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In recent papers, it has been theoretically shown that by using dual-period wire gratings, it is possible to control the
relative efficiencies of the diffracted orders, regardless of the wires’material, incident polarization and wavelength.
In this Letter, we experimentally demonstrate, for the first time, that by appropriately choosing the geometrical
parameters of a nanometric periodic structure, it is possible to control the optical response in the visible range.
We show examples of nanostructures designed to cancel out or to intensify a particular diffraction order. Such
nanostructures allow a broad control over the directionality and the intensity of the diffracted light, which makes
them useful for applications such as highly directional optical nanoantennas and photonic multiplexers. © 2014
Optical Society of America
OCIS codes: (050.1950) Diffraction gratings; (050.6624) Subwavelength structures; (220.4241) Nanostructure

fabrication.
http://dx.doi.org/10.1364/OL.39.005693

Infinite periodic structures with two characteristic
periods (dual-period structures) have recently received
special attention, because they can be engineered for a
specific optical response by controlling geometrical
parameters. For instance, a double-period diffraction gra-
ting attached to a photonic crystal allows a directional
control of the propagating waves, which makes it work
like an optical diode [1]. Dual-period dielectric gratings
have also been proposed to control the optical response
in nanoantennas [2–5] and to introduce significant
changes in the reflected and transmitted response of
regular periodic structures [6–13].
In recent papers, it was shown that both perfectly con-

ducting compound gratings with rectangular grooves and
metallic wire compound gratings with circular profiles
can be designed to cancel as well as to intensify a given
diffraction order [2–4]. This behavior was predicted by a
simple model based on the scalar diffraction theory
applied to a finite number of slits of subwavelength thick-
ness on an opaque screen. It was corroborated by the
modal method for wire structures of finite thickness [2]
and for the complementary structure using the integral
method based on the second Green’s identity [3].
In this Letter, we compare our theoretical scalar pre-

dictions with experimental results in the optical range.
These experimental results confirm that nanoscale dual-
period arrays constitute very promising structures that
can be useful for many applications and devices, such
as optical angular sensing [14], modulators, multiplexers
and optical switches [15].
The dual-period nanostructure is formed by metallic

wires distributed in groups (sub-arrays) of J nanowires
each, as shown in Fig. 1. A total ofN wires are distributed

in M subarrays. The structure is periodic (period D) and
each sub-array of J nanowires forms a finite grating of
period d. In Fig. 1 we show a scheme of a structure with
J � 5. The height h and the width a of the wires are also
indicated.

Taking advantage of the analogy between slits’ and
wires’ dual-period structures regarding their intensifica-
tion/cancellation properties (Babinet’s principle) [3],
we apply the simplified model developed in [2] to predict
the electromagnetic response of compound fabricated
nanostructures. For this purpose, we consider an opaque
screen with slits of width a—instead of subwavelength
wires—distributed in sub-arrays.

The basic idea of the proposed model is that the re-
sponse of the dual-period structure can be regarded as
a combination of the responses of the periodic structure
of period D [16], and that of each sub-array of period d.
The intensity at a given point p on a screen far from the
dual-period slit structure is [2]:

Fig. 1. Scheme of the fabricated dual-period nanostructures.
In this case, only three sub-arrays of the whole structure with
J � 5 are shown.

October 1, 2014 / Vol. 39, No. 19 / OPTICS LETTERS 5693

0146-9592/14/195693-04$15.00/0 © 2014 Optical Society of America

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/77519832?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1364/OL.39.005693


Ip � I0

�
sin Mα

sin α

�
2
�
sin Jγ
sin γ

�
2
�
sin β

β

�
2
; (1)

where α � �πD∕λ��sin θ − sin θ0�, γ � �πd∕λ��sin θ−
sin θ0�, β � �πa∕λ��sin θ − sin θ0�, θ and θ0 are the
observation and incidence angles, and a is the width
of each slit. The first, second and third factors in the right
hand side of Eq. (1) can be identified as the interference
of the M sub-arrays, the interference of the J wires in
each period, and the diffraction of each element, respec-
tively. The interplay between the three terms, especially
the M - and J-dependent terms, give rise to particular
characteristics of the diffraction pattern and can also
be exploited to intensify (or to cancel out) a desired dif-
fraction order. The first factor in Eq. (1) yields sharp
peaks in very well-defined positions given by the grating
equation: �sin θ − sin θ0� � mλ∕D; m ∈ Z. The J-
dependent factor has the same form as the first factor,
and it can substantially modify the diffraction pattern.
Its maxima are given by �sin θ − sin θ0� � pλ∕d; p ∈ Z
and its minima are found for �sin θ − sin θ0� �
�q∕J��λ∕d�; q ∈ Z; q∕J∉Z. According to the specific
selection of geometrical parameters, one can manipulate
the diffracted intensity in particular directions.
For example, when a minimum of the J-dependent

