of K on G. It is straightforward to
verify that d: Ωp(G, K) → Ωp+1(G, K), whence one can define the relative Lie algebra
cohomology H∗(g, K) as the cohomology in Ω∗(G, K). When K is disconnected
this is actually a slight generalization of the usual definition of relative Lie algebra
cohomology H∗(g,k). If K is connected then H∗(g, K) = H∗(g,k), that is, the
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relative cohomology depends only on the Lie algebra data g and k and can be
computed entirely in terms of the structure constants of g.

Our main result is the following theorem which shows that the vanishing of a
particular relative Lie algebra cohomology class is an obstruction to the existence of
a compact Clifford-Klein manifold.

Theorem. Let M ≈ G/K be an m-dimensional homogeneous manifold admitting a

G-invariant volume form. If M admits a compact Clifford-Klein quotient M̄ = M/Γ
then Hm(g, K) 6= 0.

Proof:

Let ǫ be a G-invariant volume form on M . Since Γ ⊂ G, there exists a volume
form ǭ on M̄ defined by ǫ = π̄∗ǭ. If M̄ is compact, then the integral of ǭ over M̄ is
well-defined and ∫

M̄

ǭ 6= 0. (2)

Define ν ∈ Ωm(G, K) by ν = π∗ǫ, where π is the surjection π: G → G/K. Because
dǫ = 0 we have that dν = 0. Now suppose that Hm(g, K) = 0. We then get ν = dα,
where α ∈ Ωm−1(g, K). This implies that π∗(ǫ − dβ) = 0, where β is the G-invariant
(m − 1)-form defined by π∗β = α. Since β is G-invariant and Γ ⊂ G, it follows that
there exists a form β̄ such that β = π̄∗β̄, whence π̄∗(ǭ − dβ̄) = 0. Thus ǭ is exact,
leading to ∫

M̄

ǭ = 0, (3)

which is a contradiction invalidating the assumption that Hm(g, K) = 0.

The requirement that G/K admits a G-invariant volume form is equivalent to
the requirement that the adjoint representation of K on the vector space g/k is by
linear transformations with unit determinant. In the case where M̄ is orientable
and supports a complete weakly locally homogeneous metric this requirement is
automatically satisfied. In general, however, a locally homogeneous metric is not
needed to establish this theorem (c.f. [AS]). In any case, if K is connected this
requirement is only on Lie algebraic data, i.e., on structure constants. Thus, provided
K is connected, the obstruction to compactification specified by the above theorem is
completely determined by the Lie algebras g and k.

Let us consider some applications of this Theorem.

Example 1: M̄ = G

Suppose that M̄ is in fact a connected Lie group G. In this case the Lie
algebra cohomology condition is equivalent to the unimodularity of G — in agreement
with [3] (see also [12]). To see this, one simply sets Γ = identity; the relative
cohomology condition is then equivalent to the non-vanishing of the top-degree Lie
algebra cohomology, which is equivalent to unimodularity (see, e.g. [13]).

Next let us consider spatial manifolds of the form M̄ = S1 × Rg, where Rg

is a compact, orientable Riemann surface of genus g. Each of these manifolds
can be viewed as a compact Clifford-Klein manifold. Moreover, in each case the
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underlying homogeneous space has an Abelian (SO(2)) isotropy group so the volume
form hypothesis is satisfied (which can also be seen from the fact that the manifolds
in question admit a weakly locally homogeneous metric). Therefore the obstruction
displayed in the theorem above should be absent.

Example 2: M̄ = S1 × S2

Begin with the homogeneous manifold M = R1 × S2 ≈ G/K where G = R1 ×
SO(3) and K = SO(2) ⊂ SO(3). This is the group action featuring in the Kantowski-
Sachs model. Choosing Γ = Z ⊂ R1 we have M̄ = (R1 × SO(3))/(Z × SO(2)).‖ A
basis of left-invariant 1-forms on G is (ωi, ω4), i = 1, 2, 3, where

dωi = −
1

2
ǫi

jkωj ∧ ωk, dω4 = 0. (4)

The dual basis is (ei, e4) and the Lie algebra of K can be taken to be spanned by e3.
The vector spaces of left G-invariant, right K-basic 2-forms and 3-forms are spanned,
respectively, by ω1 ∧ ω2, and ω1 ∧ ω2 ∧ ω4, which satisfy

d(ω1 ∧ ω2 ∧ ω4) = 0, d(ω1 ∧ ω2) = 0, (5)

so that H3(g, K) = H3(g,k) = R1.