factor falls in the same angle that a maximum of the
M-dependent factor, the diffraction order that propa-
gates along this direction is cancelled. This condition
is achieved for �q∕J� × λ∕d � mλ∕D. On the other hand,
if both M - and J-dependent factors are maximized for
certain value of θ, the intensity diffracted in this direction
is increased. This occurs for pλ∕d � mλ∕D. Notice that
according to these relationships, the intensification/
cancellation effects are independent of the working
wavelength.
In Figs. 2(a) and 2(b), we show the reflected intensity

of two dual-period structures given by the scalar model
(red line, open circles) as a function of sin�θ�, and com-
pare this response with that of a simple grating of the
same period D (blue line, solid circles) for normal inci-
dence (θ0 � 0°). Figure 2(a) corresponds to the case for
which all the even orders are cancelled, and the design
of Fig. 2(b) was intended to intensify the −3 order. The
effect produced by the dual periodicity in the reflected
response can be appreciated: whereas all the diffraction
orders have similar intensities for the simple grating case,
the dual-period structure strongly modifies this response
and redistributes the power by almost cancelling the even
orders [Fig. 2(a)] or increasing the −3 order [Fig. 2(b)].
Micrographs of the samples fabricated with the geo-

metrical parameters used for Figs. 2(a) and 2(b) (see
caption of Fig. 2) are shown in Figs. 3(a) and 3(b).
The total area occupied by the array of Fig. 3(a) is
6.5 μm × 5.0 μm and that of Fig. 3(b) is 10.5 μm × 5.0 μm .
The grating pattern was exposed into a positive tone,

electron-sensitive poly(methylmethacrylate) (PMMA)
495 A4 resist supported on an oxide-coated silicon wafer.
The SiO2 thickness was 100 nm. The PMMA coating was
spin coated onto the SiO2 surface at 4000 rpm for 45 s.
The resist coating was prepared for electron exposure
with 185°C soft bake on a hot plate for 1 min. The elec-
tron beam exposure was performed using a JEOL 9300

electron beam lithography system. The critical exposure
settings consisted of an electron beam accelerating volt-
age of 100 keV and a primary electron beam current of
2 nA. The focused electron probe has a FWHM of ≈ 6 nm.
An exposure dose of 1100 μC∕cm2 was used to fully
transfer the grating pattern into the electron sensitive re-
sist. The final development of the PMMA was facilitated
by submerging the wafer in a solution of methyl isobutyl
ketone (MIBK)/isopropyl alcohol (IPA), with a mixture
ratio of 1∶3 for a total time of 60 s. Upon removing the
wafer from the solution, the wafer was rinsed with an
IPA stream and subsequently blown dry with a N2 gas
flow. PMMA resist was dissolved during this wet
development process, in the electron exposed regions,
completely to the SiO2 surface. Ni metallization of the
exposed grating pattern was performed using an
AJA International 200 DC magnetron sputtering system.
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Fig. 2. Reflected intensity obtained by the scalar model (red
line, open circles) as a function of sin�θ� for two dual-period
gratings, in comparison to their counterparts for simple gratings
of the same period (blue line, solid circles). The incidence
angle is θ0 � 0°, and the intensity is normalized to that of
the −1 order in both cases. (a) J � 5, M � 25, d � 270 nm,
D � 2625 nm, a � 100 nm, and λ � 532 nm (designed to cancel
out all even diffraction orders); (b) J � 2,M � 39, d � 890 nm,
D � 2667 nm, a � 100 nm, and λ � 532 nm (designed to inten-
sify the �3 diffraction orders).

Fig. 3. Detail of the fabricated dual-period nanostructures. Ni
wires 25 nm thick and total length ≈ 5 μm were deposited on a
SiO2 film. (a) J � 5, M � 25, d � 270 nm, and D � 2625 nm.
Scale bar in the inset is 2 μm. (b) J � 2, M � 39, d � 890 nm,
and D � 2670 nm. Scale bar in the inset is 4.5 μm.
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Sputtering conditions were 30 W, a background chamber
pressure of 10 mTorr Ar and an Ar flow rate of
25 cm3∕min. These conditions lead to a Ni deposition
rate of 4.2 nm/min. The final grating thickness was
25 nm� 1 nm for all samples (see Fig. 3). A final liftoff
process consisting of submerging the wafer in a solution
of acetone removed the remaining PMMA resist from the
unexposed regions of the wafer.
To have a quantitative analysis of the diffracted orders,

an angular intensity recording was carried out using a
photodiode placed in the moving arm of a goniometer,
as sketched in Fig. 4. The grating was mounted on the
plate of a 0.05° angular path step motor driven goniom-
eter. It was home-modified by extending the recording
moving arm to a distance of 1 m to achieve enough spatial
resolution for sampling diffracted orders with a sufficient
number of points. A low power CW 532 nm elliptically
polarized laser was normally incident on the wire grating,
with the major axis of the polarization ellipse is parallel
to the nanowires.
The beam was modulated by a chopper at a deter-

mined reference frequency for lock-in amplifier (LIA)
detection. The diffracted orders were detected by a pho-
todiode attached to the moving arm and its output feeded
the LIA. The output of the LIA entered channel A of a
ratiometer. Besides, a fraction of the incident beam
was taken by a beamsplitter and recorded with a second
photodiode that feeds into channel B of the ratiometer to
account for possible long-term laser intensity fluctua-
tions. A PC drove the goniometer control and recorded
the DC signal of the A/B ratio.
In Fig. 5, we show the optical intensity measured from

the arrays of Figs. 3(a) and 3(b), and compare them with
their corresponding theoretical predictions made using
the scalar approach (Fig. 2). As expressed by Eq. (1),
the dual-periodicity of the structure allows new effects
that are forbidden for simple or regular gratings. In both
cases, a very good agreement can be observed between
the experimental and the theoretical results, not only in
the angular distribution but also in the relative intensities
of the diffraction orders. The main discrepancies be-
tween the theoretical and the experimental results can
be explained by taking into account that the scalar model
does not consider the interaction between the SiO2 sub-
strate and the metallic wires. Besides, the measured

intensity is expected to be polarization dependent,
although expression (1), derived from a scalar model,
is independent of the incident polarization mode.

Although the fabricated samples have imperfections,
the intensity distribution does not seem to be altered
by this, thus exhibiting a high degree of tolerance to fab-
rication errors. This shows that dual-period nanostruc-
tures can be used within nanodevices to control and
redirect the electromagnetic intensity. On the other hand,
the excellent agreement between theoretical and exper-
imental curves confirms the potential of the simple
model to be used as a design tool.

To complete the picture, in Fig. 6, we show photo-
graphs of the observed diffraction patters of both nano-
gratings considered in this work. Figure 6(a) corresponds
to the attenuation of the −2 diffraction order and Fig. 6(b)
to the intensification of the −3 order. Instead of a simple
light spot, order −1 appears in Fig. 6(a) as a diffraction
pattern of a rectangular aperture. This pattern corre-
sponds to the whole fabricated nanostructure, since the
illuminated area is much larger than the grating. The
same feature is observed in the −3 order in Fig. 6(b),
in which case this diffraction order is enhanced.

We have provided experimental evidence of the ability
of dual-period gratings to distribute the intensity among
the diffraction orders according to predesigned require-
ments. To the best of our knowledge, this is the first time
that this phenomenon is experimentally shownwithin the
optical range. The possibility of controlling the intensity
distribution by means of a passive device would allow

Fig. 4. Schematic of the experimental setup used for angular
intensity recording of diffracted orders. Ni grating array is not
drawn to scale. Signal photodiode is placed at 1 m radial
distance from the grating.

Fig. 5. Experimental reflected intensity (black thick line) as a
function of sin θ for the dual-period fabricated nanostructures.
The measured intensity is compared with the theoretical results
obtained by the scalar model (red thin line) for λ � 532 nm.
(a) The structure parameters are the same as those of
Figs. 2(a) and 3(a), for which the −2 order is almost cancelled.
In this case, the relative intensity is normalized to that of the −1
order; (b) the structure parameters are the same as those of
Figs. 2(b) and 3(b), for which the −3 order is intensified. In this
case, the relative intensity is normalized to that of the −3 order.
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many applications in nanotechnology, such as optical
multiplexers and photonic logic gates.
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Fig. 6. Photographed images of the diffracted orders corre-
sponding to the spectra shown in Fig. 5. (a) For the structure
considered in Fig. 5(a), the cancellation of the −2 order is
evident; (b) for the structure considered in Fig. 5(b), a clear
intensification of the −3 order is observed.
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