Example 3: M̄ = S1 × T 2

Set G = R1 × E(2), where E(2) is the Euclidean group acting on the plane. G
acts transitively on M = R1×R2 in the obvious way. The isotropy group of the origin
is SO(2) ⊂ E(2) and we have M = R1 × E(2)/SO(2). We set Γ = Z × L, where
Z ⊂ R1 and L ⊂ E2 is a lattice in R2. We can then realize M̄ = S1 × T 2 = M/Γ.
Note that, in general, M̄ is neither a group manifold nor a homogeneous manifold. A
basis of left-invariant 1-forms on G is given by ωi, i = 1, 2, 3, 4 where

dω1 = −ω2 ∧ ω3, dω2 = ω1 ∧ ω3, dω3 = 0 = dω4. (6)

Denoting the dual basis by ei, the isotropy sub-algebra is spanned by e3. The vector
space of left G-invariant, right K-basic 3-forms is spanned by ω1 ∧ ω2 ∧ ω4, while the
space of left G-invariant, right K-basic 2-forms is spanned by ω1 ∧ ω2. Both of these
forms are closed, whence H3(g, K) = H3(g,k) = R1.

Example 4: M̄ = S1 ×Rg, g ≥ 2

Here Rg is a compact Riemann surface of genus g ≥ 2, i.e., a g-handled torus. We
choose G = R1×PSL(2, R), where R1 is the additive group of reals, and PSL(2, R) =
SL(2, R)/{±Identity}. G acts transitively on R1 × U2, where U2 = {(x, y)|y > 0}
is the upper-half plane. In this group action PSL(2, R) acts transitively on U2 by
linear fractional transformations. The isotropy group of a point is easily seen to be
an SO(2) subgroup of PSL(2, R), whence M = R1 × U2 ≈ R1 × PSL(2, R)/SO(2).
For each choice of Rg, there is a free, discrete subgroup γ ⊂ PSL(2, R) such that
S1 × Rg ≈ R1 × U2/(Z × γ), i.e., Γ = Z × γ (see, e.g. [14]). The Lie algebra of
R1 × PSL(2, R) can be defined by the basis ei, i = 1, 2, 3, 4 satisfying

[e1, e2] = e1, [e1, e3] = −2e2, [e2, e3] = e3, [ei, e4] = 0, (7)

‖ Z is the additive group of integers. In this example M̄ is a homogeneous manifold.
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with dual basis ωi satisfying

dω1 = −ω1 ∧ ω2, dω2 = 2ω1 ∧ ω3, dω3 = −ω2 ∧ ω3,

dω4 = 0.
(8)

The isotropy subgroup SO(2) of the point (0, 0, 1) ∈ R1 × U2 is generated by
e1 − e3. The set of G-invariant, SO(2)-basic 3-forms is spanned by the closed form
(ω1 + ω3) ∧ ω2 ∧ ω4. The set of G-invariant, SO(2)-basic 2-forms is spanned by the
closed form (ω1 + ω3) ∧ ω2, whence H3(g, K) = H3(g,k) = R1.

Example 5: A non-compactifiable LRS manifold

As our final example we exhibit a homogeneous manifold with local rotation
symmetry that exhibits the Lie algebra cohomology obstruction to existence of a
compact discrete quotient. The transformation group G is four-dimensional with
coordinates λα, α = 1, 2, 3, 4. In coordinates xi, i = 1, 2, 3, on M = R3 we define the
transitive G-action

x1 −→ x1 − λ3, (9)

x2 −→ λ1 + eλ3

[x2 cos(λ4) − x3 sin(λ4)], (10)

x3 −→ λ2 + eλ3

[x3 cos(λ4) + x2 sin(λ4)]. (11)

The infinitesimal generators of this group action are

e1 = ∂2, e2 = ∂3, e3 = −∂1 + x2∂2 + x3∂3,

e4 = x2∂3 − x3∂2,
(12)

giving the Lie algebra

[e1, e2] = 0, [e1, e3] = e1, [e2, e3] = e2,

[e1, e4] = e2, [e2, e4] = −e1, [e3, e4] = 0.
(13)

The isotropy subgroup of the origin is K = SO(2) and is generated by e4 (so that M
admits a G-invariant volume form as well as a G-invariant metric). Denoting the dual
basis for the Lie algebra as ωα, α = 1, 2, 3, 4, the vector space of left G-invariant, right
SO(2) basic 3-forms on G is spanned by ω1 ∧ ω2 ∧ ω3, which satisfies

ω1 ∧ ω2 ∧ ω3 = d(ω1 ∧ ω2), (14)

where ω1 ∧ ω2 is a left G-invariant, right SO(2) basic 2-form. Thus H3(g,k) = 0 and
M does not admit a compact discrete quotient. Every four-dimensional group action
that (i) is transitive on a 3-manifold, (ii) admits a G-invariant Riemannian metric, and
(iii) realizes the Lie algebra cohomology obstruction to a compact discrete quotient
has the Lie algebra (13) and generators given (locally) in the form (12).

We remark that in each of examples 4 and 5 the group action admits a transitive
3-dimensional subgroup with Lie algebra of Bianchi class B.
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